Two types of the second Hankel determinant for the class \mathcal{U} and the general class \mathcal{S}

Milutin Obradović and Nikola Tuneski

Abstract

In this paper we determine the upper bounds of the Hankel determinants of special type $H_{2}(3)(f)$ and $H_{2}(4)(f)$ for the general class of univalent functions and for the class \mathcal{U}.

1. Introduction and preliminaries

Let the class \mathcal{A} consist of functions which are analytic in the unit disk $\mathbb{D}:=\{|z|<1\}$ and which are normalized such that

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, \tag{1}
\end{equation*}
$$

i.e., $f(0)=0=f^{\prime}(0)-1$; and let \mathcal{S} be the class of functions from \mathcal{A} that are univalent in \mathbb{D}.

In his paper [7] Zaprawa considered the following Hankel determinant of the second order

$$
H_{2}(n)(f)=\left|\begin{array}{cc}
a_{n} & a_{n+1} \\
a_{n+1} & a_{n+2}
\end{array}\right|=a_{n} a_{n+2}-a_{n+1}^{2}
$$

defined for the coefficients of the function given by (1) for the case when $n=3$. The author studied the upper bound of $\left|H_{2}(3)(f)\right|=\left|a_{3} a_{5}-a_{4}^{2}\right|$ in the cases when f from \mathcal{A} is starlike $\left(\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>0, z \in \mathcal{U}\right)$, convex $\left(\operatorname{Re}\left[1+z f^{\prime \prime}(z) / f^{\prime}(z)\right]>0, z \in \mathcal{U}\right)$, and with bounded turning $\left(\operatorname{Re} f^{\prime}(z)>0\right.$, $z \in \mathcal{U}$). These types of functions were studied separately, under the condition that the functions are missing their second coefficient, i.e., $a_{2}=0$. For the general class \mathcal{S}, he proved that $\left|H_{2}(3)(f)\right|>1$. In [6] the authors gave sharp bounds of the modulus of the second Hankel determinant of type $\mathrm{H}_{2}(2)$ of inverse coefficients for various classes of univalent functions.

[^0]Another interesting subclass of \mathcal{S} that has attracted significant interest in the past two decades is

$$
\mathcal{U}=\left\{f \in \mathcal{A}:\left|\left[\frac{z}{f(z)}\right]^{2} f^{\prime}(z)-1\right|<1, z \in \mathbb{D}\right\}
$$

More details can be found in [3] and Chapter 12 from [5].
The objective of this paper is to find upper bounds (preferably sharp) of the modulus of the Hankel determinants $H_{2}(3)(f)=a_{3} a_{5}-a_{4}^{2}$ and $H_{2}(4)(f)=a_{4} a_{6}-a_{5}^{2}$ for the class \mathcal{U}, as well as for the general class \mathcal{S}.

2. Class \mathcal{U}

For the functions f from the class \mathcal{U} in [4], as a part of the proof of Theorem 1, it was proven that there exists a function ω_{1}, such that

$$
\begin{equation*}
\frac{z}{f(z)}=1-a_{2} z-z \omega_{1}(z) \tag{2}
\end{equation*}
$$

where $\left|\omega_{1}(z)\right| \leq|z|<1$ and $\left|\omega_{1}^{\prime}(z)\right| \leq 1$ for all $z \in \mathbb{D}$, and additionally, for $\omega_{1}(z)=c_{1} z+c_{2} z^{2}+\cdots$,

$$
\begin{equation*}
\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq \frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right) \quad \text { and } \quad\left|c_{3}\right| \leq \frac{1}{3}\left[1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right] \tag{3}
\end{equation*}
$$

In a similar way, since $\left|\omega_{1}^{\prime}(z)\right| \leq 1$, one can verify that

$$
\left|c_{4}\right| \leq \frac{1}{4}\left(1-\left|c_{1}\right|^{2}-4\left|c_{2}\right|^{2}\right)
$$

Further, from (2), we have

$$
z=f(z)\left[1-\left(a_{2} z+c_{1} z^{2}+c_{2} z^{3}+\cdots\right)\right]
$$

and, after equating the coefficients,

$$
\begin{align*}
& a_{3}=c_{1}+a_{2}^{2} \\
& a_{4}=c_{2}+2 a_{2} c_{1}+a_{2}^{3} \\
& a_{5}=c_{3}+2 a_{2} c_{2}+c_{1}^{2}+3 a_{2}^{2} c_{1}+a_{2}^{4} \tag{4}\\
& a_{6}=c_{4}+2 a_{2} c_{3}+2 c_{1} c_{2}+3 a_{2}^{2} c_{2}+3 a_{2} c_{1}^{2}+4 a_{2}^{3} c_{1}+a_{2}^{5}
\end{align*}
$$

Now we can prove the estimates for the class \mathcal{U}.
Theorem 1. Let $f \in \mathcal{U}$. Then
(a) $\left|H_{2}(3)(f)\right| \leq 1$ if $a_{2}=0$, and the result is sharp due to the function $f(z)=\frac{z}{1-z^{2}}=z+z^{3}+z^{5}+\cdots$.
(b) $\left|H_{2}(3)(f)\right| \leq 1.4846575 \ldots$ for every $f \in \mathcal{U}$.

Proof. Using (4), after some calculations we obtain

$$
H_{2}(3)(f)=a_{3} a_{5}-a_{4}^{2}=\left(c_{1}+a_{2}^{2}\right) c_{3}-2 a_{2} c_{1} c_{2}+c_{1}^{3}-c_{2}^{2}
$$

and from here

$$
\begin{equation*}
\left|H_{2}(3)(f)\right| \leq\left|c_{1}+a_{2}^{2}\right|\left|c_{3}\right|+2\left|a_{2}\right|\left|c_{1}\right|\left|c_{2}\right|+\left|c_{1}\right|^{3}+\left|c_{2}\right|^{2} \tag{5}
\end{equation*}
$$

(a) If $a_{2}=0$, from (5) we obtain

$$
\left|H_{2}(3)(f)\right| \leq\left|c_{1}\right|\left|c_{3}\right|+\left|c_{1}\right|^{3}+\left|c_{2}\right|^{2}
$$

and using (3),

$$
\begin{aligned}
\left|H_{2}(3)(f)\right| & \leq\left|c_{1}\right| \cdot \frac{1}{3} \cdot\left[1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right]+\left|c_{1}\right|^{3}+\left|c_{2}\right|^{2} \\
& =\frac{1}{3}\left(\left|c_{1}\right|-\left|c_{1}\right|^{3}\right)+\frac{3-\left|c_{1}\right|}{3\left(1+\left|c_{1}\right|\right)}\left|c_{2}\right|^{2}+\left|c_{1}\right|^{3} \\
& \leq \frac{1}{3}\left|c_{1}\right|+\frac{2}{3}\left|c_{1}\right|^{3}+\frac{3-\left|c_{1}\right|}{3\left(1+\left|c_{1}\right|\right)} \frac{1}{4}\left(1-\left|c_{1}\right|^{2}\right)^{2} \\
& =\frac{1}{12}\left(3-2\left|c_{1}\right|^{2}+12\left|c_{1}\right|^{3}-\left|c_{1}\right|^{4}\right) \equiv h_{1}\left(\left|c_{1}\right|\right)
\end{aligned}
$$

where $h_{1}(t)=\frac{1}{12}\left(3-2 t^{2}+12 t^{3}-t^{4}\right)$ and $t=\left|c_{1}\right| \leq 1$ (see (3)). Now, $h_{1}^{\prime}(t)=-\frac{1}{3} c\left(1-9 c+c^{2}\right)$ vanishes in only one point on the interval $(0,1)$ and that is a minimum of h_{1} on the interval since $h_{1}(t)<0$ for small enough positive numbers (let us say, for $t=0.1$). Therefore

$$
\max \left\{h_{1}(t): t \in[0,1]\right\}=\max \left\{h_{1}(0), h_{1}(1)\right\}=h_{1}(1)=1
$$

i.e. $\left|H_{2}(3)(f)\right| \leq 1$. The sharpness of the estimate follows from the function $f(z)=\frac{z}{1-z^{2}}$ with $a_{2}=a_{4}=0$ and $a_{3}=a_{5}=1$.
(b) Since $\mathcal{U} \subset \mathcal{S}$, we have $\left|a_{2}\right| \leq 2$ and $\left|a_{3}\right|=\left|c_{1}+a_{2}^{2}\right| \leq 3$ From (5) we have

$$
\left|H_{2}(3)(f)\right| \leq 3\left|c_{3}\right|+4\left|c_{1}\right|\left|c_{2}\right|+\left|c_{1}\right|^{3}+\left|c_{2}\right|^{2} \equiv \varphi_{1}\left(\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|\right)
$$

where $\varphi_{1}(x, y, z)=3 z+4 x y+x^{3}+y^{2}$ with (due to $\left.(3)\right)$

$$
0 \leq x \leq 1, \quad 0 \leq y \leq \frac{1}{2}\left(1-x^{2}\right), \quad 0 \leq z \leq \frac{1}{3}\left(1-x^{2}-\frac{4 y^{2}}{1+x}\right)
$$

It is evident that

$$
\begin{aligned}
\varphi_{1}(x, y, z) & \leq 3 \cdot \frac{1}{3}\left(1-x^{2}-\frac{4 y^{2}}{1+x}\right)+4 x y+x^{3}+y^{2} \\
& =1-x^{2}+\left(4-\frac{4}{1+x}\right) y^{2}-3 y^{2}+4 x y+x^{3} \\
& \leq 1-x^{2}+\frac{4 x}{1+x} \cdot \frac{1}{4}\left(1-x^{2}\right)^{2}-3 y^{2}+4 x y+x^{3} \\
& =1+x-2 x^{2}+x^{4}+4 x y-3 y^{2} \equiv \psi(x, y)
\end{aligned}
$$

It remains to find the maximal value of the function ψ on the domain $\Omega_{1}=$ $\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq \frac{1}{2}\left(1-x^{2}\right)\right\}$. Since $\psi_{y}^{\prime}(x, y)=4 x-6 y$ vanishes for $x=\frac{3}{2} y$, and $\psi_{x}^{\prime}(3 y / 2, y)=1-2 y+\frac{27}{2} y^{3}$ vanishes only for $y=-0.535 \ldots$ we realize that ψ attains its maximal value on the boundary of Ω_{1}. Finally, when $x=0$ or $x=1$, the maximum is 1 , while for $y=0$, the maximum is $1.1295 \ldots$ for $x=0.26959 \ldots$, and for $y=\frac{1}{2}\left(1-x^{2}\right)$, the maximum is $1.4846575 \ldots$ for $x=0.6618 \ldots$. This completes the proof.

Theorem 2. Let $f \in \mathcal{U}$ and $a_{2}=0$. Then $\left|H_{2}(4)(f)\right| \leq 1$ and the estimate is sharp due to the function $f(z)=\frac{z}{1-z^{2}}=z+z^{3}+z^{5}+z^{7}+\cdots$.

Proof. If $f \in \mathcal{U}$ and $a_{2}=0$, then from (4) we obtain

$$
a_{4}=c_{2}, \quad a_{5}=c_{3}+c_{1}^{2}, \quad c_{6}=c_{4}+2 c_{1} c_{2}
$$

Further,

$$
H_{2}(4)(f)=a_{4} a_{6}-a_{5}^{2}=c_{2} c_{4}+2 c_{1} c_{2}^{2}-c_{3}^{2}-2 c_{1}^{2} c_{3}+c_{1}^{4}
$$

and, using (3), we have

$$
\begin{aligned}
& \left|H_{2}(4)(f)\right| \\
\leq & \left|c_{2}\right|\left|c_{4}\right|+2\left|c_{1}\right|\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+2\left|c_{1}\right|^{2}\left|c_{3}\right|+\left|c_{1}\right|^{4} \\
\leq & \frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right) \cdot \frac{1}{4}\left(1-\left|c_{1}\right|^{2}-4\left|c_{2}\right|^{2}\right)+2\left|c_{1}\right|\left|c_{2}\right|^{2}+\frac{1}{9}\left(1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)^{2} \\
& +2\left|c_{1}\right|^{2} \cdot \frac{1}{3}\left(1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+\left|c_{1}\right|^{4} \\
= & A\left|c_{2}\right|^{4}+B\left|c_{2}\right|^{2}+C \equiv h_{2}\left(\left|c_{2}\right|\right)
\end{aligned}
$$

where $h_{2}(t)=A t^{4}+B t^{2}+C$,

$$
\begin{aligned}
A & =\frac{16}{9\left(1+\left|c_{1}\right|\right)^{2}} \\
B & =2\left|c_{1}\right|-\frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right)-\frac{8}{9}\left(1-\left|c_{1}\right|\right)-\frac{8}{3} \frac{\left|c_{1}\right|^{2}}{1+\left|c_{1}\right|} \\
C & =\frac{17}{72}\left(1-\left|c_{1}\right|^{2}\right)^{2}+\frac{2}{3}\left|c_{1}\right|^{2}\left(1-\left|c_{1}\right|^{2}\right)+\left|c_{1}\right|^{4}
\end{aligned}
$$

with $A>0,0 \leq\left|c_{2}\right| \leq \frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right)$ and $\left|c_{1}\right| \leq 1$. Therefore, h_{2} attains its maximal value on the boundary, i.e.

$$
\max h_{2}\left(\left|c_{2}\right|\right)=\max \left\{h_{2}(0), h_{2}\left(\frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right)\right)\right\}
$$

We note that $h_{2}(0)=C \equiv g_{1}\left(\left|c_{1}\right|\right)$, where $g_{1}(t)=\frac{1}{72}\left(41 t^{4}+14 t^{2}+17\right)$, has a maximal value 1 when $0 \leq t=\left|c_{1}\right| \leq 1$, attained for $t=1$.

Further, let $g_{2}\left(\left|c_{1}\right|\right) \equiv h_{2}\left(\frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right)\right)$, where

$$
g_{2}(t)=\frac{1}{72}\left(17 t^{6}-12 t^{5}+38 t^{4}-24 t^{3}+17 t^{2}+36 t\right)
$$

$0 \leq t=\left|c_{1}\right| \leq 1$. In order to complete the proof of the theorem it is enough to show that this function is increasing on the interval $[0,1]$, which will lead to the conclusion that $h_{2}\left(\frac{1}{2}\left(1-\left|c_{1}\right|^{2}\right)\right)=g_{2}\left(\left|c_{1}\right|\right) \leq g_{2}(1)=1$.

Indeed, $g_{2}^{\prime \prime \prime}(t)=\frac{1}{72}\left(1020 t^{2}-288 t+228\right)>0$ for all $t \in[0,1]$, meaning that $g_{2}^{\prime \prime}(t)=\frac{1}{72}\left(340 t^{3}-144 t^{2}+228 t-48\right)$ is increasing on the same interval. Since $g_{2}^{\prime \prime}(0)<0$ and $g_{2}^{\prime \prime}(1)>0$, there is only one real solution of $g_{2}^{\prime \prime}(t)=0$ on $[0,1]$, i.e., only one local extreme (minimum) on $[0,1]$ for $t_{*}=0.22554 \ldots$ with value $g_{2}^{\prime}\left(t_{*}\right)=39.028 \ldots>0$. Thus, $g_{2}^{\prime}(t)>0$ for all $t \in[0,1]$.

Theorem 1(a) and Theorem 2 are the motivation for the following conjecture for the functions from \mathcal{U} with missing second coefficient.

Conjecture 1. Let $f \in \mathcal{U}$ and $a_{2}=0$. Then $\left|H_{2}(n)(f)\right|=\mid a_{n} a_{n+2}-$ $a_{n+1}^{2} \mid \leq 1$ for any integer $n \geq 3$. The estimate is a sharp due to the function $f(z)=\frac{z}{1-z^{2}}=\sum_{n=1}^{\infty} z^{2 n-1}$.

3. General class \mathcal{S}

For obtaining the estimates of the modulus of $H_{2}(3)(f)$ for the general class \mathcal{S} we will use a method based on the Grunsky coefficients based on the results and notations given in the book by Lebedev ([2]) as follows.

Let $f \in \mathcal{S}$ and let

$$
\log \frac{f(t)-f(z)}{t-z}=\sum_{p, q=0}^{\infty} \omega_{p, q} t^{p} z^{q}
$$

where $\omega_{p, q}$ are the Grunsky's coefficients with property $\omega_{p, q}=\omega_{q, p}$. For those coefficients the next Grunsky's inequality ([1, 2]) holds:

$$
\begin{equation*}
\sum_{q=1}^{\infty} q\left|\sum_{p=1}^{\infty} \omega_{p, q} x_{p}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{p}\right|^{2}}{p} \tag{6}
\end{equation*}
$$

where x_{p} are arbitrary complex numbers such that the last series converges.
Further, it is well-known that if the function f given by (1) belongs to \mathcal{S}, then also

$$
\begin{equation*}
\tilde{f}_{2}(z)=\sqrt{f\left(z^{2}\right)}=z+c_{3} z^{3}+c_{5} z^{5}+\cdots \tag{7}
\end{equation*}
$$

belongs to the class \mathcal{S}. Then, for the function \tilde{f}_{2} we have the appropriate Grunsky's coefficients of the form $\omega_{2 p-1,2 q-1}^{(2)}$ and the inequality (6) has the form:

$$
\begin{equation*}
\sum_{q=1}^{\infty}(2 q-1)\left|\sum_{p=1}^{\infty} \omega_{2 p-1,2 q-1} x_{2 p-1}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{2 p-1}\right|^{2}}{2 p-1} \tag{8}
\end{equation*}
$$

Here and further in the paper we omit the upper index (2) in $\omega_{2 p-1,2 q-1}^{(2)}$ if compared with Lebedev's notation.

If in the inequality (8) we put $x_{1}=1$ and $x_{2 p-1}=0$ for $p=2,3, \ldots$, then we obtain

$$
\begin{equation*}
\left|\omega_{11}\right|^{2}+3\left|\omega_{13}\right|^{2}+5\left|\omega_{15}\right|^{2}+7\left|\omega_{17}\right|^{2} \leq 1 \tag{9}
\end{equation*}
$$

As it has been shown in [2, p. 57], if f is given by (1), then the coefficients a_{2}, a_{3}, a_{4} and a_{5} are expressed by the Grunsky's coefficients $\omega_{2 p-1,2 q-1}$ of the function \tilde{f}_{2} given by (7) in the following way:

$$
\begin{align*}
a_{2} & =2 \omega_{11} \\
a_{3} & =2 \omega_{13}+3 \omega_{11}^{2} \\
a_{4} & =2 \omega_{33}+8 \omega_{11} \omega_{13}+\frac{10}{3} \omega_{11}^{3} \\
a_{5} & =2 \omega_{35}+8 \omega_{11} \omega_{33}+5 \omega_{13}^{2}+18 \omega_{11}^{2} \omega_{13}+\frac{7}{3} \omega_{11}^{4} \tag{10}\\
0 & =3 \omega_{15}-3 \omega_{11} \omega_{13}+\omega_{11}^{3}-3 \omega_{33} \\
0 & =\omega_{17}-\omega_{35}-\omega_{11} \omega_{33}-\omega_{13}^{2}+\frac{1}{3} \omega_{11}^{4}
\end{align*}
$$

We note that in the cited book of Lebedev there exists a typing mistake for the coefficient a_{5}. Namely, instead of the term $5 \omega_{13}^{2}$, there is $5 \omega_{15}^{2}$.

Theorem 3. Let $f \in \mathcal{S}$ be given by (1). Then
(a) $\left|H_{2}(3)(f)\right| \leq 2.02757 \ldots$ if $a_{2}=0$;
(b) $\left|H_{2}(3)(f)\right| \leq 4.8986977 \ldots$ for every $f \in \mathcal{S}$.

Proof. From the fifth relation of (10) we have

$$
\omega_{33}=\omega_{15}-\omega_{11} \omega_{13}+\frac{1}{3} \omega_{11}^{3}
$$

This, together with the sixth relation from (10) yields

$$
\omega_{35}=\omega_{17}-\omega_{11} \omega_{15}+\omega_{11}^{2} \omega_{13}-\omega_{13}^{2} .
$$

By applying the two expressions from above in the relations for a_{4} and a_{5} from (10), we obtain

$$
\begin{aligned}
& a_{4}=2 \omega_{15}+6 \omega_{11} \omega_{13}+4 \omega_{11}^{3} \\
& a_{5}=2 \omega_{17}+6 \omega_{11} \omega_{15}+12 \omega_{11}^{2} \omega_{13}+3 \omega_{13}^{2}+5 \omega_{11}^{4}
\end{aligned}
$$

Finally, these two relations, together with the relation for a_{3} from (10) give

$$
\begin{align*}
H_{2}(3)(f)= & a_{3} a_{5}-a_{4}^{2} \\
= & 2\left(2 \omega_{13}+3 \omega_{11}^{2}\right) \omega_{17}-12 \omega_{11} \omega_{13} \omega_{15}-3 \omega_{11}^{2} \omega_{13}^{2}+6 \omega_{13}^{3} \tag{11}\\
& -2 \omega_{11}^{4} \omega_{13}+2 \omega_{11}^{3} \omega_{15}-\omega_{11}^{6}-4 \omega_{15}^{2}
\end{align*}
$$

(a) If $a_{2}=2 \omega_{11}=0$, then $\omega_{11}=0$, and we conclude that

$$
H_{2}(3)(f)=4 \omega_{13} \omega_{17}+6 \omega_{13}^{3}-4 \omega_{15}^{2}
$$

with the following constraints on ω_{13}, ω_{15} and ω_{17} obtained from (9):

$$
\left|\omega_{13}\right| \leq \frac{1}{\sqrt{3}}, \quad\left|\omega_{15}\right| \leq \frac{1}{\sqrt{5}} \sqrt{1-3\left|\omega_{13}\right|^{2}}
$$

and

$$
\left|\omega_{17}\right| \leq \frac{1}{\sqrt{7}} \sqrt{1-3\left|\omega_{13}\right|^{2}-5\left|\omega_{15}\right|^{2}}
$$

So,

$$
\begin{aligned}
\left|H_{2}(3)(f)\right| & =4\left|\omega_{13}\right|\left|\omega_{17}\right|+6\left|\omega_{13}\right|^{3}+4\left|\omega_{15}\right|^{2} \\
& \leq \frac{4}{\sqrt{7}}\left|\omega_{13}\right| \sqrt{1-3\left|\omega_{13}\right|^{2}-5\left|\omega_{15}\right|^{2}}+6\left|\omega_{13}\right|^{3}+4\left|\omega_{15}\right|^{2} \\
& =\psi_{1}\left(\left|\omega_{13}\right|,\left|\omega_{15}\right|\right),
\end{aligned}
$$

where $\psi_{1}(y, z)=\frac{4}{\sqrt{7}} y \sqrt{1-3 y^{2}-5 z^{2}}+6 y^{3}+4 z^{2}$ with $0 \leq y=\left|\omega_{13}\right| \leq \frac{1}{\sqrt{3}}$, $0 \leq z=\left|\omega_{15}\right| \leq \frac{1}{\sqrt{5}} \sqrt{1-3 y^{2}}$. It remains to find an upper bound of the function $\psi_{1}(y, z)$ on its domain

$$
\Omega=\left\{(y, z): 0 \leq y \leq \frac{1}{\sqrt{3}}, 0 \leq z \leq \frac{1}{\sqrt{5}} \sqrt{1-3 y^{2}}\right\}
$$

Not being able to do better and leaving the sharp bound as an open problem, we continue with what is easy to get:

$$
\begin{aligned}
\psi_{1}(y, z) & \leq \frac{4}{\sqrt{7}} y+6 y^{3}+\frac{4}{5}\left(1-3 y^{2}\right)=\frac{4}{5}+\frac{4}{\sqrt{7}} y-\frac{12}{5} y^{2}+6 y^{3} \\
& \leq \frac{4}{\sqrt{21}}+\frac{2}{\sqrt{3}}=2.02757 \ldots
\end{aligned}
$$

obtained for $y=\frac{1}{\sqrt{3}}$.
(b) In the general case, if $a_{2} \neq 0$, since $\left|a_{2}\right| \leq 2$ and $\left|c_{1}+a_{2}^{2}\right|=\left|a_{3}\right| \leq 3$, from (11) we get

$$
\begin{aligned}
\left|H_{2}(3)(f)\right|= & 6\left|\omega_{17}\right|+12\left|\omega_{11}\right|\left|\omega_{13}\right|\left|\omega_{15}\right|+3\left|\omega_{11}\right|^{2}\left|\omega_{13}\right|^{2} \\
& +6\left|\omega_{13}\right|^{3}+2\left|\omega_{11}\right|^{4}\left|\omega_{13}\right|+2\left|\omega_{11}\right|^{3}\left|\omega_{15}\right| \\
& +\left|\omega_{11}\right|^{6}+4\left|\omega_{15}\right|^{2} \\
\leq & 6 \cdot \frac{1}{\sqrt{7}} \sqrt{1-\left|\omega_{11}\right|^{2}-3\left|\omega_{13}\right|^{2}-5\left|\omega_{15}\right|^{2}}+12\left|\omega_{11}\right|\left|\omega_{13}\right|\left|\omega_{15}\right| \\
& +3\left|\omega_{11}\right|^{2}\left|\omega_{13}\right|^{2}+6\left|\omega_{13}\right|^{3}+2\left|\omega_{11}\right|^{4}\left|\omega_{13}\right| \\
& +2\left|\omega_{11}\right|^{3}\left|\omega_{15}\right|+\left|\omega_{11}\right|^{6}+4\left|\omega_{15}\right|^{2} \\
= & \psi_{2}\left(\left|\omega_{11}\right|,\left|\omega_{13}\right|, \omega_{15} \mid\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{2}(x, y, z)= & \frac{6}{\sqrt{7}} \sqrt{1-x^{2}-3 y^{2}-5 z^{2}}+12 x y z+3 x^{2} y^{2} \\
& +6 y^{3}+2 x^{4} y+2 x^{3} z+x^{6}+4 z^{2}
\end{aligned}
$$

with $0 \leq x=\left|\omega_{11}\right| \leq 1,0 \leq y=\left|\omega_{13}\right| \leq \frac{1}{\sqrt{3}} \sqrt{1-x^{2}}, 0 \leq z=\left|\omega_{15}\right| \leq$ $\frac{1}{\sqrt{5}} \sqrt{1-x^{2}-3 y^{2}}$. Similarly as in the part (a), finding an upper bound of the function $\psi_{2}(x, y, z)$ on its domain

$$
\begin{aligned}
& \left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq \frac{1}{\sqrt{3}} \sqrt{1-x^{2}}\right. \\
& \left.0 \leq z \leq \frac{1}{\sqrt{5}} \sqrt{1-x^{2}-3 y^{2}}\right\}
\end{aligned}
$$

is still an open problem, even though analysis suggests that it is 1. Easy way around, leading to a non-sharp upper bound is:

$$
\begin{aligned}
\psi_{2}(x, y, z) \leq & \frac{6}{\sqrt{7}} \sqrt{1-x^{2}}+12 x y z+3 x^{2} y^{2} \\
& +6 y^{3}+2 x^{4} y+2 x^{3} z+x^{6}+4 z^{2}
\end{aligned}
$$

which after applying $y \leq \frac{1}{\sqrt{3}} \sqrt{1-x^{2}}$ and $z \leq \frac{1}{\sqrt{5}} \sqrt{1-x^{2}}$ leads to

$$
\begin{aligned}
\psi_{2}(x, y, z) \leq & \frac{6}{\sqrt{7}} \sqrt{1-x^{2}}+\frac{12}{\sqrt{15}} x\left(1-x^{2}\right)+x^{2}\left(1-x^{2}\right) \\
& +\frac{6}{3 \sqrt{3}}\left(1-x^{2}\right) \sqrt{1-x^{2}}+\frac{2}{\sqrt{3}} x^{4} \sqrt{1-x^{2}} \\
& +\frac{2}{\sqrt{5}} x^{3} \sqrt{1-x^{2}}+x^{6}+\frac{4}{5}\left(1-x^{2}\right) \equiv h_{*}(x)
\end{aligned}
$$

Our numerical computations show that this function has the maximal value $4.8986977 \ldots$ obtained for $x=0.3945667 \ldots$.

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[2] N. A. Lebedev, Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975. (Russian).
[3] M. Obradović and S. Ponnusamy, On the class \mathcal{U}, in: Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, 2011, pp. 11-26.
[4] M. Obradović and N. Tuneski, Some properties of the class \mathcal{U}, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73 (2019), 49-56.
[5] D. K. Thomas, N. Tuneski, and A. Vasudevarao, Univalent Functions: A Primer, De Gruyter Studies in Mathematics 69, De Gruyter, Berlin, Boston, 2018.
[6] M. Obradovic and N. Tuneski, Hankel determinant of type $H_{2}(3)$ for inverse functions of some classes of univalent functions with missing second coefficient, submitted, arXiv:2211.12325.
[7] P. Zaprawa, On Hankel determinant $H_{2}(3)$ for univalent functions, Results Math. (2018), 73-89.

Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia.

E-mail address: obrad@grf.bg.ac.rs
Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia.

E-mail address: nikola.tuneski@mf.ukim.edu.mk

[^0]: Received January 7, 2023.
 2020 Mathematics Subject Classification. 30C45, 30C55.
 Key words and phrases. Second order Hankel determinant, class \mathcal{U}, classes of univalent functions.
 https://doi.org/10.12697/ACUTM.2023.27.05

