Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 76, No 6, 2023

MATHEMATICS

Complex analysis

UNIVALENCY OF CERTAIN TRANSFORM OF UNIVALENT FUNCTIONS

Milutin Obradović, Nikola Tuneski^{*,#}

Received on November 8, 2022 Presented by N. Nikolov, Corresponding Member of BAS, on April 25, 2023

Abstract

We consider univalency problem in the unit disc \mathbb{D} of the function

$$g(z) = \frac{(z/f(z)) - 1}{-a_2},$$

where f belongs to some classes of univalent functions in \mathbb{D} and $a_2 = \frac{f''(0)}{2} \neq 0$. Key words: analytic, univalent, transform 2020 Mathematics Subject Classification: 30C45

1. Introduction. Let \mathcal{A} denote the family of all analytic functions f in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ satisfying the normalization f(0) = 0 = f'(0) - 1, i.e., f has the form

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

Let $\mathcal{S}, \mathcal{S} \subset \mathcal{A}$, denote the class of univalent functions in \mathbb{D} , let \mathcal{S}^* be the subclass of \mathcal{A} (and \mathcal{S} which are starlike in \mathbb{D}) and let \mathcal{U} denote the set of all $f \in \mathcal{A}$ satisfying the condition

(2) $|\mathbf{U}_f(z)| < 1 \qquad (z \in \mathbb{D}),$

[#]Corresponding author.

DOI:10.7546/CRABS.2023.06.01

where

(3)
$$U_f(z) := \left(\frac{z}{f(z)}\right)^2 f'(z) - 1.$$

In [1], Theorem 4 the authors consider the problem of univalency for the function

(4)
$$g(z) = \frac{(z/f(z)) - 1}{-a_2},$$

where $f \in \mathcal{U}$ has the form (1) with $a_2 \neq 0$. They proved the following

Theorem A. Let $f \in \mathcal{U}$. Then, for the function g defined by expression (4) we have

- (a) |g'(z) 1| < 1 for $|z| < |a_2|/2$;
- (b) $g \in S^*$ in the disk $|z| < |a_2|/2$, and even more

$$\left|\frac{zg'(z)}{g(z)} - 1\right| < 1$$

in the same disk;

(c) $g \in \mathcal{U}$ in the disk $|z| < |a_2|/2$ if $0 < |a_2| \le 1$.

These results are the best possible.

For the proof of the previous theorem the authors used the next representation for the class \mathcal{U} (see [²] and [³]). Namely, if $f \in \mathcal{U}$, then

(5)
$$\frac{z}{f(z)} = 1 - a_2 z - z \omega(z),$$

where the function ω is analytic in \mathbb{D} with $|\omega(z)| \leq |z| < 1$ for all $z \in \mathbb{D}$. The appropriate function g from (4) has the form

(6)
$$g(z) = z + \frac{1}{a_2} z \omega(z).$$

2. Results. In this paper we consider other cases of Theorem A(c) and certain related results.

Theorem 1. Let $f \in \mathcal{U}$. Then the function g defined by equation (4) belongs to \mathcal{U} in the disc

$$|z| < \sqrt{\frac{1 - |a_2| + \sqrt{|a_2|^2 + 2|a_2| - 3}}{2}},$$

i.e., satisfies (2) on this disc, if $\frac{5}{4} \leq |a_2| \leq 2$.

M. Obradović, N. Tuneski

Proof. For the first part of the proof we use the same method as in [¹]. By the definition of the class \mathcal{U} , i.e., inequality (2), and using the next estimation for the function ω

$$|z\omega'(z) - \omega(z)| \le \frac{r^2 - |\omega(z)|^2}{1 - r^2},$$

where |z| = r and $|\omega(z)| \le r$, after some calculations we obtain

$$\begin{aligned} |\mathbf{U}_{g}(z)| &= \left| \frac{\frac{1}{a_{2}} \left[z\omega'(z) - \omega(z) \right] - \frac{1}{a_{2}^{2}} \omega^{2}(z)}{\left[1 + \frac{1}{a_{2}} \omega_{1}(z) \right]^{2}} \right| \leq \frac{|a_{2}| \cdot |z\omega'(z) - \omega(z)| + |\omega(z)|^{2}}{(|a_{2}| - |\omega(z)|)^{2}} \\ &\leq \frac{|a_{2}| \cdot \frac{r^{2} - |\omega(z)|^{2}}{1 - r^{2}} + |\omega(z)|^{2}}{(|a_{2}| - |\omega(z)|)^{2}} =: \frac{1}{1 - r^{2}} \cdot \varphi(t). \end{aligned}$$

Here,

(7)
$$\varphi(t) = \frac{|a_2|r^2 - (|a_2| - 1 + r^2)t^2}{(|a_2| - t)^2}$$

and $|\omega(z)| = t, 0 \le t \le r$. From here we have that

$$\varphi'(t) = \frac{2|a_2|}{(|a_2| - t)^3} \cdot \left[r^2 - (|a_2| - 1 + r^2)t\right],$$

(where $|a_2| - t > 0$ since $|a_2| \ge \frac{5}{4} > 1 > t$). Next, $\varphi'(t) = 0$ for

$$t_0 = \frac{r^2}{|a_2| - 1 + r^2}$$

and $0 \leq t_0 \leq r$ if

$$\frac{r^2}{|a_2| - 1 + r^2} \le r,$$

which is equivalent to

$$r^2 - r + |a_2| - 1 \ge 0.$$

The last relation is valid for $\frac{5}{4} \le |a_2| \le 2$ and every $0 \le t < 1$. It means that the maximal value of the function φ on [0, r] is

$$\varphi(t_0) = \frac{(|a_2| - 1 + r^2)r^2}{(|a_2| - 1)(|a_2| + r^2)}.$$

Finally,

$$|\mathbf{U}_g(z)| \le \frac{1}{1-r^2} \cdot \varphi(t_0) = \frac{(|a_2| - 1 + r^2)r^2}{(1-r^2)(|a_2| - 1)(|a_2| + r^2)} < 1$$

C. R. Acad. Bulg. Sci., 76, No 6, 2023

if

$$r^{4} - (1 - |a_{2}|)r^{2} + (1 - |a_{2}|) < 0,$$

or if

$$r < \sqrt{\frac{1 - |a_2| + \sqrt{|a_2|^2 + 2|a_2| - 3}}{2}}.$$

This completes the proof.

For our next consideration we need the following lemma. Lemma 1. Let $f \in \mathcal{A}$ be of the form (1). If

(8)
$$\sum_{n=2}^{\infty} n|a_n| \le 1,$$

then

$$\begin{aligned} |f'(z) - 1| < 1 \qquad (z \in \mathbb{D}), \\ \frac{zf'(z)}{f(z)} - 1 \end{vmatrix} < 1 \qquad (z \in \mathbb{D}) \end{aligned}$$

(*i.e.* $f \in \mathcal{S}^{\star}$), and $f \in \mathcal{U}$.

For the proof of $f \in \mathcal{U}$ in the lemma see [³], while the rest easily follows.

Further, let \mathcal{S}^+ denote the class of univalent functions in the unit disc with the representation

(9)
$$\frac{z}{f(z)} = 1 + b_1 z + b_2 z^2 + \cdots, \quad b_n \ge 0, \quad n = 1, 2, 3, \dots$$

For example, the Silverman class (the class with negative coefficients) is included in the class S^+ , as well as the Koebe function $k(z) = \frac{z}{(1+z)^2} \in S^+$. The next characterization is valid for the class S^+ (for details see [⁴])

(10)
$$f \in \mathcal{S}^+ \quad \Leftrightarrow \quad \sum_{n=2}^{\infty} (n-1)b_n \le 1.$$

Theorem 2. Let $f \in S^+$. Then the function g defined by (4) belongs to the class U in the disc $|z| < |a_2|/2$ and the result is the best possible.

Proof. Using the representation (9), the corresponding function g has the form

$$g(z) = \frac{\frac{z}{f(z)} - 1}{-a_2} = \frac{\frac{z}{f(z)} - 1}{b_1} = z + \sum_{n=1}^{\infty} \frac{b_n}{b_1} z^n \quad (b_1 \neq 0),$$

and from here

$$\frac{1}{r}g(rz) = z + \sum_{n=1}^{\infty} \frac{b_n}{b_1} r^{n-1} z^n \quad (0 < r \le 1)$$

M. Obradović, N. Tuneski

824

Then, after applying Lemma 1, we have

$$\sum_{2}^{\infty} n|a_{n}| = \sum_{2}^{\infty} n \frac{b_{n}}{b_{1}} r^{n-1} = \frac{1}{b_{1}} \sum_{2}^{\infty} (n-1)b_{n} \frac{n}{n-1} r^{n-1}$$
$$\leq \frac{2r}{b_{1}} \sum_{2}^{\infty} (n-1)b_{n} \leq \frac{2r}{b_{1}} \leq 1$$

if $r \leq b_1/2 = |a_2|/2$. It means, by the same lemma, that $g \in \mathcal{U}$ in the disc $|z| < |a_2|/2$.

In order to show that the result is the best possible, let us consider the function f_1 defined by

(11)
$$\frac{z}{f_1(z)} = 1 + bz + z^2, \quad 0 < b \le 2.$$

Then, $f_1 \in \mathcal{S}^+$ is of type $f_1(z) = z - bz^2 + \cdots$, so the function

$$g_1(z) = \frac{\frac{z}{f_1(z)} - 1}{b} = z + \frac{1}{b}z^2$$

is such that

$$\left| \left(\frac{z}{g_1(z)} \right)^2 g_1'(z) - 1 \right| \le \frac{\frac{1}{b^2} |z|^2}{\left(1 - \frac{1}{b} |z| \right)^2} < 1$$

when |z| < b/2. This implies that g_1 belongs to the class \mathcal{U} in the disc |z| < b/2. On the other hand, since $g'_1(-b/2) = 0$, the function g_1 is not univalent in a bigger disc, implying that the result is the best possible.

Theorem 3. Let $f \in S$. Then the function g defined by (4) belongs to the class U in the disc $|z| < r_0$, where r_0 is the unique real root of equation

(12)
$$\frac{3r^2 - 2r^4}{(1 - r^2)^2} - \ln(1 - r^2) = |a_2|^2$$

on the interval (0, 1).

Proof. We apply the same method as in the proof of the previous theorem. Namely, if $f \in S$ has the representation (9), then

(13)
$$\sum_{n=2}^{\infty} (n-1)|b_n|^2 \le 1$$

(see [⁵], Theorem 11, p. 193, Vol. 2). Also, using (4), (9) and (13), we have $a_2 = -b_1$, and

$$\frac{1}{r}g(rz) = z + \sum_{n=1}^{\infty} \frac{b_n}{b_1} r^{n-1} z^n, \quad 0 < r \le 1.$$

C. R. Acad. Bulg. Sci., 76, No 6, 2023

So,

$$\begin{split} \sum_{n=2}^{\infty} n|a_n| &= \sum_{n=2}^{\infty} n \frac{|b_n|}{|b_1|} r^{n-1} \\ &= \frac{1}{|b_1|} \sum_{n=2}^{\infty} \sqrt{n-1} \cdot |b_n| \cdot \frac{n}{\sqrt{n-1}} \cdot r^{n-1} \\ &\leq \frac{1}{|b_1|} \cdot \left(\sum_{n=2}^{\infty} (n-1)|b_n|^2 \right)^{1/2} \cdot \left(\sum_{n=2}^{\infty} \frac{n^2}{n-1} r^{2(n-1)} \right)^{1/2} \\ &\leq \frac{1}{|b_1|} \left(r^2 \sum_{n=2}^{\infty} (n-1)(r^2)^{n-2} + 2r^2 \sum_{n=2}^{\infty} (r^2)^{n-2} + \sum_{n=2}^{\infty} \frac{1}{n-1} (r^2)^{n-1} \right)^{1/2} \\ &= \frac{1}{|b_1|} \left[\frac{3r^2 - 2r^4}{(1-r^2)^2} - \ln(1-r^2) \right]^{1/2} \leq 1 \end{split}$$

if $|z| < r_0$, where r_0 is the root of the equation

$$\frac{3r^2 - 2r^4}{(1 - r^2)^2} - \ln(1 - r^2) = |b_1|^2 \ (= |a_2|^2).$$

We note that the function on the left side of this equation is an increasing one on the interval (0,1), so the equation has a unique root when $0 < |a_2| \le 2$.

REFERENCES

- OBRADOVIĆ M., N. TUNESKI (2019) Some properties of the class U, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 73(1), 45–56.
- [²] OBRADOVIĆ M., N. N. PASCU, I. RADOMIR (1996) A class of univalent functions, Math. Japonica, 44(3), 565–568.
- [³] OBRADOVIĆ M., S. PONNUSAMY (2011) On the class U. In: Proc. 21st Annual Conf. Jammu Math. Soc. & a National Seminar on Analysis and its Application, 11–26.
- [4] OBRADOVIĆ M., S. PONNUSAMY (2009) Coefficient characterization for certain classes of univalent functions, Bull. Belg. Math. Soc. (Simon Stevin) 16, 251–263.
- ^[5] GOODMAN A. W. (1983) Univalent Functions, Vols. 1–2, Mariner, Tampa, Florida.

Department of Mathematics Faculty of Civil Engineering University of Belgrade Bulevar Kralja Aleksandra 73 11000, Belgrade, Serbia e-mail: obrad@grf.bg.ac.rs * Department of Mathematics and Informatics Faculty of Mechanical Engineering Ss. Cyril and Methodius University in Skopje Karpoš II b.b. 1000 Skopje, Republic of North Macedonia e-mail: nikola.tuneski@mf.ukim.edu.mk

M. Obradović, N. Tuneski