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Abstract

We consider univalency problem in the unit disc D of the function

g(z) =
(z/f(z)) − 1

−a2
,

where f belongs to some classes of univalent functions in D and a2 = f ′′(0)
2 ̸= 0.
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1. Introduction. Let A denote the family of all analytic functions f in the
unit disk D := {z ∈ C : |z| < 1} satisfying the normalization f(0) = 0 = f ′(0)− 1,
i.e., f has the form

(1) f(z) = z + a2z
2 + a3z

3 + . . . .

Let S, S ⊂ A, denote the class of univalent functions in D, let S⋆ be the
subclass of A (and S which are starlike in D) and let U denote the set of all f ∈ A
satisfying the condition

(2) |Uf (z)| < 1 (z ∈ D),
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where

(3) Uf (z) :=

(
z

f(z)

)2

f ′(z) − 1.

In [1], Theorem 4 the authors consider the problem of univalency for the
function

(4) g(z) =
(z/f(z)) − 1

−a2
,

where f ∈ U has the form (1) with a2 ̸= 0. They proved the following
Theorem A. Let f ∈ U . Then, for the function g defined by expression (4)

we have

(a) |g′(z) − 1| < 1 for |z| < |a2|/2;

(b) g ∈ S⋆ in the disk |z| < |a2|/2, and even more∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1

in the same disk;

(c) g ∈ U in the disk |z| < |a2|/2 if 0 < |a2| ≤ 1.

These results are the best possible.
For the proof of the previous theorem the authors used the next representation

for the class U (see [2] and [3]). Namely, if f ∈ U , then

(5)
z

f(z)
= 1 − a2z − zω(z),

where the function ω is analytic in D with |ω(z)| ≤ |z| < 1 for all z ∈ D. The
appropriate function g from (4) has the form

(6) g(z) = z +
1

a2
zω(z).

2. Results. In this paper we consider other cases of Theorem A(c) and
certain related results.

Theorem 1. Let f ∈ U . Then the function g defined by equation (4) belongs
to U in the disc

|z| <

√
1 − |a2| +

√
|a2|2 + 2|a2| − 3

2
,

i.e., satisfies (2) on this disc, if 5
4 ≤ |a2| ≤ 2.
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Proof. For the first part of the proof we use the same method as in [1]. By
the definition of the class U , i.e., inequality (2), and using the next estimation for
the function ω

|zω′(z) − ω(z)| ≤ r2 − |ω(z)|2

1 − r2
,

where |z| = r and |ω(z)| ≤ r, after some calculations we obtain

|Ug(z)| =

∣∣∣∣∣∣∣
1
a2

[zω′(z) − ω(z)] − 1
a22
ω2(z)[

1 + 1
a2
ω1(z)

]2
∣∣∣∣∣∣∣ ≤

|a2| · |zω′(z) − ω(z)| + |ω(z)|2

(|a2| − |ω(z)|)2

≤
|a2| · r2−|ω(z)|2

1−r2
+ |ω(z)|2

(|a2| − |ω(z)|)2
=:

1

1 − r2
· φ(t).

Here,

(7) φ(t) =
|a2|r2 − (|a2| − 1 + r2)t2

(|a2| − t)2

and |ω(z)| = t, 0 ≤ t ≤ r. From here we have that

φ′(t) =
2|a2|

(|a2| − t)3
·
[
r2 − (|a2| − 1 + r2)t

]
,

(where |a2| − t > 0 since |a2| ≥ 5
4 > 1 > t). Next, φ′(t) = 0 for

t0 =
r2

|a2| − 1 + r2

and 0 ≤ t0 ≤ r if
r2

|a2| − 1 + r2
≤ r,

which is equivalent to
r2 − r + |a2| − 1 ≥ 0.

The last relation is valid for 5
4 ≤ |a2| ≤ 2 and every 0 ≤ t < 1. It means that the

maximal value of the function φ on [0, r] is

φ(t0) =
(|a2| − 1 + r2)r2

(|a2| − 1)(|a2| + r2)
.

Finally,

|Ug(z)| ≤ 1

1 − r2
· φ(t0) =

(|a2| − 1 + r2)r2

(1 − r2)(|a2| − 1)(|a2| + r2)
< 1
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if
r4 − (1 − |a2|)r2 + (1 − |a2|) < 0,

or if

r <

√
1 − |a2| +

√
|a2|2 + 2|a2| − 3

2
.

This completes the proof.

For our next consideration we need the following lemma.
Lemma 1. Let f ∈ A be of the form (1). If

(8)
∞∑
2

n|an| ≤ 1,

then

|f ′(z) − 1| < 1 (z ∈ D),∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1 (z ∈ D)

(i.e. f ∈ S⋆), and f ∈ U .
For the proof of f ∈ U in the lemma see [3], while the rest easily follows.

Further, let S+ denote the class of univalent functions in the unit disc with
the representation

(9)
z

f(z)
= 1 + b1z + b2z

2 + · · · , bn ≥ 0, n = 1, 2, 3, . . . .

For example, the Silverman class (the class with negative coefficients) is included
in the class S+, as well as the Koebe function k(z) = z

(1+z)2
∈ S+. The next

characterization is valid for the class S+ (for details see [4])

(10) f ∈ S+ ⇔
∞∑
n=2

(n− 1)bn ≤ 1.

Theorem 2. Let f ∈ S+. Then the function g defined by (4) belongs to the
class U in the disc |z| < |a2|/2 and the result is the best possible.

Proof. Using the representation (9), the corresponding function g has the
form

g(z) =

z
f(z) − 1

−a2
=

z
f(z) − 1

b1
= z +

∞∑
2

bn
b1

zn (b1 ̸= 0),

and from here
1

r
g(rz) = z +

∞∑
2

bn
b1

rn−1zn (0 < r ≤ 1).
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Then, after applying Lemma 1, we have

∞∑
2

n|an| =
∞∑
2

n
bn
b1

rn−1 =
1

b1

∞∑
2

(n− 1)bn
n

n− 1
rn−1

≤ 2r

b1

∞∑
2

(n− 1)bn ≤ 2r

b1
≤ 1

if r ≤ b1/2 = |a2|/2. It means, by the same lemma, that g ∈ U in the disc
|z| < |a2|/2.

In order to show that the result is the best possible, let us consider the
function f1 defined by

(11)
z

f1(z)
= 1 + bz + z2, 0 < b ≤ 2.

Then, f1 ∈ S+ is of type f1(z) = z − bz2 + · · · , so the function

g1(z) =

z
f1(z)

− 1

b
= z +

1

b
z2

is such that ∣∣∣∣∣
(

z

g1(z)

)2

g′1(z) − 1

∣∣∣∣∣ ≤ 1
b2
|z|2(

1 − 1
b |z|
)2 < 1

when |z| < b/2. This implies that g1 belongs to the class U in the disc |z| < b/2.
On the other hand, since g′1(−b/2) = 0, the function g1 is not univalent in a bigger
disc, implying that the result is the best possible.

Theorem 3. Let f ∈ S. Then the function g defined by (4) belongs to the
class U in the disc |z| < r0, where r0 is the unique real root of equation

(12)
3r2 − 2r4

(1 − r2)2
− ln(1 − r2) = |a2|2

on the interval (0, 1).
Proof. We apply the same method as in the proof of the previous theorem.

Namely, if f ∈ S has the representation (9), then

(13)
∞∑
n=2

(n− 1)|bn|2 ≤ 1

(see [5], Theorem 11, p. 193, Vol. 2). Also, using (4), (9) and (13), we have
a2 = −b1, and

1

r
g(rz) = z +

∞∑
2

bn
b1

rn−1zn, 0 < r ≤ 1.
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So,

∞∑
n=2

n|an| =

∞∑
n=2

n
|bn|
|b1|

rn−1

=
1

|b1|

∞∑
n=2

√
n− 1 · |bn| ·

n√
n− 1

· rn−1

≤ 1

|b1|
·

( ∞∑
n=2

(n− 1)|bn|2
)1/2

·

( ∞∑
n=2

n2

n− 1
r2(n−1)

)1/2

≤ 1

|b1|

(
r2

∞∑
n=2

(n− 1)(r2)n−2 + 2r2
∞∑
n=2

(r2)n−2 +

∞∑
n=2

1

n− 1
(r2)n−1

)1/2

=
1

|b1|

[
3r2 − 2r4

(1 − r2)2
− ln(1 − r2)

]1/2
≤ 1

if |z| < r0, where r0 is the root of the equation

3r2 − 2r4

(1 − r2)2
− ln(1 − r2) = |b1|2 (= |a2|2).

We note that the function on the left side of this equation is an increasing one on
the interval (0, 1), so the equation has a unique root when 0 < |a2| ≤ 2.
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