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Abstract: For the analytic functions φ(ζ) = ζ + ∑∞
k=n φkζk in the unit disk O, we calculate the values

of n and α, where the condition<(1 + ζφ′′(ζ)/φ′(ζ)) > −α or<(1 + ζφ′′(ζ)/φ′(ζ))< 1+ α/2 yields
univalence and starlikeness. Conditions imply φ in the class where all normalized analytic functions
U , with

∣∣∣(ζ/φ(ζ))2φ′(ζ)− 1
∣∣∣ < 1 are obtained. Recent findings are gained, and unique cases are

demonstrated. The generalization of the Jack lemma serves the proof of the main result and that our
methodology is based on the idea of subordination.

Keywords: analytic function; subordination; starlike function; univalent function; Jack lemma; open
unit disk; starlike function; convex function

1. Introduction

Symmetry in the open unit disk O := {ζ ∈ C : |ζ| < 1} can refer to several different
types of symmetry, including rotational symmetry, reflection symmetry, and inversion
symmetry. Inversion symmetry refers to the property that the open unit disk looks the
same when inverted with respect to a certain point. The open unit disk has inversion
symmetry with respect to its center (the origin), because inverting any complex number ζ
in the disk with respect to the origin gives the complex number 1/ζ, which is also in the
disk. Generally, the open unit disk has a rich set of symmetries, which can be useful in
a variety of mathematical and geometric contexts. In this effort we aim to explore more
geometric properties in this symmetry domain.

A function is said to be starlike if it maps a disk in the complex plane onto a shape that
is itself star-shaped with respect to some fixed point in the disk. In other words, a function
is starlike if its image under a suitable scaling and rotation is contained in a star-shaped
domain, where the star-shaped domain is obtained by connecting the fixed point to all other
points in the domain using straight line segments. Another term for a starlike function is a
convex function. Both univalent functions and starlike functions are important subclasses
of analytic functions in complex analysis, and they have many interesting properties and
applications. For example, univalent functions are often used in geometric function theory
to study conformal mappings and the Riemann mapping theorem, while starlike functions
are used in geometric function theory and mathematical physics to model phenomena such
as electrostatics [1,2] and fluid flow [3,4].

Ozaki [5] presented a condition on a normalized class of analytic function to univa-
lently satisfy thw real inequality

<
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
<

3
2

.

Consequently, the above inequality is used to show the convexity and close to convex
properties in one direction [6,7], respectively. Currently, as an application of the Ozaki
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inequality, many classes of analytic functions involve polynomials, special functions and
different types of operators of the normalized class are investigated. For example, the
starlikeness property is studied in [8–10]; the convex property is checked in [11–13] and the
close to convex property is realized in [14,15].

In this effort, we proceed with the investigation on univalency and starlikeness of the
normalized class. We shall deal with the U class such that the inequality∣∣∣∣∣

(
ζ

φ(ζ)

)2
φ′(ζ)− 1

∣∣∣∣∣ < 1

is satisfied. Some recent results are obtained and special cases are illustrated. Our method-
ology is based on the concept of subordination and the proof is given by the generalization
of Jack lemma.

The effort is organized as follows: Section 2 deals with the general information that
can be utilized in the proof. Section 3 shows our results and their consequences. Section 4
is the conclusion of this work.

2. Information

Let An, n ≥ 2 denote the set of all analytic functions φ in O taking the power series

φ(ζ) = ζ + φnζn + φn+1ζn+1 + · · ·

with A2 = A. Let S be its subclass of univalent functions and S∗ ⊂ S be the class of all
starlike univalent functions. Every φ ∈ S∗ characterized analytically by

Re
{

ζφ′(ζ)

φ(ζ)

}
> 0, ζ ∈ O.

A function φ ∈ S is called convex ( C) if and only if ζ φ′ ∈ S∗ (see [16]). Let U be the
set of all φ ∈ A achieving the inequality |Uφ(ζ)| < 1 for ζ ∈ O, where

Uφ(ζ) =

(
ζ

φ(ζ)

)2
φ′(ζ)− 1.

For example of functions in Uφ(ζ), one can realize that the following set:

SZ =

{
ζ,

ζ

(1± ζ)2 ,
ζ

1± ζ
,

ζ

1± ζ2 ,
ζ

1± ζ + ζ2

}
belongs to U . Clearly,

κ(ζ) =
ζ

(1− ζ)2 ∈ U
⋂
S∗.

Moreover, it recognized the following inclusion [17]:

SZ ⊂ S∗ ⊂ S .

Basic properties of the class U were studied in [18]. In recent years, the class U has
received a lot of attention, for instance in the works of [19–37].

Recall that an analytic function φ is subordinate to the analytic function ψ symbolized
by φ(ζ) ≺ ψ(ζ)), if there exists an analytic self-map ω of O with ω(0) = 0 satisfying

φ(ζ) = ψ(ω(ζ)).
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In the foregoing discussion, for φ ∈ An, n ≥ 2 we determine values of n such that the
condition

Re
(

1 + ζφ′′(ζ)

φ′(ζ)

)
> −α

or

Re
(

1 + ζ φ′′(ζ)

φ′(ζ)

)
< 1 + α/2

implies univalence and starlikeness. Additionally, conditions implying φ in the class U
were obtained. For the analytic functions φ ∈ A2 and α = 1, the condition for starlikeness
were determined for the class Re (1 + ζφ′′(ζ)/φ′(ζ)) < 3/2 in [19].

We request the next result.

Lemma 1 ([20] (p. 19)). Assume that ζ0 ∈ O and r0 = |ζ0|. Moreover, assume that

φ(ζ) = φnζn + φn+1ζn+1 + · · ·

is analytic on Or0 ∪ {ζ0} with φ(ζ) 6≡ 0 and n ≥ 1. If

|φ(ζ0)| = max{|φ(ζ)| : ζ ∈ Or0},

then there exists an m ≥ n such that

• <
(

ζ0φ′(ζ0)

φ(ζ0)

)
= m, and

• <
(

ζ0φ′′(ζ0)

φ′(ζ0)
+ 1
)
≥ m.

3. Main Results

In this section, we illustrate our main results. These results describe the univalency
property via the behavior of bounded functions. Let r0 be the largest radius such that φ(ζ)
maps the circle |ζ| = r0 inside the unit disk O. Then, the bounded turning class of φ(ζ) is
the smallest non-negative number α such that φ(ζ) maps the circle |ζ| = r inside the sector
| arg ζ| < α for all r with 0 < r ≤ r0.

In other words, the bounded turning class measures the maximum amount of turning
that the function exhibits on the unit circle, as we move outward from the origin. The
bounded turning class is an important concept in the theory of univalent functions, and it
has been extensively studied in the literature. Properties of the bounded turning class are
closely related to the geometric properties of univalent functions, such as the distortion
theorem and the Koebe one-quarter theorem. For example, let

φ(ζ) =
ζ

(1− ζ)
, ζ ∈ O

then the basic condition for bounded turning is that (see Figure 1)

<
(
ζ/(1− ζ)′

)
> 0, ζ ∈ O.

Theorem 1. Let α > 0 and φ ∈ An satisfy the condition

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
< 1 +

α

2
, ζ ∈ O (1)

(a) If n ≥ 1 + α, and φ(ζ)/ζ 6= 0, then Re (φ′(ζ)) > 0, ζ ∈ O.
(b) If n ≥ 1 + α, and φ(ζ)/ζ 6= 0, then

ζφ′(ζ)/φ(ζ) ≺ (1− ζ)/(1− a ζ), ζ ∈ O, a = 1/(1 + α).
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(c) If n ≥ 5 + α and φ(ζ)/ζ 6= 0, then φ ∈ U .

Figure 1. Plot of φ(ζ) = ζ/(1− ζ) and its bounded turning behavior, respectively.

Proof.

(a) First, prove that φ′(ζ) 6= 0 for all ζ ∈ O and ζ 6= 0 (since φ′(0) = 1). If there exists ζ1,
0 < |ζ1| < 1 and

φ′(ζ) = (ζ − ζ1)
m1 ψ(ζ),

where m1 ≥ 1 and ψ is analytic in O and ψ(ζ1) 6= 0, then

1 +
ζ φ′′(ζ)

φ′(ζ)
= 1 +

m1ζ

ζ − ζ1
+

ζψ′(ζ)

ψ(ζ)
.

Thus, 1 + ζ φ′′(ζ)/φ′(ζ)→ ∞ when ζ → ζ1, which is a contradiction to (1).
Let

φ′(ζ) = (1−ω(ζ))
α

n−1 , (2)

where 0 < α/(n− 1) ≤ 1.
Since previous φ′(ζ) 6= 0 for all ζ ∈ O, then ω(ζ) = bn−1ζn−1 + · · · is analytic in O
with ω(0) = 0. Furthermore, it follows from (2) that(

1 +
ζφ′′(ζ)

φ′(ζ)

)
=1− αζω′(ζ)

(n− 1)(1−ω(ζ))
.

Consider that ζ0 ∈ O, such that

max
|ζ|≤|ζ0|

|ω(ζ)| = |ω(ζ0)| = 1.

In view of Lemma 1, we have

ζ0ω′(ζ0) = kω(ζ0); (k ≥ n− 1; ω(ζ0) = eiθ ; θ ∈ R),

thus

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
= 1− α

n− 1
Re
(

k eiθ

1− ei θ

)
.

Hence, the following is obtained

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
= 1 +

kα

2(n− 1)
≥ 1 +

α

2
,
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which is a contradiction to (1). It means that |ω(ζ)| < 1, ζ ∈ O, and from (2) finally
leads to

| arg(φ′(ζ))| = α

n− 1
| arg((1−ω(ζ))| < α

(n− 1)
π

2
≤ π

2
,

where n ≥ 1 + α, which implies Re (φ′(ζ)) > 0, ζ ∈ O,
(b) Define a function ω by

ζφ′(ζ)

φ(ζ)
=

1−ω(ζ)

1− aω(ζ)
, (3)

where a = 1/(1 + α), then ω(ζ) = cn−1ζn−1 + · · · is analytic in O. Additionally,
suppose that there is a point ζ0 ∈ O, such that

max
|ζ|≤|ζ0|

|ω(ζ)| = |ω(ζ0)| = 1.

Then by applying Lemma 1, the following is acquired

ζ0ω′(ζ0) = kω(ζ0); (k ≥ n− 1; ω(ζ0) = eiθ ; θ ∈ R).

From (3), logarithmic differentiation, yields

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
= Re

(
a

ζ0ω′(ζ0)

1− aω(ζ0)
− ζ0ω′(ζ0)

1−ω(ζ0)
+

1−ω(ζ0)

1− aω(ζ0)

)
= Re

(
a

k eiθ

1− a eiθ −
k eiθ

1− eiθ +
1− eiθ

1− a eiθ

)
=

1 + a
2

ϕ(t), t = cosθ

where

ϕ(t) =
k(1− a) + 2(1− t)

1− 2at + a2 , −1 ≤ t ≤ 1.

Since α > 0, 0 < a = 1/(1 + α) < 1 and n ≥ 1 + α, then na− 1 ≥ 0. Thus,

ϕ′(t) = 2(1− a)
(k + 1)a− 1

(1− 2at + a2)2

≥ 2(1− a)
na− 1

(1− 2at + a2)2 ≥ 0,

which implies that the function ϕ is a non-decreasing function and

ϕ(t) ≥ ϕ(−1) =
(n− 1)(1− a) + 4

(1 + a)2 .

Hence, the previous relation shows that

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
≥ (n− 1)(1− a) + 4

2(1 + a)
≥ 1 +

α

2
,

which is a contradiction to (1). From that |ω(ζ)| < 1, ζ ∈ O is obtained and (3) shows
that the statement of the theorem is valid.
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(c) Let (
ζ

φ(ζ)

)2
φ′(ζ)− 1 = ω(ζ). (4)

Then, ω(ζ) = dn−1ζn−1 + · · · is analytic in O. Additionally, from (4) and after loga-
rithmic differentiation, it calculates to

1 +
ζφ′′(ζ)

φ′(ζ)
=

ζω′(ζ)

1 + ω(ζ)
+ 2

ζφ′(ζ)

φ(ζ)
− 1. (5)

Relation (5) and the condition (1), lead to

Re
(

ζω′(ζ)

1 + ω(ζ)
+ 2

ζφ′(ζ)

φ(ζ)
− 1
)
< 1 +

α

2
. (6)

Additionally, note that if n ≥ 5 + α, then n ≥ 1 + α. Hence, (b) shows that

ζφ′(ζ)

φ(ζ)
≺ 1− ζ

1− aζ
,

where a = 1/(1 + α), which implies

Re
(

ζ φ′(ζ)

φ(ζ)

)
> 0.

Thus, (6) becomes

Re
(

ζω′(ζ)

1 + ω(ζ)
− 1
)
< 1 +

α

2
− 2Re

(
ζ φ′(ζ)

φ(ζ)

)
< 1 +

α

2
. (7)

Now suppose that there exists a point ζ0 ∈ O, such that |ω(ζ0)| = 1. Then, by
applying Lemma 1, the following is obtained:

ζ0ω′(ζ0) = kω(ζ0); (k ≥ n− 1; ω(ζ0) = eiθ ; θ ∈ R),

thus

Re
(

ζ0ω′(ζ0)

1 + ω(ζ0)
− 1
)
= Re

(
keiθ

1 + eiθ

)
− 1 =

k
2
− 1.

Hence,

Re
(

ζ0ω′(ζ0)

ω(ζ0)
− 1
)
≥ 1 +

α

2
,

where k ≥ n − 1, and n ≥ 5 + α, which is a contradiction to (1). It means that
|ω(ζ)| < 1, ζ ∈ O. Moreover, (4) shows that∣∣∣∣∣

(
ζ

φ(ζ)

)2
φ′(ζ)− 1

∣∣∣∣∣ < 1, ζ ∈ O

which concludes the desired φ ∈ U .

For α = 1, we have the next result.
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Corollary 1. If φ ∈ A2 satisfies the condition

Re
(

1 +
ζ φ′′(ζ)

φ′(ζ)

)
<

3
2

, ζ ∈ O,

then

(a) Re (φ′(ζ)) > 0, ζ ∈ O .

(b) ζφ′(ζ)
φ(ζ)

≺ 1−ζ
1−ζ/2 .

These are the former results given in [19].

Theorem 2. Assume that α ≥ 0 and φ ∈ An, n ≥ 2 satisfy the condition

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
> −α, ζ ∈ O. (8)

(a) If n ≥ 2α + 3, then Re (φ′(ζ)) > 0, ζ ∈ O.
(b) If n ≥ 2α + 2, and φ(ζ)/ζ 6= 0, then ζφ′(ζ)/φ(ζ) ≺ 1/(1− ζ)
(c) For every n ∈ N, and n > 2, there exist φ ∈ An and φ ∈ U such that (8) is not satisfied,

or equivalently

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
→ −∞,

where ζ ∈ O, ζ is real, and ζ → 1.
(d) For n = 2, there exists φ ∈ A2 such that (8) is satisfied for every α > 0, but φ 6∈ U .

Proof.

(a) Let

φ′(ζ) =
1

(1−ω(ζ))
2(α+1)

n−1

, (9)

where 0 < 2(1 + α)/(n− 1) ≤ 1. Similarly, as in the proof of the previous theorem,
φ′(ζ) 6= 0 for all ζ ∈ O, which implies that ω(ζ) = bn−1ζn−1 + · · · is analytic in O
with ω(0) = 0. Additionally, from (9) and after logarithmic differentiation, it yields(

1 +
ζφ′′(ζ)

φ′(ζ)

)
=1 +

2(α + 1)(ζω′(ζ))

(n− 1)(1−ω(ζ))
. (10)

Suppose that there exists a point ζ0 ∈ O, such that

max
|ζ|≤|ζ0|

|ω(ζ)| = |ω(ζ0)| = 1.

Then, by applying Lemma 1, the following is acquired:

ζ0ω′(ζ0) = kω(ζ0); (k ≥ n− 1; ω(ζ0) = eiθ ; θ ∈ R).

Thus,

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
= 1 +

2(α + 1)
n− 1

Re
(

keiθ

1− eiθ

)
= 1− k(α + 1)

n− 1
≤ −α,
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which is a contradiction to (8). That implies |ω(ζ)| < 1, ζ ∈ O. Furthermore, (9) shows that

| arg(φ′(ζ))| = 2(α + 1)
n− 1

| arg((1−ω(ζ))|

<
2(α + 1)

n− 1
π

2

≤ π

2
,

where n ≥ 2α + 3. Hence, Re (φ′(ζ)) > 0, ζ ∈ O.
(b) Define a function ω by

ζφ′(ζ)

φ(ζ)
=

1
1−ω(ζ)

. (11)

Then, ω(ζ) = cn−1ζn−1 + . . . is analytic in O. Additionally, suppose that there exists a
point ζ0 ∈ O, such that

max
|ζ|≤|ζ0|

|ω(ζ)| = |ω(ζ0)| = 1.

By applying Lemma 1,

ζ0ω′(ζ0) = kω(ζ0); (k ≥ n− 1; ω(ζ0) = eiθ ; θ ∈ R).

Therefore, (11) leads to

Re
(

1 +
ζ0φ′′(ζ0)

φ′(ζ0)

)
= Re

(
ζ0ω′(ζ0)

1−ω(ζ0)
+

1
1−ω(ζ0)

)
= Re

(
keiθ + 1
1− eiθ

)
=

1− k
2
≤ −α,

where
k− 1 ≥ (n− 1)− 1 = n− 2 ≥ (2α + 2)− 2 = 2α.

Which is a contradiction to (8). Thus, |ω(ζ)| < 1, ζ ∈ O and (11) shows that the
statement of the theorem is valid.

(c) For n > 2, let φ ∈ An be defined by

ζ

φ(ζ)
= 1 +

1
n− 2

ζn−1.

Since ∣∣∣∣∣
(

ζ

φ(ζ)

)2
φ′(ζ)− 1

∣∣∣∣∣ = |ζn−1| < 1,

then φ ∈ U . After logarithmic differentiation, the following is obtained:

1 +
ζ φ′′(ζ)

φ′(ζ)
=

(
1− (n− 1)ζn−2

1− ζn−2 − 2
(n− 1)ζn−1

(n− 2) + ζn−1

)
. (12)

Thus, when ζ is real, ζ → 1 and ζ ∈ O, we have

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
→ −∞.
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(d) Let φ ∈ A2 be defined by φ(ζ) = − ln(1− ζ). Then,

1 +
ζφ′′(ζ)

φ′(ζ)
=

1
1− ζ

,

which implies that

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
>

1
2
> −α.

Since ∣∣∣∣∣
(

ζ

φ(ζ)

)2
φ′(ζ)− 1

∣∣∣∣∣ =
∣∣∣∣∣
(

−ζ

ln(1− ζ)

)2 1
1− ζ

− 1

∣∣∣∣∣,
and (1− ζ) ln2(1− ζ)→ 0 when ζ ∈ O, ζ → 1 is real, it follows that∣∣∣∣∣

(
ζ

φ(ζ)

)2
φ′(ζ)− 1

∣∣∣∣∣ > 1, ζ ∈ O.

Hence, φ 6∈ U .

For α = 0 and α = 1/2, Theorem 2 leads to the next corollaries.

Corollary 2. If φ ∈ An satisfies the condition

Re
(

1 +
ζφ′′(ζ)

φ′(ζ)

)
> 0, ζ ∈ O,

(a) Then, Re (φ′(ζ)) > 0, ζ ∈ O, whenever n ≥ 3.
(b) Then, Re (ζφ′(ζ)/φ(ζ)) > 1/2, ζ ∈ O, whenever n ≥ 2 and φ(ζ)/ζ 6= 0.

Remark 1. For the function φ(ζ) = ζ/(1− ζ) ∈ A2, we have φ′(ζ) = 1/(1− ζ)2 and it has a
non-positive real part in O, which means that the result (a) is the best possible. The result (b) is
well-known.

Corollary 3. If φ ∈∈ An satisfies the condition

Re
(

1 +
ζ φ′′(ζ)

φ′(ζ)

)
> −1

2
, ζ ∈ O.

(a) Then, Re (φ′(ζ)) > 0, ζ ∈ O, whenever n ≥ 4.
(b) Then, Re (ζφ′(ζ)/φ(ζ)) > 1/2, ζ ∈ O, whenever n ≥ 3 and φ(ζ)/ζ 6= 0.

Remark 2. The result (b) for n = 3 is given in ([20] (Theorem 2.6i, p. 68)).

Theorem 3. If α > 0 and φ ∈ An satisfy the condition∣∣φ′′(ζ)∣∣ ≤ α, ζ ∈ O, (13)

then for n ≥ α + 1, Re φ′(ζ) > 0, ζ ∈ O, that is, |φ′(ζ)− 1| < 1.

Proof. From (13) we have that ∣∣ζφ′′(ζ)
∣∣ ≤ α|ζ| < α, ζ ∈ O. (14)
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Putting

φ′(ζ) = 1− w(ζ). (15)

Then, w is analytic in O with w(0) = 0, and we want to prove that |w(ζ)| < 1, ζ ∈ O.
If not, then by Lemma 1, there exists a point ζ0 ∈ O such that

ζ0w′(ζ0) = kw(ζ0), k ≥ 1, w(ζ0) = eiθ , θ ∈ R.

Now, by (15) we have∣∣ζ0φ′′(ζ0)
∣∣ = ∣∣−ζ0w′(ζ0)

∣∣ = k|w(ζ0)| ≥ n− 1 ≥ α,

which is a contradiction to (13). It means that |w(ζ)| < 1 and from (15) that |φ′(ζ)− 1| < 1,
ζ ∈ O.

Remark 3. Since

φ′(ζ)− 1 =
∫ ζ

0
φ′′(ζ)dζ

and |φ′′(ζ)| < α, then

|φ′(ζ)− 1| = |
∫ ζ

0
φ′′(ζ)dζ| < α|ζ| < 1

only if 0 < α ≤ 1. However, from Theorem 3 it is true for all α > 0 with the condition n ≥ 1 + α.
For example, if α = 2, i.e., |φ′′(ζ)| < 2, ζ ∈ O, then for n ≥ 3, we have φ(ζ) = ζ + φ3ζ3 + · · · .

4. Conclusions

From above, we proposed a new subclass of analytic normalized functions in the
open unit disk. We presented a collection of results discussing the univalency and the
stralikeness of the new class. Moreover, some recent works are indicated under our main
results as consequences. For future work, one can make a development for the suggested
class in view of other classes of analytic functions, such as the meromorphic, p-valent and
harmonic classes. As an application, one can consider the suggested class operating with
the class of special functions.
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