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Abstract. We present two distinct applications of an inequality relating the multiplicity of an eigenvalue of
a graph to a certain subgraph. The first is related to a recent classification, established by Kim and Shader,
for the class of those trees for which each of the associated matrices have distinct eigenvalues whenever
the diagonal entries are distinct. We analyze the minimum number of distinct diagonal entries and the
corresponding location, in order to preserve such multiplicity characterization. The second application
involves a new property of a star set of a graph due to P. Rowlinson.

1. Preliminaries

For a given n × n real symmetric matrix A = (ai j), we define the graph of A, and write G(A), as the
undirected graph whose vertex set is {1, . . . , n} and edge set is {i j | i , j and ai j , 0}. On the other hand,
for a given (weighted) graph G, we may define A(G) = (ai j) to be the (real) symmetric matrix whose graph
G(A) is G. We devote our attention to the set

S(G) = {A ∈ Rn×n |A is symmetric and G(A) = G} ,

i.e., the set of all symmetric matrices sharing a common graph G on n vertices. Nevertheless, all results can
easily be extended to complex Hermitian matrices.

If G is a tree, then the matrix A(G) is called acyclic. In particular, if G is a path, we order the vertices of G
such that A(G) is a tridiagonal matrix.

We will often omit the mention of the graph of the matrix if it is clear from the context.
Let us denote the (algebraic) multiplicity of the eigenvalue θ of a symmetric matrix A = A(G) by mA(θ).

The (n − 1) × (n − 1) principal submatrix, formed by the deletion of row and column indexed by i, which is
equivalent to removing the vertex i from G, is designated by A(G\i).

As a consequence of Cauchy’s Interlacing Theorem for the eigenvalues of symmetric matrices, one can
deduce that

mA(G)(θ) − 1 6 mA(G\i)(θ) 6 mA(G)(θ) + 1 . (1)
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In the case that mA(G\i)(θ) = mA(G)(θ) + 1, the vertex i was designated by Jonhson et al. as a Parter-vertex of
A for θ [13, 15], motivated by the work of Seymour V. Parter [18], complemented and extended by Gerry
M. Wiener in [21] on the location and multiplicity of eigenvalues of sign symmetric acyclic matrices. Note
that this concept has also been considered by Godsil in the context of the matching polynomial theory as a
θ-positive vertex of G [10–12]. In the case that mA(G)(θ) 6 mA(G\i)(θ), i is called a Fiedler-vertex of A. In [17]
Kim and Shader provide geometric characterizations of Fiedler- and Parter-vertices of acyclic matrices, and
give a geometric proof for the so-called Parter-Wiener Theorem.

Theorem 1.1 (Parter-Wiener Theorem, [13]). Let A be an (irreducible) acyclic matrix, and let λ be an eigenvalue
of A with mA(G)(λ) > 2. Then there exists a Parter-vertex i of A for λ such that λ is an eigenvalue of at least three of
the direct summands of A(G\i).

Moreover, they describe the structure of an acyclic matrix in terms of Fiedler- and Parter-vertices enabling
the construction an acyclic matrix of a desired form according to the locations of those vertices.

We remark that Theorem 1.1 was reformulated in the survey work [6], motivated by some of the seminal
papers on matching polynomials due to Godsil (cf., e.g., [10–12]).

Later, in 2008, Kim and Shader [16] introduced the subset of S(G), having distinct diagonal entries,

SD(G) = {A = (ai j) ∈ S(G) | akk , aℓℓ , for k , ℓ} , (2)

and classified all the trees T such that every matrix in SD(T) has only simple eigenvalues.

Theorem 1.2 ([16]). Let T be a tree that is not a path. Then each matrix in SD(T) has distinct eigenvalues if and
only if each vertex of degree 3 or greater in T has at most one branch which is not a pendant vertex.

The proof for the sufficiency of Theorem 1.2 is based on the Parter-Wiener Theorem while the necessity
is a constructive procedure using the following lemma.

Lemma 1.3 ([16]). Let T be a nontrivial tree. Then there exists a singular matrix inSD(T) with all nonzero diagonal
entries.

We now define the major family of acyclic graphs that we will consider.

Definition 1.4. A double star is the tree obtained from two vertex disjoint stars by connecting their centers by a
path.

The path of previous definition can be, eventually, trivial, i.e., reduced to a single vertex. In this sense,
a star is itself a double star. A path is a double star as well. For the sequel we fix the following notation: if
the two pendant stars have sizes n1 and n2, and the path has size p, then the double star is notated by Sp

n1n2
.

Therefore S1
n1n2

is a star with size n1 + n2 − 1, and Sp
00 is a path of size p. Observe that Sp

n10 has size n1 + p− 1,
and, otherwise, Sp

n1n2
has size n1 + p + n2 − 2.

The main graph characterization of SD(T) is a consequence of Theorem 1.2.

Corollary 1.5 ([16]). Let T be a tree. Then each matrix in SD(T) has distinct eigenvalues if and only if T is a double
star.

Recently Johnson et al. [14] characterized all graphs G such that any real symmetric matrix that has
graph G has no eigenvalues of multiplicity greater than 2.
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2. Some results on multiplicities

Following a similar procedure [16], but avoiding Theorem 1.1, we start by showing that the family of
double stars characterizes a broader class of symmetric matrices. We will determine the minimum number
of distinct diagonal entries of such matrices having all eigenvalues simple. In this section, we recall some
results. The reader is referred to [1] for a full account regarding the terminology used throughout.

Let G be a graph and let A = A(G) ∈ S(G). We denote by φ(A(G), x) the characteristic polynomial of A.
Motivated by the results on matching polynomials [10, 11], the second author showed in [9]:

Proposition 2.1. Let i and j be two adjacent vertices in a tree T such that φ(A(T \ i), x) and φ(A(T \ i j), x) have no
common zero. Then φ(A(T), x) and φ(A(T \ i), x) also have no common zero.

Using the interlacing property and Proposition 2.1, we may also conclude that the eigenvalues of A(T)
(and of A(T \ i)) are all simple. The induction provides the following proposition.

Proposition 2.2. Suppose that T is a tree resulting from joining a tree H and a path at one of its pendant vertices,
say i. If φ(A(H), x) and φ(A(H \ i), x) have no common root, then all eigenvalues of A(T) are simple.

We observe that there is a disfiguring misprint contained in the original result [9, Corollary 7.4.].
In a slight extension of the main result of [8], the second author stated the following lemma.

Lemma 2.3 ([5]). Let P be a path which does not contain any edge of any cycle in graph G. Then

mA(G\P)(θ) > mA(G)(θ) − 1 .

This result has many interesting implications on spectral graph theory still to be explored. In particular,
we have the following lemma for trees of which we will discuss some consequences in the next sections.

Lemma 2.4 ([8]). Let P be a path in a tree T and A(T) ∈ S(T). If θ is an eigenvalue of A(T), then

mA(T\P)(θ) > mA(T)(θ) − 1 .

In the two final sections we discuss some other interesting consequences.

3. Simple multiplicities on stars

The classical result asserting that the eigenvalues of any irreducible tridiagonal matrix are real and
distinct is a well known fact from, for example, the theory of orthogonal polynomials (cf. [20, Theorem
3.3.1]). One can easily deduce this fact from Proposition 2.1 or Proposition 2.2 as well. We also observe that
this property does not depend on the distinctness of diagonal entries. In the sequel, we will prove a more
general result among all double stars, providing a deep insight of the mentioned property. But first let us
begin with the particular case of a star, and with a simple but insightful observation.

Lemma 3.1. Let T be a star of order n with central vertex labeled by 1. Suppose that A = (ai j) is in S(T), with
a22, a33, . . . , ann distinct. Then aii, for i > 2, is not an eigenvalue A.

Proof. Under the conditions of the lemma, aii cannot be an eigenvalue of A, for some i > 2, since A − aii I is
always nonsingular (cf. the proof of [7, Theorem 3.1]).

Proposition 3.2. Let T be a star. Then any noncentral main diagonal of entry A in S(T) is not repeated more than
twice if and only if the eigenvalues of A are all simple.
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Proof. Let A = (ai j) ∈ S(T) and suppose that ai1i1 = aikik , with 1 < i1 < ik 6 n and k = 2, . . . , s. We are assuming
that the central vertex is labeled by 1. If s > 3, then ai1i1 is an eigenvalue of A with multiplicity at least 2. If
s = 2, then ai1i1 is an eigenvalue of A ([7, Theorem 3.1]). Since the diagonal entry ai1i1 is not an eigenvalue of
A(T \ {1, i1, j2}), from Lemma 2.4, it is simple as an eigenvalue of A. If all noncentral main diagonal entries
of A are distinct, then aii is not an eigenvalue A, for i > 2, from Lemma 3.1. Now, from (1), the maximum
multiplicity of any eigenvalue of A is 1. This completes the proof.

Remark 3.3. Observe that no particular condition is imposed on the (1, 1)-entry, i.e., the central main diagonal
entry. In the case of the repetition of a noncentral diagonal main diagonal entry is greater than twice, that entry is an
eigenvalue with multiplicity bigger than 1.

4. The general case

The previous section motivates a more general analysis of the distinctness of the diagonal entries of a
matrix whose graph is Sp

n1n2
and the simplicity of its eigenvalues.

Proposition 4.1. Let A be a symmetric matrix whose graph is a double star, such that the noncentral main diagonal
entries of each pendant star are distinct. Then the eigenvalues of A are simple.

Proof. Let A ∈ S(Sp
n1n2

), with p > 1, and let P be the (only) path joining the central vertices, say 1 and
n1 + p − 1, of the two pendant stars. Setting VP̄ = {2, . . . , n1,n1 + p, . . . , n1 + p + n2 − 2}, for V(Sp

n1n2
\ P), with

some natural conventions, we have

φ(A(Sp
n1n2
\ P), x) =

∏
k∈VP̄

(x − akk) .

From Lemma 2.4, if θ is an eigenvalue of A, then

mA(Sp
n1n2
\P)(θ) > mA(Sp

n1n2
)(θ) − 1 .

Therefore, the only eigenvalues with possible multiplicity greater than 1 are akk, for k ∈ VP̄.
Taking into account our assumptions, suppose that there are two pendant vertices, say k1 and k2, in

the two pendant stars, such that ak1k1 = ak2k2 . Considering the (only) path Q joining k1 and k2, and setting
VQ̄ = VP̄ \ {k1, k2}, we have

φ(A(Sp
n1n2
\Q), x) =

∏
k∈VQ̄

(x − akk) ,

and, thus, ak1k1 is not a zero of φ(A(Sp
n1n2
\Q), x), i.e.,

mA(Sp
n1n2
\Q)(ak1k1 ) = 0 .

This means that
mA(Sp

n1n2
)(ak1k1 ) 6 1 .

The same procedure is applied in the case where a noncentral main diagonal entry akk of one pendant star
is not equal to any of the other pendant star. In this case, we consider Q as joining k to any pendant vertex
of the other star.

We should point out that if some pendant entries of the same star are equal, Proposition 4.1 does not
hold. For example, let us consider the double star S4

32:
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Figure 1: The graph S4
32 (or S5

30).

and the matrix

A =



1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 2


.

We observe that the entries (2, 2) and (3, 3) are equal to 1, which is an eigenvalue of multiplicity 2 of A, and
the vertices 2 and 3 belong to the same pendant star.

5. The complete characterization

For a given tree T, let us denote by SDP(T) the set of all matrices A ∈ S(T) whose graph is T, such that
the noncentral main diagonal entries of each pendant star are distinct.

In Proposition 4.1 we proved that if A ∈ SDP(Sp
n1n2

), all the eigenvalues of A are simple. The converse
is also true, i.e., if A ∈ SDP(T), for some tree T, then T = Sp

n1n2
. Applying Lemma 1.3 in a more general

and natural way, the proof of this claim goes along the same line as the necessity of Theorem 1.2 (cf. [16]).
Obviously, the only part which may change is the clear construction of the matrix D.

Lemma 5.1. Let T be a nontrivial tree. Then there exists a singular matrix in SDP(T) with all nonzero diagonal
entries.

Therefore, we may establish the full characterization of the graphs of the matrices in SDP(T):

Theorem 5.2. Let T be a tree. Then each matrix in SDP(T) has distinct eigenvalues if and only if T is a double star.

The following example presents a matrix whose graph is not a double star, with two distinct main
diagonal entries indexed by pendant vertices, and having a nonsimple eigenvalue.

Let us consider the matrix

A =



2 2 2 2 0 0 0
2 1 0 0 0 0 0
2 0 3 0 0 0 0
2 0 0 2 2 2 0
0 0 0 2 1 0 0
0 0 0 2 0 4 2
0 0 0 0 0 2 4


whose graph G is

s3
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s5
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Clearly G is not a double star and one can observe that on the one hand the vertices 2 and 3 belong to the
same pendant star, and on the other hand the entries (2, 2) and (3, 3) are distinct, but 2 is an eigenvalue of
multiplicity 2.

6. Star complements

In this section, we consider a second application of Lemma 2.3 which relies on the identification of the
trees with a nonzero eigenvalue of maximum possible multiplicity due to Peter Rowlinson [19].

Let µ be an eigenvalue of multiplicity m of a graph G. A set X of m vertices in G such that µ is not an
eigenvalue of G−X is called a star set for µ in G while the graph G−X is called a star complement for µ. Star
sets and star complements exist for every eigenvalue of any graph. Originally, star sets were defined for
the standard (0, 1)-adjacency matrix of graph, but such notion can be extended to general weighted graphs,
i.e., to any real symmetric matrix [3, Chapter 7]. For an update on the properties of star complements the
reader is referred [4, Chapter 3].

Suppose that λ1, . . . , λm are distinct eigenvalues of a graph G. We call X1 ⊕ · · · ⊕Xm a star partition of (the
set of vertices of) G if λi is not an eigenvalue of G − Xi, for i = 1, . . . ,m.

Lemma 6.1. [2] If S ⊂ Xi, then λi is an eigenvalue of G − S with multiplicity mG(λi) − |S|.

We remark that mG(λi) = |Xi|.
Recently, Rowlinson added a new property [19, Lemma 1.1] to a star set for a graph in order to identify

the trees with a nonzero eigenvalue of maximum possible multiplicity. The result is proved for a (0, 1)-
adjacency matrix of the graph. Here, as a consequence of Lemma 2.3, we provide a more detailed account
of that property. First recall that a bridge of a connected graph is an edge whose removal disconnects the
graph. In general, a bridge path is a path all of whose edges are bridges.

Proposition 6.2. Let u, v be two distinct vertices in a star set for the weighted graph G, joined by a path Puv in the
same star set. Then Puv is not a bridge path of G.

Proof. If Puv is a bridge path of G contained in a star set X, associated to an eigenvalue λ, then, from Lemma
6.1, mG−Puv (λ) = mG(λ) − |Puv|. But, from Lemma 2.3, mG−Puv (λ) > mG(λ) − 1. Since |Puv| > 2, we reach a
contradiction.

In particular, if G is a tree, each Xi is a set of independent vertices. From Proposition 6.2 one can also
easily derive the main tool used in [19].

Corollary 6.3 ([19]). If u, v are adjacent vertices in a star set for G, then the edge uv is not a bridge of G.
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