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Summary: In the present paper, implememtation of Preisach model of hysteresis to
elastoplastic analysis of trusses subjected to cyclic is shown. It is also shown that
damage effects can be included in presented analysis by introducing basic concepts of
continuum damage mechanics. Using finite element method, equilibrium equations are
obtained and algorithm for numerical solution is defined. Some advantages of this
approach are underlined through several numerical examples.
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1. INTRODUCTION

In the present paper, the Preisach model of hysteresis [1], which was already
successfully implemented for solving problems of cyclic plasticity of axially loaded bar
[3] and cyclic bending of elastoplastic beam [4] and [5], is extended to structural
analysis of trusses subjected to cyclic loading. Application of the Preisach model to
cyclic behavior of elasto-plastic material was introduced in 1993 by ([Lubarda, Sumarac
and Krajcinovic [2],[3]). One of the most important properties of the Preisach operator is
the so-called memory map [9], but in addition it is shown in [2] that suggested
(Preisach) model also possesses congruency and wiping out property, which makes this
model [2],[3] appropriate to describe hysteretic behavior of elasto-plastic material. This
model has advantage in comparison with classical approach [8], [11] because of
simplicity and strict mathematical rigorous procedure.

2. THE PREISACH MODEL OF HYSTERESIS FOR CYCLIC
BEHAVIOR OF DUCTILE MATERIALS

Definition and the most comprehensive analysis of Preisach model of hysteresis can be
found in [9]. One dimensional hysteretic behavior of elasto-plastic material can be
successfully described by the Preisach model [2] and [3]. Ductile material can be
represented in various ways by a series or parallel connections of elastic (spring) and

! Prof. dr Zoran Perovi¢, Faculty of Civil Engineering, University of Belgrade, Serbia, Bulevar kralja
Aleksandra 73, 11000 Belgrade

2 Prof. dr Dragoslav Sumarac, Faculty of Civil Engineering, University of Belgrade, Serbia, Bulevar kralja
Aleksandra 73, 11000 Belgrade



plastic (slip) elements, Lubarda, at al. [2]. In this paper, three-element units are used to
model elastioplastic material with linear hardening [2]. Therefore, the Preisach function
can be determined from the hysteresis nonlinearity as shown in [2] and the expression
for stress as a function of applied strain is, consequently,
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The first and second term on the right-hand side of (1) are elastic and plastic stress,
respectively. For a system consisting of infinitely many of three-element units,
connected in a parallel and with uniform yield strength distribution within the range
Y,in<Y<Y,..x, the total stress is
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In (2) the integration domain A is the area of the band contained between the lines
a—p=2Y,,/E and a—f=2Y,,.,/E in the limiting triangle, shown in [2] and [3]. For results
obtained in experiment of cyclic loading of material in stable cycle loop, published in the
paper [10], analytical solution was determined based on model of parallel connection of
infinitely many elements [2],[3] presented in this paper. In this experiment, sample of
Titanium alloy was subjected to strain controlled cyclic loadings =t 1.2% and stable
hysteretic curves were obtained. By analyzing shape of this hysteresis, parameters for
material behavior defined in (2) could be determined by considering geometry of
experimental curve [2]. If Preisach triangle is analyzed [2], it can be seen that elastic
part of curve's reloading segment always defines constant strain value of 2Y,,,/E, while
the elastic and nonlinear plastic part of curve's reloading segment give constant strain
value of 2Y,./E. Hence, stress limits Y,,;=450MPa and Y,,,=999MPa are defined.
Experimentally obtained stable cycle loop was in excellent agreement with one obtained
using described model, as it is shown on Fig.1.(a)
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Fig. 1. (a) Results of experiment of cyclic loading of alloy of Tittanium published in [10]
and corresponding numerical model ; (b) Damage evolution law for damage variable @
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3. FINITE ELEMENT EQUATIONS FOR TRUSSES SUBJECTED TO
CYCLIC LOADING AND DAMAGE

Using principle of virtual displacements, equations for finite element analysis of trusses
can be obtained:

> ?.')E("')Tcs(m)dV(m) =>u"R, 3)
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where o represents stresses in equilibrium with applied loads, .. denotes concentrated

forces on point i of applied loads, #'denotes virtual displacements,z corresponding
virtual strains and m= [,2...k, where k is the number of elements (bars). Detailed
formulation of algorithm for numerical analysis of trusses subjected to cyclic loading is
shown in [6]. If only one element m of structure is analyzed, it is shown in [6] that
equation (3) becomes:
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It is considered that this problem would not require large displacement and large strain
analysis, and if strain displacement matrix B is introduced, expressions in brackets of
first and second part of (4) are actually defining elastic stiffness matrix and plastic
stiffness matrix respectively. For the finite element assemblage, expression in Eq.(4)
becomes

KEIU_KpI.UpI =R (5)

It is important to emphasize that elements of vectors U represent nodal displacements of
the global system while elements of vector U, represent differences of positive and
negative sets in corresponding Preisach triangle, transformed in global system [6]. For
solving problem of nonlinear static analysis, iterative procedure using Newton-Raphson
initial stress method can be applied with appropriate convergence criterion. In presented
analysis basic concepts of macroscopic damage is introduced. Simple isotropic damage
theory is implemented by introducing scalar damage measure in form of scalar variable
 that evolves from 0 (undamaged material) to 1 (fully damaged material):

o=(l-w)6 6)

where & represents effective stress of undamaged body (in case of elastic or elastoplastic
analysis) and o represents actual stress caused by damage. Effective strain of
undamaged body ¢ is considered to be equal to effective strain of damaged body &. In
this approach for including damage into analysis, the plasticity formulation remains
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standard. Algorithm for elastoplastic analysis including damage can be defined as
explained in [14]. Ductile damage variable @ can be defined as function of damage

history parameter x“ and and it grows from zero to one as the parameter K Srows
from threshold x;, to its ultimate value x;. Damage evolution can be defined as function
that limits elastoplastic behavior in stress space and determines initiation of damage:

fh=E-x 7
where measure £ can be adopted as equivalent plastic strain. The damage growth

function governs damage variable evolution and it can be determined experimentally
[15] in linear, power law or other form as shown on Fig.1.b.

4. NUMERICAL EXAMPLES

In all numerical examples, material properties for all truss bars are taken from
experimental results [10], shown in paragraph 2.
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Fig. 2. Geometry and loading of truss structure for all numerical examples

Truss structure shown in Fig.2. is analyzed under moving load pattern of two
concentrated forces 2xV (V=6000kN). Structure consists of two types of bars. Horizontal
bars with length of 6m, and cross section areas 4;,= 0.02m’ and diagonal bars with
cross section areas A= 0.015m’". Although the applied moving load pattern 2x} doesn’t
have cyclic character, bars will be subjected to load reversals, since these concentrate
forces move across two span of continuous truss structure. Structure is subjected to five
consecutive cycles of loading according to pattern on Fig.2, and three different material
models are analyzed and compared. In the first model, only elastoplastic behavior of
material is defined, while in second and third model, linear and power law damage
evolution for damage variable is coupled with plasticity, respectively.

Parameters for damage variable ware adopted as follows: x, = 0.004, x, = 0.3. By
analyzing change of the tangent modulus on stress-strain curves, degradation of elastic
and hardening modulus can be observed in models that included damage (Fig.3.b.) There
is also stabilization of deformation occurred in all three different models of material
(Fig.3.a.). It can be seen that resulting behavior is dependent from damage evolution law,
so appropriate attention should be made for determination the nature of damage process.
Summary and comparison of results according to three different analyzed models is
presented on Table 1.
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Fig. 3 (a) Vertical displacement of right midspan according to three analyzed models;
(b) Stress - strain hysteresis curves for bar 18 according to three analyzed models

Table 1. Results obtained in numerical analysis

max damage—bar max max stress—bar
17 displacement 17
o [em] [Mpa]
ElastoPlastic analysis - 38.10 912
EP with linear damage evol. 0.021 38.58 911
EP with pow.law damage 0.190 4430 905
evol.

If the applied load is increased, damage variables change, according to corresponding
evolution law. Consequently significant difference in structural response is obtained, as
shown on Fig.4. where truss structure is analyzed under different leveles of applied load.
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Fig. 4.(a) Maximum damage variable @ (bar 17) vs. levels of applied load on analyzed

structure; (b) Maximum vertical displacement (vight midspan) vs. levels of applied load
on analyzed structure.
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5. CONCLUSIONS

In the present paper it is shown that the Preisach model of hysteresis can be successfully
applied in structural analysis of trusses subjected to cyclic loading in the plastic range.
Presented model is adequate in representing uniaxial material behavior in cyclic
plasticity. Damage can be included in presented algorithm by introducing scalar damage
variable and basic concepts of continuum damage mechanics. Damage evolution law has
high influence on structural responce after damage initiation. It is also shown that the
Preisach model can be defined in purely geometric terms, without any reference to
analytical definition which is less atractive approach to engineers. Obvious advantage of
presented approach reflects in analytical solution in closed form that provides
mathematical rigor of the Preisach model, while its absolute equivalent geometric
interpretation enables numerical effective solution and less computational cost.
Considering all possibilities that Preisach model poses, this type of analysis in finite
element procedures is yet to be applied.
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EJACTOIIVIACTUYHA AHAJIN3A OLITEREIBA
PEHIETKACTUX HOCAYA ITPH HUK/IMYHOM
OIITEPEREDY

Pesume YV osom pady, nprasana je npumena Ilpajzaxogoe modena xucmepesuca, y
CMPYKMYPHO] AHAIU3U PEeUemKaAcmux HOcauyd KOju Cy U3N0NCeHU YUKTUYHOM
onempeherny. Takohe je npukazano oa ce epexmu owmekhiera Moy YKbyuumu y
NPUKA3AHY aHATU3Y YBohereM OCHOBHUX NpUuHyuna mexawuxe owmehera y
xoumunyymy. Kopucmehu memooy konaunux eremenama, jeOHauumne pasHomeolce u
aneopumam 3a Hymepuuyko pewasare je degumuucan. Hexe npeonocmu oeaxeoez
npucmyna cy HaeiauleHe Kpo3 HeKOIUKO HYMePUYKUX npumepa.

Kuwyune peuu: Luxnuuna naacmuunocm, Ilpajzaxos moden, pewlemxacmu HOCAuu,
owmelherve
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