
Research Article
A New Approach in Regression Analysis for
Modeling Adsorption Isotherms

Dana D. MarkoviT,1 Branislava M. LekiT,2 Vladana N. RajakoviT-OgnjanoviT,2

Antonije E. Onjia,3 and Ljubinka V. RajakoviT1

1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
2 Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
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Numerous regression approaches to isotherm parameters estimation appear in the literature. The real insight into the proper
modeling pattern can be achieved only by testing methods on a very big number of cases. Experimentally, it cannot be done in
a reasonable time, so the Monte Carlo simulation method was applied. The objective of this paper is to introduce and compare
numerical approaches that involve different levels of knowledge about the noise structure of the analytical method used for initial
and equilibrium concentration determination. Six levels of homoscedastic noise and five types of heteroscedastic noise precision
models were considered. Performance of the methods was statistically evaluated based on median percentage error and mean
absolute relative error in parameter estimates. The present study showed a clear distinction between two cases. When equilibrium
experiments are performed only once, for the homoscedastic case, the winning error function is ordinary least squares, while for
the case of heteroscedastic noise the use of orthogonal distance regression or Margart’s percent standard deviation is suggested. It
was found that in case when experiments are repeated three times the simple method of weighted least squares performed as well
as more complicated orthogonal distance regression method.

1. Introduction

Adsorption is a mass transfer process that plays a central
role in potable water purification, wastewater treatment,
both analytical and preparative chromatograph, and different
types of chemical analyses as a technique for sample pre-
concentration and speciation of analytes. The predominant
scientific basis for sorbent selection and design of an adsorp-
tion system is the knowledge about equilibrium partitioning
between two phases often expressed in the formof adsorption
isotherm. Based on the isotherms, the following important
factors can be estimated: capacity of the sorbent, the method
of sorbent regeneration, and the product purities [1]. Addi-
tionally, transport behavior of environmentally significant
reactive species is controlled by the sorption behavior of these

solutes to soil surfaces. Adsorption isotherms are incorpo-
rated into geochemical modeling software (such asMINEQL,
VisualMINTEQ, and ChemEQL) in order to understand and
predict the mobility of the sorbed substances. Determination
of the optimum isotherm equation and accurate estimates of
the isotherm parameters are apparently important for all the
mentioned purposes.

A frequently applied method for determining sin-
gle solute adsorption isotherms is the conventional batch
method based on mixing known amounts of adsorbent with
solutions of various initial concentrations (𝐶

𝑜
) and measur-

ing the equilibrium concentrations (𝐶
𝑒,exp). Solving the mass

balance, corresponding equilibrium loadings (𝑞
𝑒,exp) can be

simply calculated [2]. Once pairs (𝐶
𝑒,exp, 𝑞𝑒,exp) are obtained,

they are plotted and subjected to the fitting procedure.
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Candidate theoretical models are subsequently fitted to the
experimental data (parameters of themodel functions 𝑞

𝑒,exp =
𝑓(𝐶
𝑒,exp) are determined) and finally the best fitting model is

chosen to represent the experimental system. Two different
steps of the described procedure can be noticed: firstly, the
method used for obtaining parameter values and, secondly,
the method used for the isotherm selection.

Themost commonly used empirical adsorption isotherm
models are the Langmuir and Freundlich isotherms [3].
In the past decades, the equations of these two parameter
functions were routinely linearized, and the parameters were
directly obtained by linear regression. The preferred one
among the linearized equations would have been chosen by
the coefficient of determination (𝑅2) closer to one. Nonlinear
regression, being an iterative procedure, gained popularity
in the era of microcomputers. Parameter estimates in this
method are obtained through minimization of the quadratic
error between experimental data 𝑞

𝑒,exp and model outputs
𝑞
𝑒,calc for all sample points. Literature survey summarized in
a review paper of Foo and Hameed [4] showed that besides
ordinary least squares (OLS), researchers use many other
error functions, namely, hybrid fractional error function
(HYBRD), Marquardt’s percent standard deviation (MPSD),
average relative error (ARE), and sum of absolute errors
(EABS). The coefficient of determination (𝑅2), root mean
squared error (RMSE), all of the mentioned error functions,
and sometimes Akaike information criterion [5] are calcu-
lated to measure the goodness of fit and as a criterion for the
selection of optimum isotherm.

However, El-Khaiary noticed that both dependent and
independent variables used for construction of isotherm
equations are affected by experimental errors and first used
the method known as orthogonal distance regression (ODR)
for the isotherm parameter estimation [6].

Having so many options open, the researcher has to
decide which one to apply. The paper of El-Khaiary and
Malash [7] contains the insightful analysis of the probably
most common error: misuse of linearization. Studies com-
paring the accuracy of different error functions in predicting
the isotherm parameters and the optimum isotherm are
presented in the literature [8–10]. An important limitation
to these earlier studies is that they have been conducted
primarily on experimental data. However, there are a few
drawbacks of such approach: the true, underlying isotherm
function is not known and the final conclusion about which
of the applied criteria has properly discovered it cannot
be drawn. Also, the values of the true parameters are not
known and it is not possible to decide which of the modeling
approaches achieved the most accurate parameter estimates.
Yet, another problem is that, even proving the validity of
some method in just one particular case, one cannot easily
generalize the conclusion and suggest the use of the method
without sound background theory.

Valuable information can be obtained when laboratory
experiments are simulated through extensive Monte Carlo
calculations. This technique allows for both complete spec-
ification and absolute control of all relevant parameters, a
condition that real experiments never approximate well. An

advantage of Monte Carlo simulations is that they can be
repeated thousands of times in a reasonable time and at very
low cost.

This study was performed with the aim to answer the
question which modeling approach should be applied in
particular case. A few aspects of the problem were addressed.
Do the isotherm equation type and number of parameters
make the difference? How do the properties of the analytical
method for the initial and equilibrium concentrations deter-
mination affect the parameter estimation procedure? What
is the preferred method if one has some information about
the measurement error structure? And what is the winning
method in the case when the only available information is
the isotherm dataset that consists of 5–10 points, with no
replication?

The Monte Carlo technique was used as a tool to test
the differences between nonlinear and orthogonal distance
regressionmethods. Tendencies withinmodeling approaches
were revealed on a large number of generated datasets,
allowing the precision and accuracy of parameter estimates
to be determined by comparison with true parameter values.
Five isotherm models in the presence of five noise precision
models (NPMs)were analyzed by eightmodeling approaches.
Three levels of reality were distinguished—theoretical level
at the one side, when the noise structure is exactly known,
and the two experimental levels at the other side: one in the
absence of data about noise structure and the second when
the estimates of standard deviations could be obtained.

As a result of this investigation, a clear strategy for data
reduction in the field of adsorption is presented.

2. Theoretical Background

2.1. Adsorption Isotherms. Over the years, a wide variety
of equilibrium isotherm models have been formulated. In
general, an adsorption isotherm is the relationship between
quantity of the component retained on a solid phase (𝑞

𝑒
)

and the remaining sorbate concentration in the fluid phase
(𝐶
𝑒
), mathematically expressed as 𝑞

𝑒
= 𝑓(𝐶

𝑒
). The main

drawback of the isotherms is that the isotherm does not
provide automatically any information about the reactions
involved, and mechanistic interpretations must be carefully
verified [11]. Additionally, they cannot take into account the
effect of ionic strength, pH of the solution, composition of the
media, and temperature. Despite these limitations, isotherms
are largely employed to describe sorption phenomena. Giles
et al. [12] classified isotherms as “C,” “L,” “H,” and “S,” based
on the 4 main shapes of isotherms commonly observed.
According to this classification, “C” isotherm is a line of
zero-origin, and “L” and “H” are concave curves supported
by the fact that the ratio between the concentration of the
compound remaining in solution and adsorbed on the solid
increases when the solute concentration increases. The “H”
type isotherm is only a particular case of the “L” isotherm,
where the initial slope is very high. Progressive saturation
of the solid is supported by these concave isotherms and
two possibilities are distinguished: the curve reaches a strict
asymptotic plateau (the solid has a limited sorption capacity),
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and the curve does not reach any plateau (the solid does
not show clearly a limited sorption capacity). “S” type of
adsorption isotherm is sigmoidal-shaped and thus has got a
point of inflection. It is always a result of at least two opposite
mechanisms. Compared to the “L” and “H” isotherms, the “S”
class occurs less frequently [13], and it will not be addressed
in this paper.

From a mathematical point of view, isotherm equations
can be grouped into rational, power, and transcendental
functions [3]. Important for the convergence properties
and computational difficulty is the number of parameters.
Most of the isotherms used for liquid-phase adsorption
description are two or three parameter isotherms, while for
the adsorption of gases hybrid isotherms with significantly
higher number of parameters are also present in the literature
[14]. The equations of five adsorption isotherms addressed in
this paper are listed in Table 1.

They were chosen to be widely used and to repre-
sent different types of mathematical functions (Langmuir,
Redlich-Peterson, and Sips isotherms are rational functions,
Freundlich isotherm is a power function, and Jovanovic
isotherm is a transcendental function) and different number
of parameters (Langmuir, Freundlich, and Jovanovic are two-
parameter isotherms, and Redlich-Peterson and Sips are
three-parameter isotherms). To avoid unnecessary repeti-
tions, detailed characteristics of the isotherms are not pre-
sented. Additional information can be found in the literature.

2.2. Method of Least Squares. Let independent data pairs
(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛, be observed from the underlying

true values (𝑋
𝑖
,𝑌
𝑖
), and accept the assumption that only

dependent variable 𝑦
𝑖
is affected by measurement error:

𝑥
𝑖
= 𝑋
𝑖
,

𝑦
𝑖
= 𝑌
𝑖
+ 𝜀
𝑖
,

(1)

where 𝜀
𝑖
is additive, zero mean, white, Gaussian noise.

The noise is assumed to be homoscedastic with constant
population standard deviation 𝜎

𝜀
, written in short notation

𝜀
𝑖
∼ 𝑁(0, 𝜎

𝜀
). Although (1) is not absolutely satisfied in

practice, and it is often the case that 𝑥
𝑖
have errors, these

errors can be safely ignored if they are much smaller than the
corresponding errors in 𝑦

𝑖
[6].

Assume the smooth function𝑌 = 𝑓(𝑋; 𝜃) is a truemodel,
where 𝜃 ∈ 𝑅𝑝 is a vector of true parameters. With more data
points than parameters (𝑛 > 𝑝), it is not possible to solve
the model and calculate the values of the true parameters.
Instead, the question is how to obtain the best compromise
so that the model predictions (𝑦

𝑖
) are on the whole as close as

possible to the observed data values. Closeness for any single
observation may be measured by the vertical distance (𝜓

𝑖
)

from the data point to the fitted curve:

𝑦
𝑖
= 𝑦
𝑖
+ 𝜓
𝑖
. (2)

Closeness averaged over the entire data set is often measured
by the sum of the squares of the individual distances. Any

point �̂� = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
) in Θ = {𝜃 = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑝
) ∈ R𝑝,

𝜃
𝑖
> 0, 𝑖 = 1, . . . , 𝑝} which minimizes the functional,

ErrFun (�̂�) =
𝑛

∑

𝑖=1

𝑤
2

𝑖
(𝑓 (𝑥

𝑖
; �̂�) − 𝑦

𝑖
)
2

, (3)

where 𝑤
𝑖
are data weights and equation for the fitted curve

reads 𝑦
𝑖
= 𝑓(𝑥

𝑖
; �̂�), is called the least squares estimate of the

unknown parameters, if it exists [20]. Condition 𝜃
𝑖
> 0, 𝑖 =

1, . . . , 𝑝, in the definition of the set Θ is a specific feature of
the modeling adsorption isotherms and meets the criterion
for the isotherm to be positive, increasing, and concave on
the set [0,∞), namely, to be “L” or “H” type isotherm.

2.2.1. Weighting Schemes in the Method of Least Squares.
In the method of OLS the observations are assumed to
be homoscedastic and all of the points are assigned equal
weights 𝑤

𝑖
= 1, 𝑖 = 1, . . . , 𝑛. In the absence of more

complete information, it is commonly accepted that uniform
weighting is satisfactory, and OLS are widely used in model
fitting [21]. If the assumption of constant standard deviations
of measurement errors is relaxed, the heteroscedasticity is
characterized by an 𝑛 element vector 𝜎

𝜀
= (𝜎
𝜀1
, 𝜎
𝜀2
, . . . , 𝜎

𝜀𝑛
),

where each 𝜎
𝜀𝑖
is population standard deviation of the noise

at 𝑦
𝑖
: 𝜀
𝑖
∼ 𝑁(0, 𝜎

𝜀𝑖
). Weights calculated by

𝑤
𝑖
=
1

𝜎
𝜀𝑖

(4)

are introduced into (3) in order to account for inconstant
variance and the method is referred to as weighted least
squares (WLS) or sometimes “chi-square fitting” [22]. The
assumption that the weights are known exactly is not valid in
real applications so estimated weights must be used instead
[23].

Ideally, observation weights should be estimated accord-
ing to individual estimates of measurement error such that
𝑤
𝑖
= 1/𝑠𝑑𝑦

𝑖
, where 𝑠𝑑𝑦

𝑖
is the standard deviation of 𝑖th

measurement. These are called instrumental weights.
When individual error estimates are unavailable, other

empirical weights may provide a simple approximation of
standard deviation. For the peculiar case of heteroscedas-
ticity important in many analytical methods, relative stan-
dard deviations are reasonably constant over a considerable
dynamic range.Thus, 𝜎

𝜀𝑖
is proportional to 𝑦

𝑖
and the weights

can be estimated as 𝑤
𝑖
= 1/𝑦

𝑖
.

However, the error structure in real data usually lies
somewhere on a continuous between a constant absolute
error (homoscedastic) at one extreme and a constant percent-
age error at the other. Between these two there is an error for
which the standard deviation is proportional to the square
root of the expected value:𝑤

𝑖
= 1/𝑦

𝑖

0.5.This type of weights is
called Poisson weights or hybrid weights and they should be
appliedwhen the shot noise is present. Shot noise is dominant
when a finite number of particles that carry energy (ions,
electrons, and photons) are counted at the detector part of the
instrument.The characteristic expressions for each weighting
type are presented in Table 2.

ISOFIT, a software package for fitting sorption isotherms
to experimental data by weighted least squares, supports
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Table 1: Adsorption isotherm models.

No. Type Type of
function Nonlinear form Linear form

True parameters
Reference

𝜃1 𝜃2 𝜃3

1 Langmuir Rational 𝑞
𝑒
=
𝑞max𝐾𝐿𝐶𝑒

1 + 𝐾
𝐿
𝐶
𝑒

1

𝑞
𝑒

=
1

𝑞max𝐾𝐿

1

𝐶
𝑒

+
1

𝑞max
𝑞max = 0.6 𝐾

𝐿
= 0.4 / [15]

2 Freundlich Power 𝑞
𝑒
= 𝐾
𝐹
𝐶
1/𝑛𝐹

𝑒

ln 𝑞
𝑒
= ln𝐾

𝐹
+
1

𝑛
𝐹

ln𝐶
𝑒 𝐾

𝐹
= 0.1 𝑛 = 1.2 / [16]

3 Jovanovic exp∗ 𝑞
𝑒
= 𝑞
𝐽
(1−𝑒
−𝐾𝐽𝐶𝑒 ) / 𝑞

𝐽
= 5.1 𝐾

𝐽
= 0.02 / [17]

4 Redlich-
Peterson Rational 𝑞

𝑒
=

𝐾
𝑅
𝐶
𝑒

1 + 𝑎
𝑅
𝐶
𝑔

𝑒

/ 𝐾
𝑅
= 0.5 𝑎

𝑅
= 0.25 𝑔 = 0.85 [18]

5 Sips Rational 𝑞
𝑒
=
𝑞
𝑆
𝐾
𝑆
𝐶
𝑚𝑆

𝑒

1 + 𝐾
𝑆
𝐶
𝑚𝑆

𝑒

/ 𝑞
𝑆
= 5.0 𝐾

𝑆
= 0.1 𝑚

𝑆
= 0.7 [19]

∗Exponential.

Table 2: Types of weights.

Type of weights Expression
Absolute weights 1
Poisson weights 1/𝑦

0.5

𝑖

Assumption of constant percentage error 1/𝑦
𝑖

Instrumental weights 1/sd𝑦
𝑖

three alternatives: uniform weighting, sorbed relative where
weights are inversely proportional to sorbed concentrations,
and solute relative where weights are inversely proportional
to measured solute concentrations [24].

2.3. Orthogonal Distance Regression Methods. In a more
general situation, considerable errors can occur in both
variables. It is stated that if the errors in 𝑥

𝑖
are greater than

one-tenth of the errors in 𝑦
𝑖
, then the overall error is signif-

icantly increased. Moreover, the regression parameters and
their confidence intervals are then biased using (ordinary)
weighted least squares [25].

Let the considerable error be also present in the measure-
ments of the independent variable

𝑥
𝑖
= 𝑋
𝑖
+ 𝛿
𝑖
, (5)

where 𝛿𝑖 ∼ 𝑁(0, 𝜎
𝛿𝑖
).

Again, the model will not fit the observed data points
(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛, exactly, so the corresponding set of points

(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛, that do fit the model exactly and that are

at the same time the closest to experimental data points is to
be considered. For each data point, the value of independent
variable 𝑥

𝑖
is expressed introducing an error term 𝜑

𝑖
:

𝑥
𝑖
= 𝑥
𝑖
+ 𝜑
𝑖
. (6)

The values 𝑦
𝑖
are predicted by the model function

𝑦
𝑖
= 𝑓 (𝑥

𝑖
+ 𝜑
𝑖
; �̂�) . (7)

A reasonable way to estimate the unknown parameters in this
case is to minimize the weighted sum of squares of all errors
by minimizing the functional:

ErrFun (�̂�, �̂�) =
𝑛

∑

𝑖=1

𝑤
2

𝑖
(𝜓
𝑖

2

+ 𝑑
2

𝑖
𝜑
2

𝑖
) , (8)

on the set Θ × Φ, where 𝑤
𝑖
and 𝑑

𝑖
are data weights in the 𝑦

and 𝑥 directions, respectively, and

Φ := {𝜑 = (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
) ∈ R𝑛, 𝑥

𝑖
+ 𝜑
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛} .

(9)

Commonly, (8) is expressed in its expanded form, where the
difference between calculated and experimentally observed
value of 𝑦 is emphasized:

ErrFun (�̂�, �̂�) =
𝑛

∑

𝑖= 1

𝑤
2

𝑖
[(𝑓 (𝑥

𝑖
+ 𝜑
𝑖
; �̂�) − 𝑦

𝑖
)
2

+ 𝑑
2

𝑖
𝜑
2

𝑖
] .

(10)

This approach is known as errors in variables or orthogonal
distance regression or total least squares. Condition 𝑥

𝑖
+

𝜑
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛, in the defining relation (9) is set in

order to meet the natural condition that concentration is a
nonnegative value.

2.3.1.Weighting Schemes in theMethod of Orthogonal Distance
Regression. In orthogonal distance regression analysis of
sorption data, units of the variables on the axes are not
the same. It is necessary to introduce weights as constants
selected to scale each type of variable 𝑦

𝑖
or 𝑥
𝑖
. This is done

in order to put the model errors (𝜓
𝑖
and 𝜑

𝑖
) on a comparable

basis, so it will be meaningful to add them all together
into the sum of error function in (8). Typically, weights are
chosen as estimates of the population standard deviation of
the experimental measurements of each variable type: 𝑤

𝑖
=

1/𝑠𝑑𝑦
𝑖
and 𝑤

𝑖
𝑑
𝑖
= 1/𝑠𝑑𝑥

𝑖
. Another way is to assign weights

to be proportional to the inverse of experimental values:𝑤
𝑖
=

1/𝑦
𝑖
and 𝑤

𝑖
𝑑
𝑖
= 1/𝑥

𝑖
. The effect of such weights is that at

the same time heteroscedasticity is accounted for and scaled
model errors in 𝑦 and 𝑥 direction are dimensionless.
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In Figure 1 differences between different OLS and orthog-
onal distance regressionmethodswith andwithout weighting
are presented.

Geometrically, if the data pairs (𝑥
𝑖
, 𝑦
𝑖
) and the curve 𝑦 =

𝑓(𝑥; �̂�) are presented in the Cartesian coordinates in ordinary
least squares, minimization of the error function corresponds
to minimization of the shortest distances from data points
to a line in a direction that is parallel to the vertical axis.
Figure 1(a) is a standard geometric illustration of the least
squares method. Instead of the vertical offsets, the shortest
distances from points to the line are considered in the
method of orthogonal distance regression. If the data are
homoscedastic, and the units of 𝑥 and 𝑦 are the same, all
the weights 𝑤

𝑖
and 𝑑

𝑖
are equal to one. Equation (8) is then

simplified to a formula that possesses a meaning of the sum
of the areas of the circles shown in Figure 1(b):

ErrFun (�̂�, �̂�) =
𝑛

∑

𝑖=1

[(𝑦
𝑖
− 𝑦
𝑖
)
2

+ (𝑥
𝑖
− 𝑥
𝑖
)
2

] . (11)

In this case, the radii of these circles are equal to distances
between the points (𝑥

𝑖
, 𝑦
𝑖
) and the fitting line. Put in other

words, the fitting line is a tangent line to all circles.
Geometrical representation of a case when 𝑥 and 𝑦 are

variables that do not have the same units or the data is
heteroscedastic is presented in Figure 1(c). Weights are intro-
duced and half axes of the ellipses in Figure 1(c) correspond
to the combined measure of the distance expressed in (8).
While the global minimum of this error function is unique,
this kind of straightforward geometrical representation is no
longer meaningful.

Orthogonal distance regression methods have been used
in the fields of science such as economy [26], automatic
control [27], and pharmacology [28], and a significant work
has been done for the development of stable and efficient
algorithm for ODR estimation of parameters.

3. Materials and Methods

3.1. Numerical Experiments. Numerical experiments were
designed to be as close as possible representation of a typical
experimental setup in adsorption studies. It was adopted
that batch experiments are performed in laboratory bakers
containing mass of sorbent 𝑚 and volume 𝑉 of sorbate
solution. Initial concentrations of sorbate solutions (𝐶

𝑜𝑖,true)
are chosen to be 0.5, 1.0, 5.0, 10.0, 50.0, and 100.0. All units are
ignored since they are irrelevant. Further on, it was assumed
that the theoretical adsorption isotherm expressed in terms
of its true parameters is exactly matching the adsorption
process. Values of the true parameters were arbitrarily set to
get the operative expression 𝑞

𝑒,true = 𝑓(𝐶𝑒,true), where 𝐶𝑒,true
is errorless equilibrium sorbate concentration and 𝑞

𝑒,true is
errorless equilibrium sorbate loading. At the same time, mass
balance expressed in (12) is satisfied:

𝑞
𝑒𝑖,true =

(𝐶
𝑜𝑖,true − 𝐶𝑒𝑖,true)

𝑚
𝑉. (12)

The true equilibrium concentration is then calculated solving
the equation:

𝑓 (𝐶
𝑒𝑖,true; 𝜃) −

(𝐶
𝑜𝑖,true − 𝐶𝑒𝑖,true)

𝑚
𝑉 = 0. (13)

It is assumed that simple univariate chemical measurement
system with additive, zero mean, white Gaussian measure-
ment noise is used as an analytical tool to determine 𝐶

𝑜𝑖,true
and 𝐶

𝑒𝑖,true. Thus random noise (𝛿
𝑖
𝑜 ∼ 𝑁(0, 𝜎

𝑜

𝛿𝑖
) and

𝛿
𝑖
𝑒 ∼ 𝑁(0, 𝜎𝛿

𝑖
𝑒), resp.) was added to these values to obtain

simulated experimental concentrations:

𝐶
𝑜𝑖,exp = 𝐶𝑜𝑖,true + 𝛿

o
𝑖
,

𝐶
𝑒𝑖,exp = 𝐶𝑒𝑖,true + 𝛿

𝑒

𝑖
.

(14)

The rest of the procedure was identical as if the experiments
were performed in laboratory. The equilibrium sorbent load-
ing was calculated from (12), and the collected data was
subjected to fitting routines.

Flow chart of laboratory experiment and a matching
numerical experiment is presented in Figure 2.

3.2. Noise Precision Models. Since a wide variety of sub-
stances (toxic metals, organic pollutants, etc.) are in focus
of adsorption research community, also a wide variety of
analytical techniques are used for initial and equilibrium con-
centrations determination. Accordingly, the measurement
errors they introduce differ in type and magnitude. There
are different mathematical models, named noise precision
models (NPMs), that have been proposed to estimate the
change of analytical precision as a function of the analyte
concentration. List of such models for specific analytical
methods, together with explanations of error sources, can be
found in literature [23]. In this paper, the NPMs were chosen
to be the simplest physically plausible [29]. Firstly, the six
different magnitudes of homoscedastic noise were used (H1–
H6). Noise population standard deviations were from very
low (0.01, 0.02) and medium (0.05, 0.1) to high (0.2, 0.4). The
noise of the data was therefore between 0.01% and 0.4% of the
data range. Secondly, the five types of heteroscedastic noise,
linear (Lin), quadratic (Quad), hockey stick (HS), constant
relative standard deviation of 5% (RSD5%), and constant
relative standard deviation of 10% (RSD10%), were involved.
Expressions of the NPMs used in the study and their relevant
parameters are listed in Table 3.

3.3. Methods for Fitting Adsorption Isotherms. Although
there are some experiments where it is reasonable to assume
that one variable (𝑥) is largely free from errors, such an
assumption is manifestly not true in cases of adsorption
isotherms. The value on the 𝑥-axis is an equilibrium con-
centration, 𝐶

𝑒,exp, which is determined by chemical analysis
and thus inevitably affected by the measurement error. Equi-
librium loading, 𝑞

𝑒,exp, (which is on the 𝑦-axis) is calculated
from the equilibrium concentration, and as a result an error
in this concentration appears in both coordinates. Particular
attention must be given to equations in which one variable
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Figure 1: Geometric illustration of differences among different regression methods: (a) OLS without weighting, (b) orthogonal distance
regression without weighting, and (c) orthogonal distance regression with weighting.

Table 3: Noise precision models.

No. NPM Expression Type
1 H1 𝜎 = 0.01 H∗

2 H2 𝜎 = 0.02 H
3 H3 𝜎 = 0.05 H
4 H4 𝜎 = 0.1 H
5 H5 𝜎 = 0.2 H
6 H6 𝜎 = 0.4 H
7 Lin 𝜎 = 0.02 + 0.05𝐶 Het∗∗

8 Quad 𝜎 = 0.02 + 0.02𝐶 + 0.0002𝐶
2 Het

9 HS 𝜎 = (0.02
2

+ 0.05
2

𝐶
2

)
0.5 Het

10 RSD5% 𝜎 = 0.05𝐶 Het
11 RSD10% 𝜎 = 0.1𝐶 Het
∗H: homoscedastic; ∗∗Het: heteroscedastic.

is involved on both sides, since the independence of errors
is not fulfilled [30].The use of orthogonal distance regression
modeling procedurewould be statistically correct in this case.

Since this study is based on simulated data, population
standard deviations of measurement errors are known and

(10) can be transformed into theoretical orthogonal distance
regression criterion (TODR) introducing the relations

𝑤
𝑖
=
1

𝜎
𝜀𝑖

,

𝑤
𝑖
𝑑
𝑖
=
1

𝜎
𝛿𝑖

,

(15)

for the weights on the 𝑦- and 𝑥-axes, respectively. It can be
noticed that the population standard deviation of the error
on the 𝑥-axis is actually the population standard deviation of
the equilibrium concentration:

𝜎
𝛿𝑖
= 𝜎
𝑒

𝛿𝑖
. (16)

For the 𝑦 axis, 𝜎
𝜀𝑖
is calculated based on (12). According to

the error propagation law

𝜎
2

𝜀𝑖
= 𝑘
2

[(𝜎
𝑒

𝛿𝑖
)
2

+ (𝜎
𝑜

𝛿𝑖
)
2

] , (17)

where 𝑘 = 𝑉/𝑚, it is assumed that only the error of the
𝐶
𝑜,exp and 𝐶𝑒,exp determination is significant, while mass and

volume can be accurately and precisely measured.
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Figure 2: Flow chart illustrating the steps in adsorption equilibrium experiment and a matching numerical experiment.

Final formulation of the TODR error function which is
minimized in case of theoretical fitting of adsorption data is
presented as

TODR =
𝑛

∑

𝑖=1

[(
𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

𝜎
𝜀𝑖

)

2

+ (
𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,cal

𝜎
𝑒

𝛿𝑖

)

2

] .

(18)

Although TODR cannot be used outside the theoretical
domain, it was included in this study to serve as a golden stan-
dard. It is expected to represent the best possible results that
can be achieved with the certain observations in possession.

A typical isotherm data set in the experimental domain
consists of 5–10 points. Very often, researches perform their
experiments in triplicate [31–33], but in cases when the
reagents are expensive or toxic there are no replications. By
these two different methods, different levels of data quality
are obtained. The objective of this paper was to take both of
these cases into consideration.

Data obtained in only one numerical experiment (match-
ing the case when the laboratory experiments are performed
with no replication) were fitted by the use of four error
functions: OLS, ODR,MPSD, andHYBRD.Their expressions
are presented in Table 4. Least squares fitting of the linearized
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Table 4: Definitions of error functions in cases when there are no replicated concentration measurements.

Name Abbreviation Domain Expression

Theoretical orthogonal distance regression TODR Theoretical
𝑛

∑

𝑖=1

[(
𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

𝜎
𝜀𝑖

)

2

+ (
𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,cal

𝜎
𝑒

𝛿𝑖

)

2

]

Ordinary least squares OLS Experimental
𝑛

∑

𝑖=1

(𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal)

2

Orthogonal distance regression ODR Experimental
𝑛

∑

𝑖=1

[(
𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

𝑞
𝑒𝑖,exp

)

2

+ (
𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,cal

𝐶
𝑒𝑖,exp

)

2

]

Marquardt’s percent standard deviation MPSD Experimental
𝑛

∑

𝑖=1

(
𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

𝑞
𝑒𝑖,exp

)

2

Hybrid fractional error function HYBRD Experimental
𝑛

∑

𝑖=1

(𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal)

2

𝑞
𝑒𝑖,exp

Table 5: Definitions of error functions for replicated measurements.

Name Abbreviation Domain Expression

Experimental weighted
orthogonal distance regression E3WODR Experimental

𝑛

∑

𝑖=1

[

[

(

𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

sd𝑦
𝑖

)

2

+ (
𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,cal

sd𝑥
𝑖

)

2

]

]

Weighted least squares WLS Experimental
𝑛

∑

𝑖=1

(

𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

sd𝑦
𝑖

)

2

Triplicate orthogonal distance
regression E3ODR Experimental

𝑛

∑

𝑖=1

[

[

(

𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,cal

𝑞
𝑒𝑖,exp

)

2

+ (
𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,cal

𝐶
𝑒𝑖,exp

)

2

]

]

data (LIN) was additionally applied only on the Langmuir
and Freundlich equations.

Formulae of the error functions in Table 4 are a bit
different from the ones reviewed in [4].The key reason is that
the number of data points is constant all the time, and there
will be no isotherm ranking based on this error functions,
so the constants n-p were removed for the sake of simplicity.
Parameter estimates obtained with these slightly modified
error functions are the same because the multiplication of
error function with a constant nonzero value does not affect
the position of a global minimum.

OLS, MPSD, and HYBRD are basically least squares
methods with different types of weights included. OLS is the
approach with all weights equal to one. In case of MPSD,
assumption of constant percentage error is accepted and
weighting by the equilibrium loading is applied. For the
HYBRD error functions weights are of the Poisson type.
ODR abbreviation in this context is used for the orthogonal
distance regression analog of the MPSD. Assumption of
constant percentage error is accepted for both of the axes,
and the weights are 1/𝑞

𝑒,exp and 1/𝐶𝑒,exp for the𝑦- and 𝑥-axes,
respectively.

The second group of calculations matched the case when
laboratory experiments are performed in triplicate. Means of
equilibrium sorbent loading (𝑞

𝑒𝑖,exp) and equilibrium sorbate
concentration (𝐶

𝑒𝑖,exp) from three subsequent numerical
experiments were passed to the following error functions:
experimental weighted orthogonal distance regression

(E3WODR), triplicate orthogonal distance regression
(E3ODR), and weighted least squares (WLS). Definitions
of error functions for replicated measurements are listed in
Table 5.

It is important to say that E3WODR is the experimental
realization of TODR. Estimates of standard deviation of the
variables on the 𝑦- and 𝑥-axes are calculated as described in
Section 2.3.1 incorporating the following equations:

𝑠𝑑𝑦
𝑖
= √
3

∑

𝑗=1

(𝑞
𝑒𝑖,exp − 𝑞𝑒𝑖,exp)

2

𝑗

2
, (19)

𝑠𝑑𝑥
𝑖
= √
3

∑

𝑗=1

(𝐶
𝑒𝑖,exp − 𝐶𝑒𝑖,exp)

2

𝑗

2
. (20)

Weighting in the E3ODRmethod is based on themean values
of equilibrium sorbent loading and equilibrium sorbate
concentration:

𝑤
𝑖
=

1

𝑞
𝑒𝑖,exp

,

𝑤
𝑖
𝑑
𝑖
=

1

𝐶
𝑒𝑖,exp

.

(21)

For the WLS method, instrumental weights are calculated
based on (19).
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3.4. Numerical Calculations. The present work was carried
out using Windows-based PC with hardware configuration
containing the dual processor AMD Athlon M320 (2.1 GHz
each) and with 3GB RAM. All calculations were performed
using Matlab R2007b. Perturbations were generated using
Mersenne Twister random number generator. For the pur-
pose of fitting, built-in Matlab function fminsearch was used
for OLS, MPSD, HYBRD, and WLS [34]. It is based on the
Nelder-Mead simplex direct search algorithm. Orthogonal
distance regression calculations used the dsearchn function
as a tool to find the set of (𝑥

𝑖
, 𝑦
𝑖
) values.

It is important to note that one complete numerical
experiment and all associated computations were performed
for each simulation step, for 2000 steps per combination (one
type of isotherm and one type of NPM). The reason simu-
lations were chosen to have 2000 steps was the compromise
between the aim to have resulting histograms of quality high
enough to facilitate quantitative comparison with theory and
to prevent the process from lasting unacceptably long. Few
of the simulations took longer than 12 hours, with the most
averaging around 8 hours in length. It could be noticed that
simulations with higher values of noise standard deviation
in general lasted longer. The explanation is the rise in the
number of function evaluations and the number of iterations
before the convergence is achieved.

4. Results and Discussion

4.1. Postprocessing of the Results. This study included 55
numerical simulations on the whole (each of the five
isotherms presented in Table 1 was paired with the 11 noise
precision models presented in Table 3) and they were indi-
vidually subjected to the same postprocessing routine. The
raw results of each numerical simulation were 2000 (two or
three element) vectors of estimated parameters per model-
ing approach. Firstly, the cases when the particular fitting
algorithm did not converge were counted, and corresponding
parameter estimates were removed from further consider-
ation. The second step in postprocessing procedure was to
calculate percentage errors for all the parameter estimates:

𝑒
𝑙,𝑗
=
𝜃
𝑙,𝑗
− 𝜃
𝑙

𝜃
𝑙

100%, (22)

where 𝑙 is the parameter ordinal number in the isotherm
equation (𝑙 ∈ {1, 2} for the Langmuir, Freundlich, and
Jovanovic isotherms and 𝑙 ∈ {1, 2, 3} for Redlich-Peterson
and Sips equations) and 𝑗 is the number of numerical exper-
iments. The third step was to identify and remove the outlier
values. An 𝑒

𝑙,𝑗
value was considered as an outlier if it is greater

than 75th percentile plus 1.5 times the interquartile range or if
it is less than 25th percentile minus 1.5 times the interquartile
range. The outliers were removed to once again match the
simulated and real cases. It is common practice to discard the
fitting results if they donot correspond to common sense. Sets
of percentage error on parameters obtained in the described
way were used for statistical evaluation.
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Figure 3: Normal probability plot for the parameters of Redlich-
Peterson isotherm and OLS processing.

4.2. Statistical Evaluation. The normal probability plots were
used to graphically assess whether the obtained parameter
estimates could come from a normal distribution. Inspection
of such plots showed that in general they are not linear.
Distributions other than normal introduce curvature, so it
was concluded that nonnormal distribution is involved. One
representative example is presented in Figure 3.

Thus, median of percentage error (mE) was used as a
measure of accuracy of the method based on a particular
error function, and mean absolute relative error (MARE),

MARE = 1

𝑘𝑓

𝑘𝑓

∑

𝑗=1


𝑒
𝑙,𝑗


, (23)

where 𝑘𝑓 is the number of converged fits for the particular
method in a simulation, was used as a measure of precision.
The individual performance of each modeling approach was
evaluated for each isotherm and for each type of noise.

Comparison of the methods was done separately for
the two following groups of data: observations with no
replications and data from triplicate experiments.

Properties of different modeling approaches in case when
the experiments are performed once are presented in Figures
4, 5, 6, 7, and 8 for the Langmuir, Freundlich, Jovanovic,
Redlich-Peterson, and Sips adsorption isotherms, respec-
tively.

Properties of different modeling approaches in case when
the experiments are performed three times are presented
in Figures A.1–A.5 as in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/930879, for the Lang-
muir, Freundlich, Jovanovic, Redlich-Peterson, and Sips
adsorption isotherms, respectively.

Due to a huge quantity of results obtained in this study,
some rules had to be put on what is going to be presented in
figures. For every type of isotherm, the figures are organized
to have two sections: one where mE values are presented
(figures labeled (a)) and the other where MARE values are
presented (figures labeled (b)). Each section of the plot
contains 7 subplots. In one subplot, the results of the applied

http://dx.doi.org/10.1155/2014/930879
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Figure 4: Properties of differentmodeling approaches for determination of parameters in Langmuir isotherm (experiments performed once):
(a) mE and (b) MARE.

methods for one NPM are summarized. Trends were noticed
and discussed based on the six levels of homoscedastic noise,
but in order tomake figures compact just two out of sixNPMs
(H2 as an example of low noise, andH5 as an example of high
noise) were presented as the first two subplots. The next five
(3–7) subplots were reserved for heteroscedastic NPMs. An
additional remark is valid for all the figures in the following

paragraph: it was not possible to use the same scale in all
subplots, due to large differences in the magnitudes of the
outcomes from subplot to subplot. Nevertheless, it does not
introduce any problem because the comparison of methods
is done in frames of a subplot, and cross comparisons
between different NPMs (and subplots) are not of substantial
importance.



The Scientific World Journal 11

0

0.05

0.1

0.15

0.2

0

5 0

0

1

2

3

4 0

0

0.5

1

0

2

4H2 H5 Lin Quad HS RSD5% RSD10%
m

E 
(%

)

KF nF KF nF KF nF KF nF KF nF KF nF KF
nF

−0.2

−0.15

−0.1

−0.05

−30

−25

−20

−15

−10

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−3

−2

−1

−0.5

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−3.5

−3

−2.5

−2

−2

−4

−6

−8

−10

−1.5

−1

−0.5

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

90

M
A

RE
 (%

)

KF
nF nF nF nF nF nF nF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

KF

TODR
ODR
OLS
MPSD
HYBRD
LIN

(b)

Figure 5: Properties of different modeling approaches for determination of parameters in Freundlich isotherm (experiments performed
once): (a) mE and (b) MARE.

4.2.1. Experiments with No Replications and Homoscedastic
Noise. As expected, for the very low level of homoscedastic
noise (H1 andH2noise precisionmodels), all of the examined
methods performed well. With the increasing of noise stan-
dard deviation, the accuracy and precision of the methods
became worse, and differences between methods started to
appear.

Generalizing the results of all the five isotherms, the
following statements can be placed. Regardless of the

mathematical type of isotherm equation (rational, power, or
exponential) and the number of parameters (two or three),
the OLS method had the best properties. In the group
of methods applicable in practice, it achieved mE values
closest to zero and the lowest values of MARE, almost
identical to ones determined by the theoretical method
TODR. mE of the other tested methods showed higher
discrepancy from zero, and MARE values were higher. ODR
and MPSD methods had a very bad performance, while
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Figure 6: Properties of differentmodeling approaches for determination of parameters in Jovanovic isotherm (experiments performed once):
(a) mE and (b) MARE.

the results of the HYBRD method were somewhere in
between.

Closeness of the results of OLS and TODR methods
showed that in case of homoscedastic noise, the presence of
measurement error on both axes is not of great importance,
as it could be expected. What is more, the weighting by
1/𝑞
𝑒,exp and 1/𝐶𝑒,exp for the 𝑦- and 𝑥-axes, respectively, in the

ODRmethod is actually wrong since the population standard

deviations are constant at all concentrations. That is the
reason why the ODR method is biased and of low precision.
In the recent study, the different modeling approaches were
tested on a Langmuir isotherm with perturbations of data
with the fixed error 𝑁(0, 0.05) and with ±5% error propor-
tional to concentration [35]. Surprisingly, authors found that
the ODR gives the most accurate estimates (lowest mean,
standard deviation, and interquartile range) of the isotherm
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Figure 7: Properties of differentmodeling approaches for determination of parameters inRedlich-Peterson isotherm (experiments performed
once): (a) mE and (b) MARE.

parameters among different methods when the experimental
data have a fixed error.

For the two parameter isotherms (Langmuir and Fre-
undlich), linearized models were tested due to their pop-
ularity. Modeling of linearized Langmuir equation was the
only exception from the rule that the greater the population
standard deviation of the noise, the greater the discrepancies
of parameter estimates from their true values. Regardless of
the level of noise, the LIN method presented equally bad

results. ThemE was about −65% andMARE in the range 60–
85% for both of the parameters. For the Freundlich isotherm,
LIN model was more accurate than HYBRD, MPSD, and
ODR and had about the same variability as MPSD, still
resigning in the group of modeling approaches whose usage
is not advised in the case of homoscedastic data.

4.2.2. Experiments with No Replications and Heteroscedastic
Noise. Looking at the subplots 3–7 of Figures 5–8 where
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Figure 8: Properties of different modeling approaches for determination of parameters in Sips isotherm (experiments performed once): (a)
mE and (b) MARE.

the results of modeling Freundlich, Jovanovic, Redlich-
Peterson, and Sips isotherm are presented, the pattern of the
OLS method performance can be easily recognized. For all
of the isotherms and all of the tested NPMs, this method
was the poorest of all the methods, in both the aspects of its
accuracy and precision. This is the expected result because
the basic assumptions when the OLS method is valid are not
met. It is interesting to note that for the Langmuir isotherm
(Figure 4, subplots 3–7), OLS method was the most accurate
method, but the precision was still very, very poor (always

more than 35% for the 𝑞max and more than 100% for the𝐾
𝐿
).

The same as for the other isotherm types, the use of OLS for
the Langmuir isotherm is not advised in the presence of any
type of heteroscedastic noise.

TheODRmethodwas generally as accurate as TODR.The
greatest deviation ofmE from zerowas−3.2% for the RSD10%
noise type and𝐾

𝐹
parameter of Freundlich isotherm, 5.7% for

the Lin noise type and 𝐾
𝐽
parameter of Jovanovic isotherm,

−7.5% for the HS noise type and 𝑎
𝑅
parameter of Redlich-

Peterson isotherm, and −10.9% for the HS noise type and 𝑞
𝑆
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parameter of Sips isotherm. Only for the Langmuir isotherm,
difference between mE of the ODR and TODR was more
pronounced, reaching the absolute maximum value of 30.0%
for 𝐾

𝐿
. The MARE of ODR was higher than the MARE

of TODR but the lowest among the other tested methods.
Typical values of MARE of Langmuir isotherm were in the
range 27%–39% for 𝑞max and 39.7%–70.4% for 𝐾

𝐿
. For the

Freundlich isotherm, MARE was below 10% for both of the
parameters and all types of NPMs. The precision in case of
Redlich-Peterson isotherm was roughly about 20% for 𝐾

𝑅

and g and two or three times higher for the 𝑎
𝑅
. For the Sips

isotherm, the maximum MARE was 53.7% for 𝑎
𝑅
in case of

RSD10%, but most of the time it was roughly about 30%.
Direct comparison of ODR andMPSD qualifiedMPSD as the
second best choice method. Its accuracy and variability were
at the same level or closely followed the ODR. The HYBRD
method was neither accurate nor precise, again performing
between the worst (OLS) and the best (ODR) methods. The
same can be stated for the LIN method of the Langmuir and
Freundlich isotherms.

4.2.3. Experiments Performed in Triplicate. In case when the
equilibrium adsorption experiments are performed once and
the estimates of standard deviation of the measurement error
are not available weighting is restricted to be fixed or to be
some function of measured variable. When the experiments
are done in triplicate, this restriction is released since the
estimates of standard deviations could be obtained. The
adsorption literature, surprisingly, rarely takes into account
these important statistical details related to the processing
of data in regression analysis with replicate measurements.
Commonly, but not properly, data from triplicate measure-
ments are just averaged, and their mean values are further
on processed like OLS. Weighted regression is a way of
preserving the information and thus should be preferred.

In Figures A.1–A.5 (in Supplementary Material), the
results of modeling Langmuir, Freundlich, Jovanovic,
Redlich-Peterson, and Sips isotherm are presented. At first
glance, it can be noticed that the accuracy and precision of
the methods are better than in case of one experiment per
point.

The E3WODRmethod had the best properties, WLS per-
formed slightly worse, and E3ODR was ranked the third.The
exception was only the Freundlich equation, where MARE
values tended to lower for E3ODR method in case of het-
eroscedastic noise. However, difference between E3WODR
and E3ODR was less than 1%, and thus this particular
behavior is not of great importance.

5. Conclusions and Recommendations

The accuracy of model parameters will depend on whether
the appropriate conceptual model was chosen, whether the
experimental conditions were representative of environ-
mental conditions, and whether an appropriate parameter
estimation method was used.

Recently our group faced the problem of modeling the
adsorption isotherms [36, 37] and the intention of this study

was to single out the method of parameter estimation which
is suitable for adsorption isotherms. A detailed investigation
has been carried out to determine whether the mathematical
type of isotherm function and the type of measurement noise
(homoscedastic or heteroscedastic) are key factors that lead
to modeling approach choice. Commonly used methods:
OLS and least squares of linearized equations, methods
that are far less present in literature: HYBRD and MPSD,
and a method that is hardly ever used in adsorption field:
orthogonal distance regression, were compared. Evaluations
of these methods were conducted on a large number of data
sets, allowing precision and accuracy of parameter estimates
to be determined by comparison with true parameter values.

It was demonstrated that trends that could be noticed do
not show dependence on isotherm type. Only the magnitude
of percent errors in parameter estimates classifies some
of the equation types and their particular parameters as
difficult to fit (𝑎

𝑅
in Redlich-Peterson isotherm). It was

shown that the impact of measurement error noise type is
significant. Neglecting the information about noise structure
can lead to biased and/or imprecise parameter estimates
and the researcher should obtain the information about the
measurement error type of the analytical method used for
concentration determination. (Testing the analytical system
for heteroscedasticity should be a part of validation protocol
necessary for the limit of detection calculationlinebreak[38,
39].) As expected, OLS method performed superior in case
of homoscedastic noise, no matter whether the noise is high
or low.The results for heteroscedastic noise types revealed the
potential of using ODRmethod, with weighting proportional
to 1/𝑞

𝑒,exp and 1/𝐶𝑒,exp for the 𝑦- and 𝑥-axes, respectively. In
this situation, use of this method resulted in smaller bias and
better precision. Although frequently being used in present
adsorption literature for fitting adsorption isotherms, OLS
method is an unfavorable method for the heteroscedastic
data, performing much worse than other nonlinear methods.

The accuracy and variability of orthogonal distance
regression-based methods (ODR for experiments performed
once and E3ODR and E3WODR for experiments preformed
in triplicate) are closely followed by the analog methods that
do not take into account the influence of measurement error
on both axes: MPSD and WLS.

Linearization of isotherm equations was once again
discarded in this study. Since the survey of the literature
published in last decade showed that in over 95% of the liquid
phase adsorption systems the linearization is the preferred
method [4], a lot of attention should be put on education and
spreading the right principles among researches.

Further research that is currently in progress in our group
will hopefully resolve the issue of adequatemodel selection in
adsorption studies.

Nomenclature

𝑎
𝑅
: Redlich-Peterson isotherm constant

𝐶
𝑒,true: True equilibrium concentration
𝐶
𝑒,exp: Experimentally determined equilibrium

concentration
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𝐶
𝑒,exp: Mean of three experimentally determined

equilibrium concentrations
𝐶
𝑜,true: True adsorbate initial concentration
𝐶
𝑜,exp: Experimentally determined adsorbate initial

concentration
𝑑: Weights on the x-axis
𝑒: Percentage error
𝑔: The exponent in Redlich-Peterson isotherm
𝑖: Indices for running number of data points
𝑗: Running number of numerical experiments
𝑘: Coefficient equal to V/m
𝑘𝑓: Number of converged fits in a simulation
𝑙: Parameter ordinal number in the isotherm

equation
𝐾
𝐹
: Freundlich adsorption constant related to

adsorption capacity
𝐾
𝐽
: The exponent in Jovanovic isotherm

𝐾
𝐿
: The equilibrium adsorption constant in Lang-

muir equation
𝐾
𝑅
: The Redlich-Peterson isotherm parameter

𝐾
𝑆
: The Sips isotherm parameter

𝑚: The weight of adsorbent
mE: Median percentage error
𝑚
𝑆
: The Sips model exponent

MARE: Mean absolute relative error
𝑛: Number of observations
𝑛
𝐹
: Adsorption intensity in Freundlich isotherm

𝑝: Number of parameters
𝑞
𝑒,exp: Experimentally determined adsorbent equi-

librium loading
𝑞
𝑒,exp: Mean of three experimentally determined

adsorbent equilibrium loadings
𝑞
𝑒,cal: Equilibrium adsorbent loading calculated by

isotherm equation
𝑞max: The Langmuir maximum adsorption capacity
𝑞
𝑆
: The Sips maximum adsorption capacity

𝑞
𝐽
: The Jovanovic maximum adsorption capacity

𝑠𝑑𝑥: Estimates of population standard deviation
for independent variable

𝑠𝑑𝑦: Estimates of population standard deviation
for dependent variable

𝑉: The volume of adsorbate solution
𝑤: Weights on the y axis
(𝑥
𝑖
, 𝑦
𝑖
): Data point on the fitted curve that is the

closest to the observation (xi, yi).

Greek Symbols

𝜀: Measurement error in dependent variable
𝛿: Measurement error in independent variable
𝜎
𝜀
: Population standard deviation of measurement
error in dependent variable

𝜎
𝛿
: Population standard deviation of measurement
error in independent variable

𝜎
𝛿
𝑜 : Population standard deviation of measurement
error in initial concentration

𝜎
𝛿
𝑒 : Population standard deviation of measurement
error in equilibrium concentration

𝜃: Vector of true parameters
�̂�: Vector of estimated parameters
𝜑: Vector of distances in x direction between

the observations and true model
�̂�: Vector of distances in x direction between

the observations and model function with
estimated parameters

𝜓: Vertical distance between observation and
model function.
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