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1. INTRODUCTION 

The traditional geodetic approach in the
deformation analysis comprises studying the
movements in the surface layer of the Earth’s crust
and engineering objects (bridges, dams, tunnels, high
buildings) in time and space. The surface layers of the
Earth’s crust are in the state of permanent moving due
to various influences, such as level change of under
the waters, tectonic phenomena, faults, landslides and
the like. A space-time analysis involves two kinds of
models. Methods testing the congruence of geometric
characteristics of an object in two time epochs are
known as congruence test methods. The time aspect is
taken implicitly. Models describing the deformation
on the basis of a given or supposed function of time,
i.e. of velocity, acceleration, etc., are called kinematic
models. The kinematic models find a special
application in determining the regional movements of
the Earth’s crust, whereas the congruence models are
still applied in strictly geometric deformation analysis
of engineering objects. There are studies that focus on
the application of kinematic models in landslides
monitoring, in comparation with CDA methods (Acar
et al., 2008). One of the first methods applying
congruence models was developed in 1971 by Pelzer
at the Hanover University, whereas for a practical use
it was adapted by Niemeier in 1976. In 1987 Caspary
developed a method based on the congruence of the
points of a geodetic network from two epochs, where,

ABSTRACT 
 
 

The deformation measurements are performed for the purpose of obtaining information
concerning ground movement and objects on the ground within given time intervals. For the
purpose of improving conventional models of deformation analysis (CDA) it is desirable to use
several different methods and also implement alternative procedures as a further improvement,
such as the concept of robust geodetic networks and strain analysis, aimed at obtaining objective
information about the movements. In the present paper, in addition to the CDA methods, we also
analyze the robust methods in deformation detecting and the method of the strain analysis based
on elasticity theory as a supplement to the conventional geometric deformation methods (CDA).
The mentioned methods are applied and analysed for the case of a test example of Fruška Gora
in Serbia, for which there exist geological and geophysical studies of recent tectonic movements.
The measuring results for two measuring epochs concern the GNSS vectors measured by
applying the fast static method within closed polygons over a ten-year interval, where only the
horizontal movement component is analysed. The efficiency of the applied CDA and robust
methods is measured by applying a mean success rate (MSR) by applying Monte Carlo
simulations in order to investigate the efficiency of a given methods for a given control network.

ARTICLE INFO 
 

Article history:  

Received 5 April 2017 
Accepted 14 July 2017 
Available online 23 August 2017 
 
 

Keywords: 
CDA  
Robust estimation  
Strain analysis 
 
 

unlike Pelzer’s method, he assumes that part of the 
network points is stable. The method is especially 
efficient in the presence of a fault between two 
geological blocks. The method developed at the Delft 
Universities based on a deformation analysis by 
applying statistical tests developed by Baarda (Kok, 
1982; Heck, 1980). The Karlsruhe method, developed 
at the University in that city, is based on the 
individual (independent) adjustment for the preceding 
and current epochs and their common adjustment. In 
assuming a datum framework the results of geological 
and geophysical studies are used. The deformation 
analysis is carried out by statistical testing the general 
linear hypothesis. To the adapting of the Karlsruhe 
method to the modern analysis has been contributed 
by Heck and Kuntz in 1977, Koch in 1980, Heck in 
1983 and by many others. The mathematical model of 
the Karlsruhe method has been implemented in the 
modern online tracking system for engineering objects 
based on the conventional and GNSS measurements 
(Jäger et al., 2006). The generalized method for the 
purpose of deformation modelling has been developed 
at the University of New Brunswick, Canada (Chen, 
1983). The generalised method consists of three basic 
procedures: preliminary identification of the 
deformation model, estimates of the deformation 
parameters and diagnostic testing of the deformation 
models with the final choice of the “best one”. The 
comparative analysis of the conventional methods of 
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Analogous testings with analysis of two
measured epochs can be found in the available
literature (Caspary and Borutta, 1987; Caspary et al.,
1990; Caspary, 2000; Setan and Singh, 2001; Nowel
and Kamiński, 2014; Nowel, 2015). The results of the
empirical examining of the CDA method efficiency
can be found in Hekimoglu et al. (2010), where the
MSR-factor efficiency is examined by applying
Monte Carlo simulations. Nowel (2016a) carries out
an empirical examination of the efficiencies of various
weight functions, for the GREDOD method by
applying MSR factor but the conclusions of that
research can also concern the IWST method. 

 
2. MOTIVATION 

The Republic of Serbia from the global point of
view of geodynamics belongs to a part of the Eurasian
plate with its northern part belonging to the Panonian
Basin (area of Vojvodina) and the central and
southern parts in the region of the Dinarides. Fruška
Gora as mountain in northwestern Serbia and one of
the most interesting areas for the evolution of the
Europe–Adria collision zone in terms of orogenic and
back-arc interactions is the southern part of the
Pannonian Basin near the junction between the
Carpathians and Dinarides (Toljić et al., 2013). Fruška
Gora is situated south of Novi Sad, on the right bank
of the Danube River. It is an east-west extending horst
that is bounded by two regional normal faults in the
North and South, respectively (Lesić et al., 2007). 

Republic Geodetic Authorithy of Serbia has
established passive geodetic reference network on
whole teritory of Serbia in purpose of forming Serbian
spatial reference system SRB_ETRS89. This is not
specialized geodynamic network with long continuous
interval of observation. However, since at the territory
of investigation (Fruška Gora, autonomous province
of Vojvodina) so far there was no study dealing with
horizontal movements, which were based on geodetic
measurements, realization of two times measured
network in the ten years interval (2002-2012), for the
first time correlation with the geological structures
became possible. The points of the passive reference
network are uniformly distributed over the region
under study with a spatial resolution of about
10  kilometers (Figure 1). In geographic coordinates
the research area is located between 44.7 and
45.4  degrees north latitude, and between 19.2 and
20.3 degrees east longitude. 

Measurements within the passive geodetic
reference network were realized using two-frequency
receivers made by Trimble manufacturer used in both
first and second campaign. To ensure maximum
consistency of observations, the same receivers and
antennas were used at each network station in all two
campaigns. The measuring results in the two
measuring epochs are the GNSS vectors, which are
measured by using the fast static method within closed
polygons, over approximately a ten-year interval,
where the analysis concerns the two-dimensional
component only. The time interval at all points is
within 90-120 minutes. The point disposition provides

deformation analysis can be found in the literature
(Setan and Singh, 2001; Velsink, 2015; Sušić et al.,
2015). 

Robust estimates are most intensively studied
methods in statistics, after publishing the pioneer
work of Huber in 1964 (Huber, 1964; Caspary, 2000;
Xu, 2005). In 1983 Chen published a robust method
Iterative Weighted Similarity Transformation (IWST)
at the Brunswick University in Canada (Chen, 1983;
Chrzanowski and Chen, 1990). In 1987 Caspary and
Borutta have given a detail explanation about three
robust methods namely Least Absolute Sum (LAS)
method, Danish and M-estimation (Huber). IWST and
LAS are based on the S transformation for the purpose
of detecting the movement trend of the points. The
robust estimation of deformation from observation
differences (REDOD and its generalization
GREDOD) is especially recommended when the
observation plan is completely the same for both
measurement epochs in order to keep constant
possible non-random errors for one geometric network
element in both epochs under control (Nowel and
Kamiński, 2014; Nowel, 2015). In the literature one
can find applications in deformation analyses of the
R-estimation (Duchnowski, 2009 and 2013), as well
as of the Msplit estimation (Wiśniewski, 2009;
Zienkiewicz, 2014; Zienkiewicz and Baryla, 2015;
Zienkiewicz et al., 2017). CDA methods are based on
the LS-estimation and robust methods are based on
the robust M-estimation. 

Chrzanowski and Chen are the first authors who
introduce the concepts of a geometric model based on
geodetic measurements only and of physical models
including the elasticity theory and solid-body
mechanics together with the geodetic data
(Chrzanowski and Chen, 1990). In 1981 Welsch
implemented a procedure based on the analysis of
finite elements and strain analysis founded on
geodetic observations. Under the influence of external
forces bodies suffer deformations, change their shapes
and volumes. Changes in the shape and volume, i.e.
deformations of a body, are determined on the basis of
displacing of every point of the body. Movements of
an arbitrary point are due to the movements of the
body treated as a rigid body (translation and rotation),
as well as to the pure body deformation. The
application of the finite-elements method for the strain
analysis is implemented after realisation of the
geodetic measurements and geodetic-network
adjustment for two or more epochs. The complete
information on the behaviour of an object exposed to
external forces is provided from the deformation
components such as translation, rotation and
distortion. Namely, the strain analysis serves for the
purpose of identifying distortion, i.e. of identifying
characteristic forms of terrain motions, such as the
compressive, extensive or transcurrent ones. The
modern interpretation of strain-model application in
geodynamic studies can be found in the following
literature (Talich, 2007; Hackl et al., 2009; Deniz and
Ozener, 2010; Bogusz et al., 2013; Araskiewicz et al.,
2016). 
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epochs aimed at eliminating gross and systematic
errors. In order to avoid the influence of different in
datum of both epochs on the global network
congruence test from two epochs, the displacements
and the corresponding variance covariance matrices
are transformed into the same datum of both epochs
by applying the S transformation. This study aimed to
analyse the coordinate differences between the
adjusted coordinates obtained from GPS observations
in 2002 and the adjusted coordinates obtained from
the GNSS observations in 2012 and to compute strain
accumulation of the corresponding area by finite
element model. 

a very good geometry as a prerequisite for
a successful application of the deformation analysis.
The realization of measurements and vector
processing are carried out by the Republic Geodetic
Authority of Serbia. The vector processing is done
within the closed polygon systems where only linearly
independent vectors are taken into account. The
quality of the measurements is verified if closing of
the polygons is under the limit for allowed deviations
of 1 ppm. The spatial coordinates differences
subjected to processing are the input parameters for
adjustment of measuring results by applying least
squares and deformation analysis. The first step is the
independent, free adjustment of both measuring

Fig. 1 Fruška Gora shown in the DEM of the Serbia area (dark frame); observations plan of GNSS 
vectors in passive geodetic network configuration (right); the faults separating significant 
neotectonic blocks and zones (Marović et al., 2007). 
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it is applied in a few steps. In the first step the 
homogeneity of measurement accuracy for two 
epochs is examined, where the a posteriori equality of 
the dispersion factors ߪො଴భଶ  and ߪො଴మଶ  from the two 
epochs, by using Fischer’s test, is examined. If the 
measurement accuracy is homogeneous, then the 
unified a posteriori dispersion factor is determined: 

ො଴ଶߪ  = ( ଵ݂ߪො଴భଶ + ଶ݂ߪො଴మଶ ) ݂⁄ , ݂ = ଵ݂ + ଶ݂            (1)
 

where ଵ݂ and ଶ݂ are the numbers of degrees of 
freedom in the preceding and current measurement 
epochs, ݂ is the number of degrees of freedom from 
both epochs. 

In the second step the network congruence in the 
two measuring epochs is examined (Pelzer, 1971; 
Sušić et al., 2015): 

 ܶ = መ௛ఙෝబమ܌መశ܌ۿመ೅܌ ௛,௙                                         (2)ܨ	~	
 

where ܌መ = ොଶܠ − ,ෝଵܠ	,ොଵ is the displacement vectorܠ ොଶܠ
is vector of adjusted coordinates in the preceding and 
current measurement epochs, respectively, ܌ۿመ ොభܠۿ= +  ොమ the cofactor matrices of unknown parametersܠۿ ොభandܠۿ ,ොమ the cofactor displacement matrixܠۿ
from the preceding and current measuring epochs, ℎ = ො଴ଶ the unified a posterioriߪ and (መ܌ۿ)݇݊ܽݎ
dispersion factor. If ܶ ≤  ଵିఈ,௛,௙, the network isܨ
congruent in the two epochs, otherwise the network is 
not congruent in the two epochs.  

When the network is not congruent in the two 
epochs, in the third step one examines the congruence 
of the points of the potential reference network. For 
this purpose one decomposes the displacement vector ܌መ and pseudo-inverse of the cofactor displacement 
matrix ܌ۿመା in the following way: 
መ܌  = ቈ܌መௌ܌መை቉ ܌ۿመା = መ܌۾ = ൤۾ௌௌ ைௌ۾ௌை۾ ைை൨            (3)۾

 

where the designation ܵ is referred to the potential 
reference points of the network, the designation ܱ to 
the points interpreting the object. The test statistics is 
(Pelzer, 1971; Sušić et al., 2015): 

 ܶ = መೄ௛ೄఙෝబమ܌ഥೄೄ۾መೄ೅܌ ௛ೄ,௙                               (4)ܨ	~

 

where we have ۾ഥ௦௦ = ௌௌ۾ − ைௌ and ℎௌ۾ைைିଵ۾ௌை۾ ܶ If .(ഥ௦௦۾)݇݊ܽݎ= ≤  ଵିఈ,௛ೄ,௙, the potential referenceܨ
points of the network are congruent in the time 
interval between the two epochs.    

If the potential reference points of the network 
are not congruent in two epochs (ܶ >  ଵିఈ,௛ೄ,௙), it isܨ
necessary to localise the unstable points of the 
potential reference network. The point-displacement 
vector for the potential reference network ܌መௌ and the 
corresponding matrix ۾ഥ௦௦ are decomposed in the 
following way: 

መௌ܌  = ቈ܌መி܌መ஻቉ ۾ഥௌௌ = ൤۾ிி ஻ி۾ி஻۾ ஻஻൨            (5)۾

3. DATA AND METHODS 

The projecting of a geodetic network for the
needs of deformation analysis includes considering
the type and size of the deformations which can be
detected through the analysis. The deformation
measurements can be subject to various error sources,
which are due to the imperfection of the equipment,
atmospheric conditions and others. In many cases, by
applying some of the well-known methods (Baarda,
1968; Pope, 1976) measurements subject to gross
errors are identified and eliminated, although
sometimes, in spite of the applied procedures,
a correct identification misses, which is reflected in
the objectivity of the deformation analysis procedure.
Namely, in order to make a clear distinction between
stochastic variations in the measured values and
a deformation it is natural to use the concept of
a minimal detectable value which can be "surely"
detected following the significance level chosen in the
present study (α = 0.05) and test power (1-β = 0.80; β
– type II error probability). In the present study we
use the following methods of deformation analysis:
Pelzer, Karlsruhe, robust methods and strain analysis.
By applying the mean success rate (MSR) the total
efficiency coefficient for the applied CDA and robust
methods, including different variants of the number of
unstable points is calculated. The study is aimed at
comparing the efficiency of deformation analysis
methods (MSR) based on the conventional approach
of congruence model and common adjustment for
both measuring epochs, methods based on the robust
M-estimation with additional calculations of the strain
analysis parameters from the finite elements. These
models are applied on the test example of Fruška
Gora in Serbia, where some geological and
geophysical examinations concerning recent tectonic
movements have been done, so that in the discussion
there is also a short part about the correlation of
independent multidisciplinary studies (Sušić et al.,
2016). The complete treatment is performed in the
specially projected software package MatGeo in the
framework of the Matlab programme, which has been
developed in the internal surroundings of the Faculty
of Technical Sciences in Novi Sad. For the needs of
the present study in this software algorithm of all
deformation analysis methods mentioned above are
implemented. For the purpose of controlling we carry
out an independent treatment of measurements in the
commercial software package Star*Net 8.1 by
applying the Least Squares method of indirect
adjustment with datum transformation in the solution
with a minimal trace of the variance-covariance
matrix for all points. The adjusted coordinates with
the corresponding variance-covariance matrices for
both measuring epochs are transformed into the same
datum. A review of theoretical models used in the
present study is given in the following text. 

 
3.1. PELZER’S METHOD 

The method is based on examination of the
congruence of the coordinates of the network points;
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where ܌ = ොଶܠ − ܌ۿ,ොଵ is the displacement vectorܠ = ොభܠۿ + ݂ ,ොమ is the cofactor displacement matrixܠۿ = ଵ݂ + ଶ݂ the unified number of degrees of freedom 
and ℎ =  .(܌ۿ)݇݊ܽݎ

If ܪ଴ holds, ܶ follows the central F-distribution. 
For an alternative hypothesis 

:௔ܪ  (܌)ܧ ≠ 0                                        (11)
 

the statistics ܶ is distributed according to the non-
central F-distribution with the non-centrality 
parameter: 
ߣ  = ఙబమ܌శ܌ۿ೅܌                                                      (12)
 

Now the test power is defined as the probability 1 −  ଴ atܪ to the rejection of ܌ which will lead ߚ
a level of significance ߙ. If a 1-dimensional test is 
performed and the size is chosen as ߙ	 = 	0.05 and the 
test power 1 − 	ߚ = 	0.80, ݂	 = 	2, a value of non-
centrality parameter in ߯ଶ(݂) is ߣ଴ = 32 (Aydin, 
2012). 

If the non-centrality parameter ߣ should be equal 
to the theoretical value ߣ଴ = ݂(ℎ, ,଴ߙ  ଴) in theߚ
previous term (Baarda, 1968), then one can write: 

܌ା܌ۿ்܌  = ଴                                        (13)ߣ଴ଶߪ
 

Since the displacement vector can be expressed as: 
܌  = (14)                                         ܏ܽ
 

where ܽ is a scalar to be determined and ܏ is the form 
vector, i.e. the relative magnitude of movements 
which is known. If expression in Eq. (14) is 
substituted in Eq. (13), the minimum value of the 
displacement which can be detected in the direction of 
a given vector ܏ can be obtained: 

 ܽ௠௜௡ = ଴ටߪ ఒబ܏೅܌ۿశ(15)                                       ܏

 

Further, based on expression in Eq. (14) one can 
determine the minimum deformation which can be 
detected in the direction of a given vector  ܏: 

௠௜௡܌  = ܽ௠௜௡(16)                           ܏
 

It is very important to determine the directions in 
which one will obtain the weakest estimate of 
unknown parameters. These directions are actually the 
directions of the largest axis of the confidence 
ellipsoid (ellipse). 

 
3.3. KARLSRUHE METHOD 

In the first step one performs the independent 
adjustment of the measured quantities for each epoch 
following the indirect adjustment The Karlsruhe 
method is based on the independent adjustment of 
individual measuring epochs and their common 
adjustment method. From every individual adjustment 
the quadratic form Ω௜ =  ,௜ is determined(ܞ۾்ܞ)
whereas the common quadratic form is obtained by 
adding the quadratic forms for the individual epochs 

where the designation ܨ is referred to the points
regarded as conditionally stable and the ܤ one to the
points regarded as conditionally unstable. For each
point one determines the average non-fitting (Pelzer,
1971; Sušić et al., 2015): 

௜ଶߠ  = ಳ̅௛ಳ܌ಳಳ۾ಳ̅೅܌ , (݅ = 1,2, … , ݇)                                 (6)
 

where we have ̅܌஻ = መ஻܌ + መி and ℎ஻܌஻ி۾஻஻ିଵ۾ -The point with maximum average non .(஻஻۾)݇݊ܽݎ=
fitting ߠ௜ଶ is regarded as unstable and as such it is
omitted from the set of the potential reference points.
For the rest of (݇ − 1) potential reference network
points the congruence examining procedure is
repeated by carrying out the second and third steps
until for a network part the congruence hypothesis is
accepted.  

In the fourth step one examines the congruence
of points on the object. The displacement vector ܌መ of
the pseudo-inverse cofactor displacement matrix ܌ۿመା
is decomposed in the following way: 

መ܌  = ቈ܌መி܌መை቉ ܌ۿመା = መ܌۾ = ൤۾ிி ைி۾ிை۾ ைை൨            (7)۾
 

where the designation ܨ is referred to the stable
network points, the ܱ one to the unstable points and
the points on the object. The test statistics is (Pelzer,
1971; Sušić et al., 2015): 

 ܶ = ೀ̅௛ೀఙෝబమ܌ೀೀ۾ೀ̅೅܌ ௛ೀ,௙                            (8)ܨ	~	

where we have ̅܌ை = መை܌ + መி and ℎை܌ைி۾ைைିଵ۾ ܶ  If .(ைை۾)݇݊ܽݎ= ≤ ଵିఈ,௛ೀ,௙, the points on the objectܨ
are congruent within the time interval between the
two epochs. 
 
3.2. MINIMAL DETECTABLE DEFORMATION 

For the geodetic control networks, which are
projected, to determine displacements of points, with
defined plan measurements and a priori standard ߪ଴,
level of significance ߙ and power of test 1 − it is ,ߚ
natural to use the concept of the minimal detectable
bias to evaluate the type and size of deformation
which can be detected by the analysis. To establish
a measure for the quality of the monitoring network,
the sensitivity analysis is established (Pelzer, 1971;
Aydin, 2012). In the context of deformation analysis,
we shall talk about the minimal detectable
deformation (MDD) (Prószyński, 2010; Velsink,
2015). 

From a separate adjustment, one obtains the
parameter estimates ܠොଵ and ܠොଶ and their cofactor
matrices, ܠۿොభ and ܠۿොమ. The global congruence test of
the null hypothesis: 

:଴ܪ  (܌)ܧ = 0                                          (9)
 

is given by the test statistics (Pelzer, 1971): 
 |ܶுబ = ௛ఙෝబమ܌శ܌ۿ೅܌ ቚுబ ௛,௙                                       (10)ܨ	~
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௜ܶ = መ೔௛೔ఙෝబమ܌መ೔షభ܌ۿመ೔೅܌ ~ ଵିఈ,௛೔,௕                          (20)ܨ
 

where: ܌መ௜ = መ೔܌ۿ ,ො is the displacement vectorܠ۰் ۰்		ො۰ cofactor displacement matrix,ܠۿ۰்= =[0 … −۷௜… ۷௜… 0] where ۷௜ is the identity 
matrix, ܠො் = ො்ܢ] ොଵ்ܠ ොଶ்ܠ ] is adjusted coordinates 
vector from the joint adjustment of both epochs, ߪො଴ଶ = (ܾଵߪො଴భଶ + ܾଶߪො଴మଶ )/(ܾଵ + ܾଶ) the a posteriori 
unified dispersion factor and ℎ௜ = If ௜ܶ .(መ೔܌ۿ)݇݊ܽݎ ≤  ଵିఈ,௛೔,௕, the point is stable, otherwise it isܨ
unstable. 
 
3.4. ROBUST METHODS 

Robust methods are used in estimating the trend 
of point displacing and have a wide application in 
deformation detection. The best known methods from 
this group are the IWST method, which satisfies the 
condition of minimum sum of displacement 
components module (Chen, 1983; Setan and Singh,
2001), which differs only by weight function (L1-
norm function for the displacement vector 
components, L1-norm function for the displacement 
lengths and Huber function for the displacement 
vector components (Caspary and Borutta, 1987; Setan 
and Singh, 2001, Nowel and Kamiński, 2014). Robust 
methods are based on the S transformation (Helmert’s 
similarity transformation): 

መ(௞)܌  = መ(௞)܌ۿ܌(௞)܁ = (௞ାଵ)܅்((௞)܁)܌ۿ(௞)܁ = ݀݅ܽ݃(… , ௜߱(௞ାଵ), … )ൢ௞ୀଵ,ଶ,…          (21)

 

where	܌ = ො૛ܠ − ܌ۿ ,is the displacement vector	ො૚ܠ = ො૚ܠۿ) + (௞)܁ ,ො૛) cofactor displacement matrixܠۿ = ۷ −  S transformation (௞)܅ଵ۶்ି(۶(௞)܅۶்)۶
matrix, ۷ unit matrix, ۶ matrix of datum conditions 
and ܅ weight matrix. For the purpose of forming the 
weight matrix ܅ any weight function from the robust 
estimates group M can be used. In the first iteration 
(݇ = 1) the weight matrix is treated as the unit one 
(௞ୀଵ)܅) = ۷). 

For 2D networks, in the subsequent iterations the 
weights are formed following the expressions: 

Ω଴ = ∑Ω௜. The total number of degrees of freedom ܾ
is obtained by adding the numbers of degrees of
freedom ܾ௜ from the adjustment of the individual
epochs. 

In the second step the common adjustment for
both measuring epochs is done, where the vector of
unknown coordinates ܠ is decomposed in the 
following way: 

்ܠ  = ்ܢ] ଵ்ܠ ଶ்]                          (17)ܠ
 

where ܢ is the subvector of the points which are
assumed to be stable, whereas ܠଵ	and	ܠଶ are the 
subvectors of the points which are assumed to be
unstable. The quadratic form Ω௭ obtained from the
common adjustment contains information about the 
measurement errors and displacement of the unstable
points. The quadratic form Ω୦	can be presented in the
following way: 

 Ω୦ = Ω୸ − Ω଴                                        (18)
 

For the purpose of stability examination for
conditionally stable network points one forms the test
statistics (Heck, 1983; Sušić et al., 2015): 

 ܶ = ஐ౞/௙ஐబ/௕ ଵିఈ,௙,௕                          (19)ܨ	~	
 

where ݂ = (݇ − ଴݌݊(1 − ݀, ݇ number of epochs, ݊
dimension of geodetic network, ݌଴ number of 
conditionally stable points and ݀ rank defect of the
design matrix ۯ. If ܶ ≤ ଵିఈ,௙,௕, then the set ofܨ
conditionally stable points contains no unstable
points. 

When in the set of conditionally stable points 
there are unstable points (ܶ > ଵିఈ,௙,௕), it is necessaryܨ
to indicate such points. To this end common
adjustments are repeated where from each of them
one conditionally stable point is successively omitted.
The adjustment for which the quadratic form is 
minimal indicates that the point omitted in it should
be regarded as unstable. This point is definitively
omitted from the set of conditionally stable points and
the whole procedure is repeated without it. The
procedure is iteratively repeated until the condition ܶ ≤  .ଵିఈ,௙,௕ is satisfiedܨ

The deformation localisation is carried out for
every point, the test statistics (20) is (Heck, 1983;
Sušić et al., 2015): 

௜߱(௞ାଵ) = 1 ට൫ መ݀௫೔(௞)൯ଶ + ൫ መ݀௬೔(௞)൯ଶൗ   L1-norm for the displacement lengths        (22)

௜߱(௞ାଵ) = 1/ห መ݀௜(௞)ห   L1-norm for the displacement vector components       (23)
 

In the course of iterative procedure from Eq. (21) some values ݀௜(௞) (or ݀௫೔(௞), ݀௬೔(௞)) can become close to zero, 
causing in this way a numerical instability in the weight determination. For this reason in practice, expressions in
Eqs. (22) and (23) are modified in the following way: 

 

௜߱(௞ାଵ) = 1/(ට൫ መ݀௫೔(௞)൯ଶ + ൫ መ݀௬೔(௞)൯ଶ + ܿ) L1-norm for the displacement lengths        (24)

௜߱(௞ାଵ) = 1/(ห መ݀௜(௞)ห + ܿ)   L1-norm for the displacement vector component                    (25)
 

where ܿ is the tolerance value (for instance 0.0001m). Huber’s weight function has the following form: 
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2D networks in simulating magnitudes of the 
displacement vectors it is not suitable to use 
confidence ellipses, because the radius magnitude of 
a  confidence ellipse is not constant and azimuth 
dependent (Nowel, 2016a). The circle the area of 
which is equal to that of confidence ellipse is very 
suitable in simulating the magnitudes of point 
displacements. The radius of the corresponding 
confidence circle is given as ݎ௜ = √ܾܽ, where ܽ and ܾ
are the semiaxes major and minor of the confidence 
ellipse, respectively. The formulae yielding the 
elements of confidence ellipses can be found in 
(Hekimoglu et al., 2010; Kamiński and Nowel, 2013). 
In order to protect the displacement magnitudes 
almost completely from the stochastic effect influence 
the significance level of confidence ellipses should be 
low (Hekimoglu et al., 2010; Nowel, 2016a). The 
magnitudes of the displacement vectors for the points 
take the values from an interval [ݎ௜,  ], where l is the	௜ݎ݈
value defining the upper interval limit (݈ > 1). The 
azimuths of the simulated displacement vectors take 
the values from an interval [0,  In practice the .[ߨ2
deformation measurements are subject to an influence 
of the random errors so that it is necessary to simulate 
the presence of the latter ones. On the basis of 
simulated random errors and displacement vectors the 
simulated observations for the zero and control 
epochs are formed in the following way:          

ଵ௢௕௦ܔ   = ܔ + ଶ௢௕௦ܔ ,ଵ܍ = ܔ + ଶ܍ + (28)                        ܌ۯ
 

where ܔ is the vector of theoretical observations (it 
can be determined on the basis of approximate point 
coordinates), ܍ଵ and ܍ଶ are the vectors of simulated 
measuring errors in the zero and control measurement 
epochs, ۯ design matrix and ܌ the vector of simulated 
displacements. In order to achieve a reliability 
examination concerning the deformation analysis 
method as efficient as possible, it is necessary to form 
independently a large number of sets of simulated 
observations according to Eq. (28). The deformation 
analysis, by applying an adequate method, is carried 
out for every set of simulated observations. Once all 
points at which the displacements are simulated are 
identified as unstable, the procedure is regarded as 
successful. The MSR criterion can be represented by 
the following expression (Nowel, 2016a): 

(ௗ݊)ܴܵܯ  = ܵ ܰ⁄                          (29)
 

where ݊ௗ is the number of points at which the 
displacements are simulated, ܵ the number of sets of 
simulated observations for which the deformation 
analysis procedure proves successful and ܰ the total 
number of simulated observation sets. The mean 
success rate is given as the number of successes 
divided by the number of experiments (Hekimoglu 
and Koch, 1999; Hekimoglu et al., 2010; Nowel, 
2016a). In the reliability examination procedure 
concerning a deformation analysis method it is 
necessary to determine the MSR coefficient for 
different values of ݊ௗ, in order to determine the total 

௜߱(௞ାଵ) = ൝ 1 for	ห መ݀௜(௞)ห ≤ ௜ݍ௜ݍ ห መ݀௜(௞)ห⁄ otherwise                     (26)

 

where ݍ௜ = ොௗ෠೔ is the tuning constant, ܽ a suitableߪܽ
factor (for instance, ܽ = 2) and ߪොௗ෠೔ is the standard
deviation estimate for the corresponding component
of the displacement vector መ݀௜ (ߪොௗ෠೤೔  or ߪොௗ෠ೣ೔). 

It is important to say that only the points of the
potential reference network can be included in
optimization process given in Eq. (21), then the
weights of the points on the object must be equal to
zero. Iterative procedure given in Eq. (21) is
continued until the module of the differences between
successively transformed displacement vectorsห܌መ(௞ାଵ) − መ(௞)ห are smaller than the adopted tolerance܌
value ܿ. The displacement vector and its
corresponding cofactor matrix from the final iteration
are used for the purpose of examining the stability of
the network points. 

The examination of point stability is done by
applying the single-point test: 

 

௜ܶ = መ೔(ೖశభ)௛೔ఙෝబమ܌షభ(መ೔(ೖశభ)܌ۿ)೅(መ೔(ೖశభ)܌) ଵିఈ,௛೔,௙          (27)ܨ	~	
 

where: ܌መ௜ is the displacement vector, ܌ۿመ೔ cofactor
displacement matrix, ݂ unified number of degrees of
freedom for all measurement epochs, ℎ௜ = (መ೔܌ۿ)݇݊ܽݎ
and ߪො଴ଶ unified a posteriori dispersion factor. If௜ܶ ≤ ) ଵିఈ,௛೔,௙, the point is stable, otherwiseܨ ௜ܶ  .ଵିఈ,௛೔,௙) the point is unstableܨ<

Detailed explanations concerning the robust
methods can be found in contributions of the
following authors: (Chen, 1983; Caspary and Borutta,
1987; Setan and Singh, 2001; Nowel and Kamiński,
2014; Nowel, 2015, 2016a, 2016b). 

 
3.5. MEAN SUCCESS RATE 

A deformation analysis procedure is regarded as
efficient if all actually displaced points are identified
as unstable by applying the corresponding
deformation analysis methods. In order to measure the
efficiency of CDA and robust methods, it is necessary
to be pre-informed about point displacement.
Obtaining such an information with certainty in
practice is not possible, but point displacement can be
simulated. The application efficiency in the case of
different methods can be measured by means of the
mean success rate (MSR) factor (Hekimoglu et al.,
2010; Nowel, 2016a). MSR is a very good empirical
efficiency measure for the deformation analysis
methods, which is calculated on the basis of a large
number of simulated observation sets (zero and
control measuring epochs). The simulations are done
by applying the Monte Carlo method.      

In generating simulated measurements of
displacements of geodetic-network points the
directions (for 2D and 3D networks) and magnitudes
of the displacement vectors are chosen at random. For



Z. Sušić et al.                                                                           348 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆	= ௬௬ߝ + ଵߛ௫௫  total dilatation                          (32)ߝ = ௬௬ߝ − ଶߛ௫௫  pure shear stress                          (33)ߝ = ߛ௫௬  engineering shear stress                         (34)ߝ2 = ඥߛଵଶ + ଶଶ  total shear stress                   (35)݁ଵߛ = ଵଶ (∆ + maximum strain axis                   (36)݁ଶ  (ߛ = ଵଶ (∆ − ߮minimum strain axis                         (37)  (ߛ = ଵଶ arctan(ߛଶ ⁄ଵߛ ) azimuth of maximum strain axis               (38)߰ = ߮ + ଵସ maximum shear stress direction             (39)  ߨ
 

For the needs of the experimental studies in the present work and calculating of the strain parameters we 
apply the method based on point displacements, the so called X-mehtod (Welsch, 1983). The finite elements 
method is applied after observations and adjusting the geodetic network in two epochs. The hypotheses about 
accuracy homogeneity and network congruence from two epochs are realised in the same way as in the case of
Pelzer’s method, before dividing the network into finite elements (Welsch, 1983). 

 
4. RESULTS  

The relative geodetic network whereby the territory of Fruška Gora is covered consists of 57 points. The
disposition of the network points is presented in Figure 2. After realising the zero measurement epoch network

۳ = ቀడ܌డܠቁ = ቌడೣ܌డ௫ డೣ܌డ௬డ܌೤డ௫ డ܌೤డ௬ ቍ = ቀ݁௫௫ ݁௫௬݁௬௫ ݁௬௬ቁ 

          deformation tensor.
 

The asymmetric matrix E is decomposed into the 
sum of the symmetric matrix ઽ and oblique-symmetric 
matrix ૑: 

 ۳ = ଵଶ (۳ + ۳்) + ଵଶ (۳ − ۳்) = ઽ + ૑           (31)
 
 

where ઽ is the strain tensor and ૑ rotation matrix. The 
diagonal  elements  of the matrix ઽ, ߝ௫௫ and ߝ௬௬ are 
the strain parameters along the coordinate axes. The 
doubled  values  of  the non-diagonal  elements  of
the matrix ઽ, 2ߝ௫௬ =  ௬௫ are equivalent to theߝ2
angular distortion of the right angle which was 
originally parallel to the coordinate system axes. The 
rotation of the rigid body is given by the angle ߱௫௬. 

Expression from Eq. (30) is strictly valid only in 
the differential neighbourhood of the point. If the 
application of the deformation tensor ۳ is aimed 
towards the whole domain of the study, it is necessary 
to assume the homogeneity of the deformation. This 
restriction makes the strain analysis unsuitable in 
many deformation analysis problems. However, in 
practice the problem can be solved by dividing the 
network into the finite elements. Then the 
homogeneity  condition is restricted to the inside of 
the finite element. In order to determine the strain 
parameters three points are necessary. Therefore, the 
network can be decomposed into triangle elements. 

The results of the strain analysis can be also 
graphically interpreted. To this end one from the basic 
strain parameters (ߝ௫௫, ,௫௬ߝ  ௬௬) determines theߝ
additional ones (Talich, 2007): 

 

model efficiency. A more detailed explanation of
MRS can be found in the literature (Hekimoglu and
Koch, 1999; Hekimoglu and Erenoglu, 2007;
Erenoglu and Hekimoglu, 2010; Nowel, 2016a). 
 
3.6. STRAIN ANALYSIS 

By conventional models of deformation analysis
a discrete character information is obtained, such as
displacements or velocities of the control points,
whereas the deformation remains to be a spatially
continuous phenomenon. A deformation, freely
interpreted, is a change of the size and shape of
a  body and it is historically related to the studying
o  f deformable material bodies in the framework of
elasticity theory, and later in continuum mechanics.
The principles of strain analysis are applicable if the
observed region or object is covered by the
deformation model (geodetic network) which can be
observed as a continuum deformation under load
(Welsch, 1983; Dermanis and Livieratos, 1983;
Caspary, 2000). In geodesy it is most frequently
applied for the needs of interpreting the deformations
of the Earth’s crust where all deformation components
are determined (translation, rotation and distortion). In
this way a more complete information about the
behaviour of the object under study is obtained, which
makes the strain analysis suitable in the procedures of
deformation monitoring, analysis and interpretation. 

When a two-dimensional network is the subject,
in the immediate neighbourhood of the points
deformations can be modelled by the following
expression: 

܌  = ܜ۶ + (30)                                        ܠ܌۳
 

where: ۶ܜ  is rigid body displacement 
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calculated, as well as the corresponding standard 
deviation ߪௗ೘೔೙. The obtained results are given in 
Table 1. 

In addition to Pelzer’s and Karlsruhe methods, 
the three robust methods which differ only by weight 
function are also applied: L1-norm function for the 
displacement vector components (L1-norm I), L1-
norm function for the displacement lengths (L1-norm 
II) and Huber function for the displacement vector 
components. In the case of the robust methods 
iterative procedure from Eq. (21) is carried out until 
the module of the difference of successively 
transformed displacement vectors are under the given 
tolerance value. The tolerance value assumed here is ܿ = 0.1	mm. In this case all network points are 
included in optimisation process given in Eq. (21) 
(relative network). The total number of iterations for 
L1-norm I is 7, for L1-norm II one 5, and for Huber’s 
one 4. The displacement vector and the corresponding 
cofactor matrix from the last iteration are used for the 
needs of the stability examination for the network 
points. The stability examination for the network 
points, i. e. the identification of significantly displaced 
points, is carried out according to expression from Eq. 
(27). The displacement vectors are identified by 
applying the robust methods as well as using the 
status information (stable or unstable); this can be 
seen in Table 2. The displacement vectors obtained by 
applying CDA and robust methods with absolute and 
relative confidence ellipses (ߙ	 = 	0.05) are presented 
in Figure 2.  

It is important to mention that, in addition to the 
real results of the measurements performed on the 
example of Fruška Gora (Tables 1 and 2), the results 
of the Monte Carlo simulations aimed at efficiency 
establishing for the applied deformation analysis 
methods are also given (Table 3). The conception of 
the MSR efficiency criteria provides insight in the 
reliability of the deformation analysis methods 
applied to the test example of Fruška Gora. In order to 
examine the efficiency of CDA and robust methods 
applied here we analyses different variants from the 
standpoint of the number of displaced points ݊ௗ. For 
each variant 5000 different observation sets (zero and 
control epochs) are simulated according to expression 
given in Eq. (28). The random measuring errors obey 
the normal distribution with standard deviations of the 
performed measurements in the framework of the zero 
and control epochs. The magnitudes of the simulated 
displacement vectors are within an interval from ݎ to 3ݎ, where ݎ = √ܾܽ, ܽ the semimajor axis of the 
confidence ellipse and ܾ its semiminor axis, whereas 
the azimuths of the simulated displacement vectors 
are between 0 and 2ߨ. The displacement vectors and 
the random measuring errors are determined by 
applying the uniform pseudo-random error and 
normal pseudo-random error generators, in a Matlab
programme. The MSR coefficients are determined 
following expression given in Eq. (29), for each 
method in the framework of all considered variants. 

points 421, 428, 432, 441 and 459 were destroyed.
When the control measurement epoch was realised,
the restabilisation of the destroyed points took place.
These points are included in the adjusting process of
the zero and control, measurements epochs in order to
preserve the network geometry. However, these points
are not treated in the deformation analysis procedure.
The horizontal displacements of the relative network
points, calculated, as changes of coordinates acquired
from GPS measurements are determined in a local,
topocentric system defined by minimal constraints of
network. 

After confirming the hypothesis about a homo-
geneous measurement accuracy between the two
epochs the deformation analysis is carried out
following Pelzer’s method, where a network in
congruence between the two epochs of measuring is
established (ܶ = 10.446	 > ଴.ଽହ,ଵ଴ଶ,ଵ଼ସܨ = 1.325).
Earlier, we must transform, using S-transformation,
the coordinates from both epochs to minimum trace
datum defined on all the tested points. Only now we
can carry out the single point displacement analysis
by Pelzer method. In order to identify significantly
displaced points a localisation procedure for unstable
points is carried out following expressions in Eqs. (5)
and (6). On a total of 20 points significant
displacements are identified, whereas the rest of the
points are identified as non-displaced (stable) between
the two epochs. In Table 1 the estimated displacement
vectors are given for each point; this is followed by
information about the point status (stable or unstable).
For the needs of the deformation analysis following
the  Karlsruhe  method  a  common  adjustment  of
the epoch measurements is done. By applying the
Karlsruhe method the network incongruence from the
two epochs is also established, on the basis of
expression in Eq. (19) (ܶ = 10.572	 > ଴.ଽହ,ଵ଴ଶ,ଵ଼ସܨ =1.325). Afterwards a localisation procedure for
significantly displaced network points is carried out.
The total contains 45 iterations, in the case of points
424, 427, 450, 451, 461, 463 and 464 the congruence
on the basis of expression in Eq. (19) is confirmed
(ܶ = 1.184	 < ଴.ଽହ,ଵଶ,ଵ଼ସܨ = 1.805). These points are
declared stable and in the further procedure they are
regarded as reference points. For the rest of the points
the stability examination is carried out following
expression given in Eq. (20). The status information
(stable or unstable) and the estimated displacement
vectors are given in Table 1.  

The most unfavourable case of congruence
examination for a point concerns the direction of the
semimajor axis of the confidence ellipse because in
that direction the determination error for a point
position is maximal. On the other hand, the most
favourable case of congruence examination for a point
concerns the direction of the semiminor axis of the
confidence ellipse. On the basis of expressions from
Eqs. (15) and (16), for each network point the value
for the minimal detectable deformation ݀௠௜௡ along
the semimajor axis of the confidence ellipse is
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Table 1 The results of CDA methods of deformation analysis (ߙ = 0.05, 1 − 	ߚ = 	0.80). 
 

Point 
Pelzer Karlsruhe MDD 

Point 
Pelzer Karlsruhe MDD መ݀ [mm] Stable መ݀ [mm] Stable ݀௠ [mm] ߪௗ೘ [mm] መ݀ [mm] Stable መ݀ [mm] Stable ݀௠ [mm] ߪௗ೘ [mm]

393 10.1 Yes 9.7 Yes 41.4 7.3 440 5.2 Yes 2.0 Yes 36.1 6.4 
394 17.8 No 17.5 No 36.6 6.5 442 7.3 Yes 9.0 Yes 39.0 6.9 
395 18.1 No 16.1 No 36.9 6.5 443 5.2 Yes 1.7 Yes 39.1 6.9 
396 10.3 No 14.0 No 35.8 6.3 444 42.9 No 43.3 No 39.4 7.0 
397 21.8 No 18.0 No 46.7 8.3 445 1.5 Yes 1.4 Yes 35.8 6.3 
416 6.0 Yes 4.3 Yes 38.0 6.7 446 15.3 No 11.7 No 38.7 6.9 
417 21.8 No 17.4 No 41.7 7.4 447 8.2 Yes 9.0 Yes 45.0 8.0 
418 7.4 Yes 8.7 Yes 53.6 9.5 448 3.9 Yes 1.6 Yes 39.5 7.0 
419 6.5 Yes 5.5 Yes 56.5 10.0 449 3.0 Yes 4.9 Yes 36.4 6.4 
420 7.0 Yes 8.3 Yes 41.9 7.4 450 10.9 No -- Yes 50.5 9.0 
422 0.6 Yes 6.2 Yes 40.2 7.1 451 11.4 No -- Yes 42.2 7.5 
423 7.2 Yes 11.2 No 45.7 8.1 452 8.1 No 5.9 Yes 40.3 7.1 
424 5.8 Yes -- Yes 45.7 8.1 453 6.0 Yes 4.5 Yes 40.6 7.2 
425 5.1 Yes 4.4 Yes 37.2 6.6 454 52.9 No 50.9 No 35.1 6.2 
426 3.9 Yes 4.8 Yes 34.6 6.1 455 6.7 Yes 7.8 Yes 35.4 6.3 
427 0.4 Yes -- Yes 34.9 6.2 456 49.9 No 53.9 No 36.3 6.4 
429 10.1 Yes 12.3 Yes 34.3 6.1 457 26.0 No 21.8 No 42.2 7.5 
430 3.4 Yes 3.5 Yes 33.9 6.0 458 28.1 No 29.0 No 45.8 8.1 
431 10.5 Yes 13.0 Yes 38.7 6.9 460 7.9 Yes 10.7 No 44.5 7.9 
433 11.4 Yes 12.5 Yes 44.4 7.8 461 1.6 Yes -- Yes 47.4 8.4 
434 16.0 No 15.5 No 36.4 6.4 462 38.0 No 37.3 No 53.1 9.4 
435 11.1 No 8.4 Yes 34.5 6.1 463 9.3 Yes -- Yes 46.1 8.2 
436 3.2 Yes 1.7 Yes 33.8 6.0 464 9.9 No -- Yes 48.8 8.6 
437 8.2 Yes 9.8 Yes 36.6 6.5 465 1.9 Yes 11.8 Yes 64.0 11.3 
438 7.2 Yes 3.5 Yes 39.4 7.0 466 23.6 No 28.7 No 63.9 11.3 
439 9.6 Yes 11.6 Yes 36.3 6.4 467 27.1 No 44.4 No 76.8 13.6 

 

network in the environment of the Fruška Gora 
mountain (Province of Vojvodina in the northern part 
of Serbia). Fruška Gora is, in addition to the Vršac 
Mountains, the only horst in the south-eastern part of 
the Pannonian Basin, the character of which is largely 
flat. In the tectonic sense the Pannonian Basin lies 
within the Eurasian Plate in the northern part of the 
boundary zone under the influence of the convergence 
between the African and Eurasian Plates and the 
Adriatic Block between them. The recent earthquake 
on the area of Italy is in favor of numerous studies 
asserting that the Adriatic Block appears as the main 
compression transmitter for the African and Eurasian 
tectonic plates, which to a large extent affects the 
tectonics of the Central European Region, especially 
that of the Pannonian Basin. In the Fruška Gora area, 
the exhumation of the metamorphic core of the 
mountains occurred along the major faults with E-W 
orientation (Toljić et al., 2013; Sušić et al., 2016). The 
present results are in favour of significant point 
displacements on the northwestern and northeastern 
slopes of Fruška Gora, which are detected by applying 
deformation analysis methods (CDA and robust 
methods). All calculations are carried out with 
standard values ߙ = 0.05 and  1	– ߚ	 = 0.80. In this 
case the risk is to declare unstable 5 % of the stable 
points (type I error) and 20 % of the unstable points to 

The significance level value was set to  ߙ = 0.001.
The total efficiency of individual methods is also
calculated. The obtained results are given in Table 3. 

For the purpose of determining the strain
parameters the network is divided into finite elements
of triangle form wherein the Delaunay triangulation
method is applied. For each triangle the basic strain
parameters (ߝ௫௫, ߝ௫௬ and ߝ௬௬) are determined on the
basis of the point displacements between the two
epochs. The additional strain parameters are
calculated from the basic ones following expressions
given in Eqs. (32) to (39). The graphical presentation
of the additional strain parameters is given in
Figure 3. The total dilatation ∆ and the total shear
strain ߛ are illustrated by circle outsides, the
minimum and maximum strains ݁ଵ and ݁ଶ by two
mutually perpendicular lines. The extension is given
in red, the compression in blue and the shear stress in
green. In Table 4 are given the significant parameters
which concern the strain accumulation for each finite
element (triangle). 

 
5. DISCUSSION AND CONCLUSIONS 

The experimental example, used here for the
purpose of analysing the applications of the CDA
methods, robust statistical methods and strain
analysis, concerns the passive geodetic reference



351           GEOMETRIC DEFORMATION ANALYSIS IN FREE GEODETIC NETWORKS: CASE STUDY … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 The results of Robust methods of deformation analysis. 

Point 
L1-norm I L1-norm II Huber 

Point 
L1-norm I L1-norm II Huber መ݀ [mm] Stable መ݀ [mm] Stable መ݀ [mm] Stable መ݀ [mm] Stable መ݀ [mm] Stable መ݀ [mm] Stable 

393 9.3 Yes 9.3 Yes 8.1 Yes 440 2.2 Yes 2.1 Yes 2.2 Yes 
394 17.1 No 17.0 No 16.0 No 442 5.9 Yes 5.8 Yes 4.8 Yes 
395 14.7 No 14.7 No 13.9 No 443 3.4 Yes 3.5 Yes 4.3 Yes 
396 16.2 No 16.1 No 16.2 No 444 43.1 No 43.2 No 42.4 No 
397 19.4 No 19.4 No 19.9 No 445 1.0 Yes 1.0 Yes 2.1 Yes 
416 4.3 Yes 4.3 Yes 5.4 Yes 446 15.4 No 15.4 No 15.4 No 
417 16.6 No 16.5 No 15.6 No 447 13.1 Yes 13.1 No 12.6 Yes 
418 11.0 Yes 11.1 Yes 11.5 Yes 448 7.2 Yes 7.1 Yes 7.2 Yes 
419 10.5 Yes 10.5 Yes 10.0 Yes 449 0.7 Yes 0.7 Yes 1.7 Yes 
420 7.9 Yes 7.9 Yes 8.9 Yes 450 14.4 No 14.5 No 14.7 No 
422 10.1 Yes 10.2 Yes 10.2 Yes 451 9.7 Yes 9.8 Yes 10.4 Yes 
423 16.5 No 16.6 No 16.4 No 452 11.5 Yes 11.6 Yes 11.8 No 
424 8.2 Yes 8.2 Yes 7.6 Yes 453 4.1 Yes 4.1 Yes 3.2 Yes 
425 8.8 Yes 8.9 Yes 8.9 Yes 454 53.5 No 53.4 No 53.4 No 
426 4.3 Yes 4.4 Yes 5.5 Yes 455 5.8 Yes 5.8 Yes 6.9 Yes 
427 2.7 Yes 2.8 Yes 3.8 Yes 456 54.8 No 54.8 No 55.9 No 
429 11.0 Yes 11.0 Yes 9.9 Yes 457 30.5 No 30.4 No 30.7 No 
430 5.1 Yes 5.0 Yes 4.4 Yes 458 19.6 No 19.5 No 19.7 No 
431 13.9 No 13.8 Yes 12.8 Yes 460 9.3 Yes 9.2 Yes 9.1 Yes 
433 8.8 Yes 8.8 Yes 9.9 Yes 461 3.8 Yes 3.7 Yes 4.0 Yes 
434 15.4 Yes 15.4 Yes 14.3 Yes 462 42.7 No 42.6 No 43.4 No 
435 11.2 Yes 11.2 Yes 11.0 No 463 10.6 Yes 10.6 Yes 10.6 Yes 
436 3.4 Yes 3.4 Yes 4.5 Yes 464 14.4 No 14.3 No 14.0 No 
437 8.9 Yes 8.9 Yes 9.0 Yes 465 0.4 Yes 0.5 Yes 1.6 Yes 
438 1.5 Yes 1.6 Yes 2.6 Yes 466 22.8 Yes 22.8 Yes 21.8 Yes 
439 9.1 Yes 9.1 Yes 8.2 Yes 467 33.1 No 33.1 No 33.0 No 

Table 3 The results of MSR calculations (5000 simulation). 

Method 
 Overall [%](ௗ݊)ࡾࡿࡹ

efficacy 
[%] Number of displaced points ݊ௗ 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 9.0 12.0 15.0 18.0 21.0 

Pelzer 99.9 58.0 74.9 75.1 74.3 70.8 69.4 65.4 61.7 56.4 53.4 48.5 67.3 

Karlsruhe 100.0 88.6 78.8 75.4 74.1 70.8 69.2 64.4 59.3 52.4 48.4 41.5 68.6 

L1 norm I 98.3 73.8 54.8 47.4 37.4 33.3 25.3 15.7 8.3 5.3 1.9 2.1 33.6 

L1 norm II 94.2 74.6 59.9 53.1 48.0 40.9 36.3 24.8 17.2 12.0 8.5 6.1 39.6 

Huber 92.5 74.0 60.1 53.5 48.4 42.2 37.8 26.6 18.6 14.0 9.9 7.3 40.4 

 

declare stable (type II error). The results are presented
in Tables 1 and 2 and in Figure 2. Thus here we have
displacements the magnitude of which exceeds the
intensity of the smallest displacement that can be
”surely” detected (݀௠௜௡, Table 1). The average value
of the minimal detectable deformation along the
semimajor axis is equal to 42.3 mm, with an estimated
standard deviation of displacement of 7.5 mm. The
average of the minimal detectable deformation along
the semiminor axis is equal to 26.5 mm, with an
estimated standard deviation of displacement of
4.7 mm. The results for the CDA methods (Pelzer’s
and Karsruhe) show differences at some points. By
applying Pelzer's method 20 unstable points are
identified, whereas by applying the Karlsruhe one 17
unstable points are identified, just as for the robust

methods (L1-nom function for the displacement 
vector components and L1-nom function for the 
displacement lengths). On the basis of applying the 
Huber function for the displacement vector 
components 18 unstable points are identified. 

The MSR coefficients showing the total 
efficiency of the applied methods are given in 
Table 3. For the number of displaced points ݊ௗ = 0, 
the methods which have the best MSR are Karlsruhe 
(100.0 %) and Pelzer (99.9 %), to be followed byL1-
norm I (98.3 %), L1-norm II (94.2 %) and Huber 
(92.5 %). As the number of displaced points 
increases, MSR decreases, especially in the case of 
the robust methods. In the cases when the number of 
displaced points is 21, the CDA methods Pelzer 
(48.5 %) and Karlsruhe (41.5 %) have very close 
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Table 4 The results of strain analysis. 
 

Finite element ߝ௫௫[μs] ߝ௫௬[μs] ߝ௬௬[μs] ߂[μs] ߛ[μs] ݁ଵ[μs] ݁ଶ[μs] ߮[°] ߰[°] 
8 3.03 -1.69 0.28 3.30 4.35 3.83 -0.53 154.58 199.58 
9 4.24 -2.89 6.10 10.35 6.08 8.21 2.14 126.08 171.08 

11 -3.75 0.99 -0.49 -4.24 3.82 -0.21 -4.03 74.32 119.32 
14 -1.86 0.76 -2.73 -4.59 1.75 -1.42 -3.17 30.23 75.23 
40 -2.60 1.44 -2.68 -5.28 2.88 -1.20 -4.08 44.18 89.18 
41 -0.33 1.78 -3.70 -4.03 4.91 0.44 -4.47 23.27 68.27 
42 0.67 0.38 -3.56 -2.90 4.30 0.70 -3.60 5.13 50.13 
46 -2.60 1.64 -0.92 -3.53 3.68 0.08 -3.60 58.57 103.57 
47 5.82 0.03 -1.66 4.16 7.49 5.82 -1.66 0.22 45.22 
49 -4.23 1.76 2.24 -1.99 7.37 2.69 -4.68 75.75 120.75 
52 -7.39 -1.17 0.14 -7.24 7.89 0.32 -7.56 98.63 143.63 
53 3.95 1.55 2.06 6.01 3.63 4.82 1.19 29.40 74.40 
54 -5.16 -2.90 0.51 -4.65 8.11 1.73 -6.38 112.80 157.80 
56 0.80 -1.32 -5.13 -4.33 6.49 1.08 -5.41 168.01 213.01 
60 -3.10 2.53 -1.65 -4.74 5.26 0.26 -5.00 53.02 98.02 
65 3.01 -5.21 1.72 4.74 10.51 7.62 -2.89 138.54 183.54 
67 -0.63 1.34 6.68 6.04 7.78 6.91 -0.87 79.96 124.96 

The purpose of the graphic presentation in the present 
paper (Figures 2 and 3) is to make it possible to obtain 
an insight in the spatial distribution of the deformation 
parameters. The area on the northern fault region of 
Fruška Gora is characterised by a significant 
extension along the north-south direction, which can 
be related to the gravitational descending of the 
northern block, i.e. to the relative ascending of the 
southern one. The north-eastern area of Fruška Gora 
is characterized by the presence of transcurrently right 
faults where the distribution of local values of the 
stress field is controlled by the local fault structures. 
The significant displacement magnitudes and the 
significant strain parameters, obtained here, are 
correlated to the reactivated existing structures which 
have been recognised in earlier geological and 
geophysical studies (Marović et al., 2007; Matenco 
and Radivojević, 2012; Toljić et al., 2013). 

It is important to say that the geodetic methods 
of deformation analysis used here provide mainly 
geometric information about the changes having 
occurred, where the interpretation of results and 
identification of causal forces belongs to other kinds 
of research, such as neotectonic ones, so that 
geophysical. Monitoring of an engineering object or 
of an Earth crust area is possible and efficient, only in 
the case when there exist a given number of reference 
points beyond the zone of expected deformations. In 
order to carry out a comprehensive analysis it is 
necessary to apply as many independent models as 
possible. This is presented here with the CDA 
methods, robust statistical techniques and the finite 
elements method of the strain analysis. The mean 
success rate, as a measure of efficiency establishing 
for the models applied in the present paper, can be 
also used in the process of geodetic network 
projecting for the needs of monitoring concerning the 
objects in civil engineering and ground. It is also very 

MSR values. When the total efficiency within the
chosen interval of ݎ to 3ݎ for the number of displaced
points between 0 and 21 is observed, the smallest
MSR values are for the robust statistical methods: L1
norm I (33.6 %), L1 norm II (39.6 %) and Huber
(40.4 %). The CDA methods show a significantly
better total MSR, which  for Pelzer’s method is
67.3  %, whereas for the Karlsruhe method, which is
based on the conception of a relative confidence
ellipse, MSR is 68.6 %. Similar results with simulated
measurements can be found in the literature, where
the best MSR is achieved just for the relative
confidence ellipse methods with respect to the S-
transformations and implicit hypothesis testing
(Hekimoglu et al., 2010). The reliability of CDA and
robust statistical methods depends on many factors,
such as the number of unknowns, number of degrees
of freedom, displacement magnitude, number of
deformed points, deformation type and the like.  

The advantage of the strain analysis as an
addition to the CDA and robust methods is that the
strain parameters are, on one hand, datum
independent quantities, and on the other hand, that
they are quantities having a clearly defined both
geometric and physical meaning. Translations and
rotations have no influence upon the obtained strain
tensor parameters, it is only important to provide the
same network scale for both measuring epochs. By
network division into finite elements (triangles),
assuming that they are mutually related, one analyses
the whole transforming in this way continual physical
systems into discrete ones. In Figure 3 it is possible to
see that on the subject area the relative relations of the
Earth’s crust over a ten-year interval have been
changed. On the north-eastern slope of Fruška Gora
significant parameters of an extensive character are
visible, which follows significant parameters of
a compressive character on the north-western side.
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important to know the lower accuracy limit, in order
to avoid any negative consequences which to
a  significant extent can decrease the reliability of
information concerning movements of the ground and
objects.  

In the present paper the GNSS measurements are
used, which, even if not realised specially for
geodynamic purposes, to a preliminary research,
including several distinct models of conventional
geometric deformation analysis, robust estimates and
strain analysis, can contribute to the understanding of
the recent movements in the framework of
multidisciplinary studies in the subject field. 
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Fig. 2 Displacement vectors of the CDA and robust methods applied in the work (shown in the DEM of
the Fruška Gora area). 

 

Fig. 3 Principal strain parameters computed for each triangle in the network (shown in the DEM of the
Fruška Gora area). 
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