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Abstract

This paper describes the technical development and accuracy assessment of the most

recent and improved version of the SoilGrids system at 250m resolution (June 2016

update). SoilGrids provides global predictions for standard numeric soil properties

(organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions

and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in

addition to predictions of depth to bedrock and distribution of soil classes based on the

World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in

total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of

158 remote sensing-based soil covariates (primarily derived from MODIS land products,

SRTM DEM derivatives, climatic images and global landform and lithology maps), which

were used to fit an ensemble of machine learning methods—random forest and gradient

boosting and/or multinomial logistic regression—as implemented in the R packages

ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that

the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation

with an overall average of 61%. Improvements in the relative accuracy considering the

amount of variation explained, in comparison to the previous version of SoilGrids at 1 km

spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use

of machine learning instead of linear regression, (2) to considerable investments in prepar-

ing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further

development of SoilGrids could include refinement of methods to incorporate input uncer-

tainties and derivation of posterior probability distributions (per pixel), and further automa-

tion of spatial modeling so that soil maps can be generated for potentially hundreds of soil

variables. Another area of future research is the development of methods for multiscale

merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to
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50 m spatial resolution) so that increasingly more accurate, complete and consistent

global soil information can be produced. SoilGrids are available under the Open Data

Base License.

Introduction

There is a growing demand for detailed soil information, especially for global estimation of

soil organic carbon [1–3] and for modeling agricultural productivity [4, 5]. Spatial information

about soil water parameters is likely to become increasingly critical in areas affected by climate

change [6]. Soils and soil information are also particularly relevant for the Sustainable Devel-

opment goal target 15.3 of achieving Land Degradation Neutrality (LDN), as specified by the

United Nations Convention to Combat Desertification (UNCCD; http://www.unccd.int), and

are one of the main areas of interest of the FAO’s Global Soil Partnership initiative [7]. Fol-

berth et al. [8] have recently discovered that accurate soil information might be the key to pre-

dicting either buffering or amplifying impacts of climate change on food production.

To reduce the gap between soil data demand and availability, ISRIC (International Soil

Reference Information Centre)—World Soil Information released a Global Soil Information

system called “SoilGrids”. The first version of SoilGrids (predictions at 1 km spatial resolu-

tion released in 2014), was, at the time, a ‘proof of concept’ demonstrating that global compi-

lations of soil profiles can be used in an automated framework to produce complete and

consistent spatial predictions of soil properties and classes [9]. Since the launch of the system

in 2014, several colleagues have recognized and reported some of the limitations of the first

version of the system. Mulder et al. [10] observed, using more detailed soil profile data and

maps, that SoilGrids likely overestimated all low values for organic carbon content in France.

Likewise, Griffiths et al. [11] reported underestimation of the pH in comparison to UK

national data. The overestimation of low values happened mainly as an effect of limited fit-

ting success (so that both high and low values are smoothed out). In addition, many of the

artifacts visible in the Harmonized World Soil Database (HWSD) [12], which was used as

one of the covariates to produce the first version of SoilGrids, e.g. country borders, were

propagated to SoilGrids1km. Some users have also expressed concerns that the first version

of SoilGrids did not provide predictions for arid and desert areas and hence can be consid-

ered an incomplete product [13].

To address these criticisms and concerns, we have re-designed and re-implemented Soil-

Grids with a particular emphasis on addressing methodological limitations of SoilGrids1km.

Hence, our main objective was to build a more robust system with improved output data qual-

ity; especially considering spatial detail and attribute accuracy of spatial predictions. We imple-

mented the following six key improvements:

1. We replaced linear models with tree-based, non-linear machine learning models to account

for non-linear relationships—especially for modeling soil property–depth relationships—

but also to be able to better represent local soil–covariate relationships. Predictions are now

primarily data-driven. Much less time is spent on choosing models, which also reduces the

complexity of producing updates.

2. We replaced single prediction models with an ensemble framework i.e. we use at least two

methods for each soil variable to reduce overshooting effects.

SoilGrids250m: Global gridded soil information
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3. We extended the initial list of covariates to include a wider diversity of MODIS land prod-

ucts and to better represent factors of soil formation. The spatial resolution of covariates

was increased from 1 km to 250 m with the expectation that finer resolution will help

increase the prediction accuracy.

4. We re-implemented the global soil mask using state-of-the-art land cover products [14].

The current soil mask now includes all previously excluded dryland and sand dune areas so

that most of the land mask (> 95%) is represented.

5. The global compilation of soil profiles and samples used for model training was also

extended. We added extra points for the Russian Federation, Brazil, Mexico and the Arctic

circle; and re-visited data harmonization issues.

6. We created and inserted expert-based pseudo-points for a selection of parameters to mini-

mize extrapolation effects in undersampled geographic areas lacking field observations,

such as deserts, semi-deserts, glaciers and permafrost areas.

We present here the technical development and accuracy assessment of the updated Soil-

Grids system at 250 m resolution. In the following sections we describe the workflows used to

generate spatial predictions and report results of model fitting and accuracy assessment based

on 10–fold cross-validation. We conclude the article by suggesting some possible applications

of this new data set and identifying possible future improvements. SoilGrids250m map layers

are available for download via www.SoilGrids.org under the Open Database License (ODbL).

GeoTiffs can also be obtained from ftp://ftp.soilgrids.org/data/.

Methods and materials

Target variables

SoilGrids provides predictions for the following list of standard soil properties and classes [9]:

• Soil organic carbon content in ‰ (g kg−1),

• Soil pH in H2O and KCl solution,

• Sand, silt and clay (weight %),

• Bulk density (kg m−3) of the fine earth fraction (< 2 mm),

• Cation-exchange capacity (cmol + /kg) of the fine earth fraction,

• Coarse fragments (volumetric %),

• Depth to bedrock (cm) and occurrence of R horizon,

• World Reference Base (WRB) class—at present, we map 118 unique soil classes, e.g. Plinthic

Acrisols, Albic Arenosols, Haplic Cambisols (Chromic), Calcic Gleysols and similar [15].

This is about four times as many classes as in the previous version of SoilGrids,

• United States Department of Agriculture (USDA) Soil Taxonomy suborders—i.e. 67 soil

classes [16].

We generated predictions at seven standard depths for all numeric soil properties (except

for depth to bedrock and soil organic carbon stock): 0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm

and 200 cm, following the vertical discretisation as specified in the GlobalSoilMap specifica-

tions [17]. Averages over (standard) depth intervals, e.g. 0–5 cm or 0–30 cm, can be derived by

taking a weighted average of the predictions within the depth interval using numerical

SoilGrids250m: Global gridded soil information
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integration, such as the trapezoidal rule:

1
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where N is the number of depths, xk is the k-th depth and f(xk) is the value of the target variable

(i.e., soil property) at depth xk. For example, for the 0–30 cm depth interval, with soil pH values

at the first four standard depths equal to 4.5, 5.0, 5.3 and 5.0, the pH is estimated as 1

30�2
�

5 � 0ð Þ � 4:5þ 5:0ð Þ þ 15 � 5ð Þ � 5:0þ 5:3ð Þ þ 30 � 15ð Þ � 5:3þ 5:0ð Þ½ �=30 � 0:5 ¼ 5:083

(Fig 1).

Based on predictions of soil organic carbon content, bulk density, and coarse fragments, we

also derived soil organic carbon stock (tha−1) for the six GlobalSoilMap standard depth inter-

vals following the standard approach [9, 18]. Fig 2 shows an example of observed vs predicted

values and corresponding derived soil organic carbon stock for 0–1 m and 1–2 m depths.

Model fitting and spatial prediction of depth to bedrock is based also on water well drilling

data. Model fitting and spatial prediction of soil depth to bedrock variables is explained in

detail in Shangguan et al. [19].

We set the reference soil surface at the air/soil boundary, as per FAO [20], hence all soil

material is included. Some national soil survey teams (and also earlier versions of the FAO

Fig 1. Standard soil depths following the GlobalSoilMap.net specifications and example of numerical

integration following the trapezoidal rule.

doi:10.1371/journal.pone.0169748.g001
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standards) define 0 cm depth at the start of the mineral soil, i.e. just below the O or the P (peat)

horizon. Consider for example the following sample soil profile from Canada [21]:

hor top bottom bd orgcarb
LFH -12 0 0.07 48.1
Ae 0 11 1.3 0.6
AB 11 25 1.53 0.4
Bt 25 44 1.62 0.4

which shows that the vertical coordinates of the organic layer of this soil site are negative (LFH
indicates Litter—Fermentation—Humus); orgcarb indicates soil organic carbon, bd is the

bulk density and top and bottom are the upper and lower horizon depth in cm). Therefore,

to avoid vertical mismatches between different national systems, all systems that put the zero

level at the start of the mineral soil have been adjusted to a reference with the zero level at the

air/soil boundary. For the example soil profile from Canada this means that 12 cm was added

to all top and bottom values (in the example above, there is a significant discontinuity in values

in organic carbon that drops from 48.1% to 0.6% within 12 cm of depth).

Fig 2. Example of soil variable-depth curves: Original sampled soil profiles (black rectangles) vs predicted SoilGrids values at seven standard

depths (broken red line), and predicted soil organic carbon stock for depth intervals 0–100 and 100–200 cm. Locations of points from the USDA

National Cooperative Soil Survey Soil Characterization database: mineral soil S1991CA055001 (-122.37˚W, 38.25˚N), and an organic soil profile

S2012CA067002 (-121.62˚W, 38.13˚N).

doi:10.1371/journal.pone.0169748.g002
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Input profile data

For model building, we used soil profile data from ca. 150,000 unique sites spread over all con-

tinents (Fig 3; see acknowledgments for a full list). These have been imported, cleaned and

merged into a single global compilation of soil points with unique column names and IDs.

Preparation of the global compilation of standardized soil training points took several

months of work. The translation and cleaning up of soil properties and soil classes took a large

amount of time. About 15–20% of the original soil profile data was only reported using a

national classification system, e.g. the Canadian and Brazilian classification systems. Since

some information is better than none, where possible we translated national classification sys-

tems to the two international (World Reference Base and USDA) classification systems. For

translation we used published correlation tables either reported in Krasilnikov et al. [22] or

reported on the agency websites; see e.g. correlation of Canadian Soil Taxonomy published

(http://sis.agr.gc.ca/cansis/taxa/) and correlation of the Brazilian classification system (http://

www.pedologiafacil.com.br/classificacao.php). We also consulted numerous local soil classifi-

cation experts and requested their feedback and corrections in the (online) correlation tables

(distributed via Google spreadsheets). Some national classification systems, such as the Austra-

lian soil classification system, are simply too different from the USDA and WRB systems to

allow satisfactory correlation. These data were therefore not used. The full list of correlation

tables is available from ISRIC’s github account at https://github.com/ISRICWorldSoil.

Another time-consuming operation was merging laboratory measurements and field obser-

vations and their harmonization to a standard format. In some cases missing values in the

original tables had been coded as "0" values, which can have a serious influence on prediction

models; in other cases we implemented and applied functions to locate and correct typos and

other gross errors. Some variables, such as soil organic carbon, needed to be converted either

from soil organic matter (e.g. divide by 1.724) and/or by removing CaCO3 (Calcium carbon-

ates) from total carbon. Nevertheless, the majority of soil variables from various national soil

Fig 3. Input profile data: World distribution of soil profiles used for model fitting (about 150,000 points shown on the map; see

acknowledgments for a complete list of data sets used). Yellow points indicate pseudo-observations. For the majority of points shown on this map,

laboratory data can be accessed from ISRIC’s World Soil Information Service (WoSIS) at http://wfs.isric.org/geoserver/wosis/wfs.

doi:10.1371/journal.pone.0169748.g003
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profile data bases appeared to be compatible and relatively easy to merge—soil scientists across

continents do measure similar things, but often express the results using different measure-

ment units, vocabularies and standards.

We imported all original tables as-is, next documented all conversion functions through R
scripts (available via ISRIC’s github account), to accommodate reproducible research and facil-

itate that conversion functions may, in the future, be further modified and improved. The

majority of the points (excluding LUCAS points and other data sets with specific restricting

terms of use) and legends used for model building and for producing SoilGrids are also avail-

able for public use via ISRIC’s WoSIS Web Feature Service (http://www.isric.org/data/wosis)

and/or the ISRIC’s institutional github account.

Expert-based pseudo-observations

Even though the input training point data are extensive and cover most continents and cli-

matic zones, some large areas that have extreme climatic conditions and/or have very

restricted access, are significantly undersampled. This occurs largely in the following five types

of areas:

1. Semi-arid and arid lands, deserts and sand dunes,

2. Mountain tops, steep slopes of mountains and similar inaccessible areas,

3. Areas covered by ice and/or snow, i.e. glaciers,

4. Inaccessible tropical forest,

5. Areas governed by totalitarian and hostile regimes, with military conflicts or war.

It might seem obvious to soil surveyors that there is no soil organic carbon in the top 2 m of

the active sand dunes of the Sahara, but any model fitted without observations in the Sahara

could result in dubious extrapolation and questionable predictions. In addition, relationships

across transitional areas—from semi-arid zones to deserts—can be difficult to represent with-

out enough points at both edges of the feature space. Some sand dunes in the USA have been

actually sampled and analyzed in the laboratory. For example, Lei [23] has shown that sand

dunes in the Mojave desert have an average pH of 8.1, 98% sand and 0% organic carbon.

Again, although it might seem obvious that deserts consist mainly of sand, and that steep

slopes without vegetation are either very shallow or show bedrock at the surface, the model is

not aware of such expert knowledge and hence such features need to be ‘numerically repre-

sented’ in the calibration dataset. We therefore decided, instead of masking out all such areas

from soil mapping, to insert pseudo-observations and fill gaps in the feature space for the first

four of the five types of areas listed above, i.e. to add pseudo-observations to the training data-

set, which we then use for model building.

We used the following data sources to delineate sand dunes, bare rock and glaciers and pro-

duce their respective land masks:

• Sand dunes mask—To delineate the global distribution of sand dunes we used mean annual

long-term surface temperature generated from the MODIS LST data product (MOD11A2),

long-term MODIS Mid-Infrared (MIR) band (MCD43A4) and a slope map. After visual

inspection of the border of the Sahara desert, it was clear that sand dunes can be relatively

accurately delineated using MIR reflectance, mean daily annual temperature (> 25˚C) and a

slope map (< 25 rad).

• Bare rock mask—To delineate bare rock we also used the MODIS MIR band (MCD43A4)

and a slope map. Bare rock or dominantly rocky areas show high MIR surface reflectance

SoilGrids250m: Global gridded soil information
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and are associated with steep slopes (> 32 rad). To the initial mask map estimated using

MODIS MIR band and slope map, we also added bare rock areas from more detailed maps

available for some countries, such as Iceland and northern Europe [19].

• Glaciers mask—To represent global distribution of glaciers we used the GLIMS Geospatial

Glacier Database [24].

For each of the three masks we then generated randomly 100–400 points based on the rela-

tive global extent and assigned soil properties and soil classes accordingly (e.g. in the case of

WRB’s Protic Arenosols for sand dunes, Lithic and Rendzic Leptosols for bare rock areas,

Cryosols for areas adjacent to glaciers; in the case of USDA’s Psamments for sand dunes, Orth-

ents for bare rock areas and Turbels for glaciers; for sand dunes we also inserted estimated val-

ues of 0 soil organic carbon, 98% sand and 0% coarse fragments). For model training for

predicting soil classes we also used pseudo-observations generated from the best available soil

polygon maps: for poorly accessible tropical forest areas, such as Indonesia, we used the Land

information system of Kalimantan [25], and for northern latitudes, i.e. to represent permafrost

soils, the Northern Circumpolar Soil Carbon Database was used [26].

When inserting pseudo-observations we tried to follow three simple rules of thumb to min-

imize any negative effects:

• keep the relative percentage of pseudo-points small i.e. try not to exceed 1–2% of the total

number of training points,

• only insert pseudo-points for which the actual ground value is known with high confidence,

e.g. sand content in sand dune areas,

• if polygon maps are used to insert pseudo-observations, we tried to use the most detailed soil

polygon maps and focus on polygons with very high thematic purity.

Soil covariates

As covariate layers for producing SoilGrids250m predictions we used an extensive stack of

covariates, which are primarily based on remote sensing data. These include (see e.g. Fig 4):

• DEM-derived surfaces—slope, profile curvature, Multiresolution Index of Valley Bottom

Flatness (VBF), deviation from Mean Value, valley depth, negative and positive Topographic

Openness and SAGA Wetness Index—all based on the global merge of SRTMGL3 DEM and

GMTED2010 [27]. All DEM derivatives were computed using SAGA GIS [28],

• Long-term averaged monthly mean and standard deviation of the MODIS Enhanced Vege-

tation Index (EVI). Derived using a stack of MOD13Q1 EVI images [29],

• Long-term averaged mean monthly surface reflectances for MODIS bands 4 (NIR) and 7

(MIR). Derived using a stack of MCD43A4 images [30],

• Long-term averaged monthly mean and standard deviation of the MODIS land surface tem-

perature (daytime and nighttime). Derived using a stack of MOD11A2 LST images [31],

• Long-term averaged mean monthly hours under snow cover based on a stack of MOD10A2

8-day snow occurrence images [32],

• Land cover classes (cultivated land, forests, grasslands, shrublands, wetlands, tundra, artifi-

cial surfaces and bareland cover) for the year 2010 based on the GlobCover30 product by the

National Geomatics Center of China [14]. Upscaled to 250 m resolution and expressed in

percent of pixel coverage,

SoilGrids250m: Global gridded soil information
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• Monthly precipitation images derived as the weighted average between the WorldClim

monthly precipitation [33] and GPCP Version 2.2 [34],

• Long-term averaged mean monthly hours under snow cover. Derived using a stack of

MOD10A2 8-day snow occurrence images,

Fig 4. Examples of covariates used to generate SoilGrids: TWI is the Topographic Wetness Index (values multiplied by 100), EVI is the MODIS

Enhanced Vegetation Index (values multiplied by 10,000), s.d. LST is the long-term standard deviation of MODIS Land Surface Temperatures

(values in Celsius degrees). Location: San Francisco bay area, California. Size of the bounding box is 300 by 300 km.

doi:10.1371/journal.pone.0169748.g004

SoilGrids250m: Global gridded soil information
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• Lithologic units (acid plutonics, acid volcanic, basic plutonics, basic volcanics, carbonate

sedimentary rocks, evaporite, ice and glaciers, intermediate plutonics, intermediate volca-

nics, metamorphics, mixed sedimentary rocks, pyroclastics, siliciclastic sedimentary rocks,

unconsolidated sediment) based on Global Lithological Map GLiM [35],

• Landform classes (breaks/foothills, flat plains, high mountains/deep canyons, hills, low

hills, low mountains, smooth plains) based on the USGS’s Map of Global Ecological Land

Units [36].

• Global Water Table Depth in meters; after Fan et al. [37],

• Long-term averaged mean monthly MODIS Flood Water based on the NRT Global MODIS

Flood Mapping Flood Water product (http://oas.gsfc.nasa.gov/floodmap/),

• Landsat-based estimated distribution of Mangroves; after Giri et al. [38],

• Average soil and sedimentary-deposit thickness in meters; after Pelletier et al. [39].

These covariates were selected to represent factors of soil formation according to Jenny

[40]: climate, relief, living organisms, water dynamics and parent material. Out of the five

main factors, water dynamics and living organisms (especially vegetation dynamics) are not

trivial to represent as these operate over long periods of time and often exhibit chaotic behav-

iour. Using reflectance bands such as the mid-infrared MODIS bands from a single day, would

have little use to soil mapping for areas with dynamic vegetation, i.e. with strong seasonal

changes in vegetation cover. To account for seasonal fluctuation and for inter-annual varia-

tions in surface reflectance, we instead used long-term temporal signatures of the soil surface

derived as monthly averages from long-term MODIS imagery (15 years of data). We assume

here that, for each location in the world, long-term average seasonal signatures of surface

reflectance or vegetation index provide a better indication of soil characteristics than only a

single snapshot of surface reflectance. Computing temporal signatures of the land surface

requires a considerable investment of time (comparable to the generation of climatic images vs

temporary weather maps), but it is possibly the only way to represent the cumulative influence

of living organisms on soil formation.

For processing the covariates we used a combination of Open Source GIS software, primar-

ily SAGA GIS [28], R packages raster [41], sp [42], GSIF and GDAL [43] for reprojecting,

mosaicking and merging tiles. SAGA GIS and GDALwere found to be highly suitable for pro-

cessing large data as parallelization of computing was relatively easy to implement.

We updated the 1 km global soil mask map using the most detailed 30 m resolution global

land cover map from 2010. This was combined with the global water mask [44] and the global

sea mask map based on the SRTM DEM [45] to produce one consistent global soil mask that

includes all land areas, expect for: (a) fresh water bodies such as lakes and rivers, and (b) per-

manent ice.

Spatial prediction framework

Spatial prediction, i.e. fitting of models and generation of maps, was fully implemented via the

R environment for statistical computing. The process of generating SoilGrids predictions con-

sists of four main steps (see Fig 5):

• overlay points and covariates and prepare regression matrix,

• fit spatial prediction models,

SoilGrids250m: Global gridded soil information
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Fig 5. The (data-driven) statistical framework used for generating SoilGrids. SoilGrids are primarily based on publicly released soil profile

compilations, NASA’s MODIS and SRTM data products and Open Source software compiled with the ATLAS library: R (including contributed

packages), and Open Source Geospatial Foundation (OSGeo) supported software tools.

doi:10.1371/journal.pone.0169748.g005

SoilGrids250m: Global gridded soil information

PLOS ONE | DOI:10.1371/journal.pone.0169748 February 16, 2017 11 / 40



• apply spatial prediction models using tiled raster stacks (covariates),

• assess accuracy using cross-validation.

For practical purposes, we implemented these steps separately for each of the following

groups of soil variables:

• WRB soil groups and USDA soil suborders were modelled using ensemble models based

on nnet::multinom (which fits multinomial log-linear models via neural networks)

[46] and ranger::ranger (fits random forest) functions [47]. We mapped probabilities

of occurrence for each individual soil class (118 probability maps for WRB and 67 for

USDA),

• Soil properties (organic carbon, bulk density, CEC, pH, soil texture fractions and coarse

fragments) were modelled as 3D variables using an ensemble of ranger::ranger and

xgboost::xgboost (fits Gradient Boosting Tree) [48]. Soil depth is used as a covariate,

so that the resulting models predict values of a target variable for any given depth, i.e. in

3D,

• Depth to bedrock was also modelled using ranger::ranger and xgboost::xgboost
functions, but the output is a 2D map.

To optimize the model tuning parameters we consistently used the caret::train func-

tion [49], which is also suited for big data. The fine-tuning of the parameters is summarized in

the following three steps:

1. Randomly subset the regression matrix to e.g. 15,000 observations (usually 5–10% of the

total size),

2. Fit and validate a list of models for a combination of tuning parameters,

3. Select the optimal parameters (i.e. those that produce the lowest RMSE using repeated

cross-validation) and fit the final model using all observations.

Models for WRB and USDA classes are defined as:

R> TAXNWRB* DEMMRG5+ SLPMRG5+ . . . + ASSDAC3
where DEMMRG5+ SLPMRG5+ . . . + ASSDAC3 are the covariate layers, TAXNWRB is the

observed taxonomic class in the WRB system (target variable). An example of a soil property

model is given by:

R> ORCDRC* Depth + DEMMRG5+ . . . + ASSDAC3
where DEMMRG5+ . . . + ASSDAC3 are the covariate layers, ORCDRC is the value of organic

carbon observed (target variable), and Depth is the sampling / observation depth.

For each variable we fitted a separate model and merged predictions from at least two mod-

els to minimize overshooting effects [50]. The merging of predictions is done by using the

average model accuracy estimated during the fine-tuning of model parameters, i.e. as a

weighted average [50]:

�f ðxÞ ¼
PM

k¼1
wk � fkðxÞ

PM
k¼1

wk

; wk ¼
1

s2
k;CV

ð2Þ

where �f ðxÞ is the final ensemble prediction, M is the number of models, wk is the model weight

and s2
k;CV is the model squared prediction error obtained using cross-validation. In practice,

SoilGrids250m: Global gridded soil information
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both ranger::ranger and xgboost::xgboost report about the same error in most

cases, hence the final prediction is often close to the unweighted average.

We also applied post-processing, mainly to remove artifacts: in the case of soil classes, we

filter out all classes theoretically impossible to occur in a given area, such as Gypsisols in arctic

climatic zones, using a simple soil-climate matrix (documented on the project github). For tex-

ture fractions we also applied a standardization function to ensure that all predictions are

between 0 and 100, and that the fractions sum up to 100%, e.g.:

Sandc½%� ¼
Sand

ðSandþ Siltþ ClayÞ
� 100 ð3Þ

where Sandc is the corrected sand content.

SoilGrids can be considered as a Big Data project, especially in terms of data volumes and

variety. The total size of all input and output data used to generate SoilGrids exceeds 30 TiB, so

that a first step in preparing SoilGrids250m was to obtain a Synology 12-Bay NAS storage

server with 60 TiB space. Handling such a large data set presented major challenges consider-

ing computational complexity and network bandwidth limitations. To optimize computing

performance, especially spatial overlay, model fitting, predictions and export of predictions,

we used exclusively parallelized versions of functions. For prediction, parallelization is already

implemented internally via the ranger or xgboost software; for other processes we primar-

ily used the snowfall package [51].

All processing was implemented on a single dedicated high performance server with 256

GiB RAM, 8 TiB hard disk space, 48 cores (Intel Xeon 2xE5-2690v3 24c/48t 2.6–3.5 GHz) and

running on Ubuntu 15.10 (Willy Werewolf) OS and R-cran 3.2.3 using ATLAS (Automatically

Tuned Linear Algebra Software) 3.11.38 library. Even after parallelization, producing predic-

tions for all soil variables and all depths took 10+ days of continuous computing, i.e. about 12

thousand CPU hours (about 90% of the computing time is invested in generating predictions).

Because the current system is fully scalable, the next update of SoilGrids could be completed in

shorter time frames, e.g. by boosting the number of computer cores, although this might also

greatly increase the production costs.

The tiling system

For tiling, we used the Equi7 Grid system [52] which splits the global land mass into seven sep-

arate planar grids (Europe and Asia are split into two land masses with some small overlap).

The Equi7 Grid system was selected for several practical reasons [52]:

1. The projections of the Equi7 Grid are equidistant and hence suitable for various geographic

analyses, especially for derivation of buffer distances and for hydrological DEM modeling,

i.e. to derive all DEM-based soil covariates,

2. Areal and shape distortions stemming from the Equi7 Grid projection are relatively small,

yielding a small grid oversampling factor,

3. The Equi7 Grid systems ensures an efficient raster data storage while suppressing inaccura-

cies during spatial transformation. Especially for high-resolution global data, these are

important features.

The global soil mask at 250 m resolution contains about 1.6 billion pixels (Africa: 330 mil-

lion, Europe: 110 million, North America: 230 million, South America: 210 million, Antartica:

0.05 million, Oceania: 140 million, Asia: 360 million). We provide the final outputs in both the

Equi7 Grid system and in geographical WGS84 coordinates. Final global mosaics in the

SoilGrids250m: Global gridded soil information
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WGS84 system were produced by reprojecting all pixels using GDALwarp and translate func-

tions [43]. The ground resolution of 250 m corresponds to a geographical resolution of 1/480

decimal degrees. An image representing the whole world at this resolution comprises 172k col-

umns and 72k rows.

Final predictions are available both as mosaics and as 1˚ tiles (16,360 tiles to represent the

world land mask); tiles are considered more suitable for users interested in regional and

national data, and mosaics (at resolutions of 20 km, 1 km and 250 m) are deemed suitable for

global modellers.

Accuracy assessment

For accuracy assessment of both numeric and categorical variables we used 10–fold repeated

cross-validation. Each model is re-fitted 10 times using 90% of the data and predictions

derived from the fitted models are compared with observations of the remaining 10%. For

each of the 14 numeric soil properties we derived the coefficient of determination (R2—the

amount of variation explained by the model), mean error (ME) and root mean squared error

(RMSE). The amount of variation explained by the model is derived as:

R2 ¼ 1 �
SSE
SST

� �

� 100% ð4Þ

where SSE is the sum of squared errors at cross-validation points and SST is the total sum of

squares. A coefficient of determination close to 1 indicates a perfect model, i.e. 100% of vari-

ation has been explained by the model. Numeric variables with skew distributions were log-

transformed prior to modeling and hence for these variables we report the amount of varia-

tion explained by the model after log-transformation. Also for the cross-validation correla-

tion plots we used either log or linear scale depending on whether log-transformation was

applied.

For predictions of soil WRB and USDA classes we calculated the map purity (0–100%) for

the dominant soil class at cross-validation points and weighted kappa metrics [53] as imple-

mented in the psych package. For the predicted probabilities of soil class occurrences (0–1

probability values) we also derived the area under the receiver operating characteristic curve

(AUC) and the True Positive Rate (TPR) statistic as implemented in the ROCR package [54,

55]. Values of TPR range from 0 to 1. Values of AUC close to 1 show high prediction perfor-

mance, while values around 0.5 and below are considered poor.

For soil WRB and USDA classes we also generated global maps of the scaled Shannon

Entropy Index using the per-class probability maps [56, 57]:

HsðxÞ ¼ �
XK

k¼1

pkðxÞ � log KðpkðxÞÞ ð5Þ

where K is the number of possible classes, logK is the logarithm to base K and pk is probability

of class k. The scaled Shannon Entropy Index (Hs) is in the range from 0–1, where 0 indicates

no ambiguity (one of the pk equals one and all others are zero) and 1 indicates maximum

confusion (all pk equal 1

K) [58]. Note that the scaled Shannon Entropy Index should not be

confused with classification accuracy assessment: Hs is an internal accuracy measure derived

from the model and not based on comparison of predictions with (cross-)validation data,

such as the purity and kappa metrics. For Shannon index of 0 at some location accuracy

could still be completely wrong because the soil class at that location could actually be a dif-

ferent one.

SoilGrids250m: Global gridded soil information
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Results

Model fitting

Summary results of model fitting are given in Figs 6 and 7 and Tables 1 and 2. The ranger
package reports model fitting success via the R-square based on Out-of-bag (OOB) samples,

i.e. the amount of variation explained by the model, which ranged from a low of 0.59 for coarse

fragments to a high of 0.85 for soil pH. R-square estimated using xgboost (derived using

repeated cross-validation) was lower, ranging from 0.37 for coarse fragments to 0.60 for soil

Fig 6. Fitted variable importance plots for target variables. Generated as an average of predictions using the rangerand xgboostpackages (for soil

types results are based on the rangermodel only). DEPTH.f is depth from soil surface, T��MOD3 and N��MOD3 are mean monthly temperatures daytime

and nighttime (red color), TWI, DEM, VBF and VDP are DEM-parameters (bisque color), M��MOD4 are mean monthly MODIS NIR band reflectances (cyan

color), P��MRG3 are mean monthly precipitation (blue color), E��MOD5 are mean monthly EVI derivatives (dark green color), VW�MOD1 are monthly MODIS

Precipitable Water Vapor images (orange color), C��GLC5 are land cover classes (light green color), and ASSDAC3 is the average soil and sedimentary-

deposit thickness (brown color).

doi:10.1371/journal.pone.0169748.g006
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pH. On average, the two packages report R-square values between 0.4–0.8 with an overall aver-

age of 0.60. This number corresponds closely to our results produced using 10–fold cross vali-

dation with repeated fitting. Comparing these new results to average R-square values of 0.38

for the original SoilGrids1km predictions reveals a significant improvement of close to + 50%.

The train function of the package caret usually picked a relatively high Mtry parame-

ter (number of variables randomly sampled as candidates at each split) as optimal for soil

properties: the optimized values ranged from 18 for coarse fragments to 22 for all other soil

properties. Higher Mtry is recommend for cases where the number of covariates is large and

Fig 7. Examples of relationships for target variables and the most important covariates: (top row) bulk density in kg m−3, (middle row) soil pH,

and (bottom row) soil organic carbon in permilles (on log scale). Plots show target variables and the top three most important covariates as reported

by the random forest model. DEPTH.f is the observed depth from soil surface, T09MOD3 is mean monthly temperature for September, TMDMOD3 is mean

annual temperature, PRSMRG3 is total annual precipitation, M04MOD4 is mean monthly MODIS NIR band reflectance for April, P07MRG3 is mean monthly

precipitation for July, T01MOD3 is mean monthly temperature for January, and T02MOD3 is mean monthly temperature for February.

doi:10.1371/journal.pone.0169748.g007
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multiple variables influence the target variables with equal importance [59]. For the Gradient

Boosting Tree method, train always selected the same combination of tuning parameters for

all soil properties: nrounds= 100, max_depth= 3, eta = 0.4, gamma = 0, colsam-
ple_bytree= 0.8 and min_child_weight= 1. This may be because we limited the

combinations of tuning parameters to 10 to speed up processing speed. Higher values for

xgboost tuning parameters are indicative of higher-level complexity of the model: many

Table 1. SoilGrids average prediction error for key soil properties based on 10–fold cross-validation. N = “Number of samples used for training”, ME =

“Mean Error”, MAE = “Mean Absolute Error”, RMSE = “Root Mean Squared Error” and R-square = “Coefficient of determination” (amount of variation explained

by the model). For variables with a skew distribution, such as organic carbon, coarse fragments and CEC, the accuracy statistics are also provided on log-

scale
.

Variable name N Min Max ME MAE RMSE R-square RMSE
 R-square


Soil organic carbon

(gravimetric)

605,054 0 520 -0.292 10.2 32.8 63.5% 0.715 68.8%

pH index

(H2O solution)

604,019 2.1 11.0 -0.002 0.4 0.5 83.4%

Sand content

(gravimetric)

616,762 1% 94% -0.037 9.0 13.1 78.6%

Silt content

(gravimetric)

613,750 2% 74% 0.023 6.7 9.8 79.4%

Clay content

(gravimetric)

625,159 2% 68% -0.102 6.6 9.5 72.6%

Coarse fragments

(volumetric)

303,139 0% 89% -0.104 5.5 10.9 55.9% 1.185 64.3%

Bulk density

(fine earth fraction)

140,596 250 2870 -1.574 108.3 164.7 75.8%

Cation-exchange capacity

(fine earth fraction)

393,585 0 234 -0.071 5.5 10.3 64.5% 0.483 67.0%

Depth to bedrock

(in cm)

1,580,798 0 125,000 -29 678 835 54.0% 1.12 42.8%

doi:10.1371/journal.pone.0169748.t001

Table 2. Mapping performance of SoilGrids250m compared to summary results for SoilGrids1km [9]. Amount of variation explained by models (Eq 4),

i.e. prediction accuracy for soil types was determined using 10–fold cross-validation. GSIF = “Global Soil Information Facilities”.

Variable name Type Units GSIF

code

Amount of var. explained

(SoilGrids1km)

Amount of var. explained

(SoilGrids250m)

Relative

improvement

Soil organic carbon 3D g kg−1 ORCDRC 22.9% 68.8% 200%

pH index

(H2O solution)

3D 10−1 PHIHOX 50.5% 83.4% 65%

Sand content

(gravimetric)

3D kg kg−1 SNDPPT 23.5% 78.6% 234%

Silt content

(gravimetric)

3D kg kg−1 SLTPPT 34.9% 79.4% 127%

Clay content

(gravimetric)

3D kg kg−1 CLYPPT 24.4% 72.6% 198%

Coarse fragments

(volumetric)

3D cm3

cm−3
CRFVOL - 64.3% -

Bulk density

(fine earth fraction)

3D kg m−3 BLD 31.8% 75.8% 138%

Cation-exchange

capacity

(fine earth fraction)

3D cmol +

/kg

CEC 29.4% 67.0% 128%

Depth to bedrock 2D cm BDT - 42.8% -

doi:10.1371/journal.pone.0169748.t002
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relationships between soil properties and covariates are non-linear and a greater number of

splits is possibly required to represent this complexity.

Fig 6 shows the top 15 soil covariates for each target variable. This indicates that, for exam-

ple, spatial pattern of soil pH is primarily influenced by precipitation and surface reflectance

(MODIS Medium-Infrared band 6 for months April and May especially). Also, for most vari-

ables depth emerges as the most important covariate, especially for soil organic carbon, bulk

density and coarse fragments. For soil types and soil textures, DEM-parameters, i.e. soil form-

ing factors of relief, especially flow-based DEM-indices, emerge as second-most dominant

covariates. These results largely correspond with conventional soil survey knowledge (survey-

ors have been using relief as a key guideline to delineate soil bodies for decades), but it is

encouraging to have these findings supported by statistical modeling of real data on a global

scale.

Although lithology is not in the list of top 15 most important predictors, spatial patterns of

lithologic classes can often be distinctly recognized in the output predictions. This is especially

true for soil texture fractions and coarse fragments. In general, for predicting soil chemical

properties, climatic variables (especially precipitation) and surface reflectance seem to be the

most important, while for soil classes and soil physical properties it is a combination of relief,

vegetation dynamics and parent material.

Fig 7 shows some individual relationships between target variables and several of the most

important covariates. For soil pH we observe that the relationship with total annual rainfall is

close to linear; for soil organic carbon and depth the relationship is linear on a log-log scale.

Many such individual correlations can also be interpreted and understood in terms of pedo-

logic knowledge. For example, higher MIR reflectance may be associated with high concentra-

tion of salts in soil and hence higher pH; higher rainfall and cooler climates often result in

higher organic carbon content because the speed of organic matter accumulation is higher

than the speed of decomposition. For the majority of soil variables, however, relationships are

not clearly linear and often many soil covariates are equally important.

We have also investigated possibilities for using kriging of residuals to improve predictions

of soil properties. Because the majority of spatial variation has been explained by covariates

and machine learning models, it appears that no significant spatial autocorrelation structure

can be observed for residuals (i.e. almost all variograms show pure nugget effect structure) at

distances < 300 km for almost all continents and all variables. Although locally, where the

point density is high, kriging of residuals could still be beneficial for mapping of CEC and

depth to bedrock, overall kriging of residuals for global land mass does not seem to be neces-

sary nor is it practical to implement for billions of pixels: it would only marginally improve the

accuracy of predictions at high computing costs.

Accuracy assessment

Table 1 shows summary results of cross-validation for soil properties (global assessment). In

all cases there is no large overestimation of values, although for organic carbon and CEC the

models seem to somewhat under-estimate the overall mean. For log-transformed variables we

applied the accuracy assessment in the log-transformed space which yields asymmetric predic-

tion intervals after back-tranformation. For example, predictions for organic carbon are

±0.715 in log-space, which means that the 90% probability prediction interval for a case where

the soil organic carbon prediction equals 20‰ (2%) is 6–65‰; for a case where the soil organic

carbon prediction equals 150‰ it is 46–485‰. Prediction intervals are hence still fairly wide,

which might make SoilGrids of limited usability for detailed spatial modeling e.g. at farm level.

Note also that because there is significant spatial clustering of the training points, it is possible

SoilGrids250m: Global gridded soil information

PLOS ONE | DOI:10.1371/journal.pone.0169748 February 16, 2017 18 / 40



that the validation results might be somewhat more optimistic than if we had validated predic-

tions by using points collected following some (objective) probability sampling, as described in

Brus et al. [60]. On the other hand, the cross-validation results do not show any serious sys-

tematic over- or underestimation (ME close to zero), which is also visible from the correlation

plots (Fig 8).

Table 2 shows results for SoilGrids250m in comparison with the previous system at 1 km res-

olution. Improvements in average RMSE are between 30–80% and can largely be attributed to

the use of machine learning algorithms in place of multiple linear regression, but also to invest-

ments in preparing finer resolution covariates and additional and improved soil profile data.

Fig 8. Correlation (density) plots produced as a result of 10–fold cross-validation. See also Table 1 for more details.

doi:10.1371/journal.pone.0169748.g008
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The most challenging variables to model with this set of covariates are coarse fragments

and depth to bedrock, although in no case is the R-square < 50%. Nevertheless, the RMSE is

still relatively high in comparison to many local soil mapping projects. Users should thus be

aware that the uncertainty levels are still relatively high. There are also still problems with over-

estimation of low values, clearly visible for example in the case of soil organic carbon content.

Overall, predictions for most properties are unbiased, i.e. most predictions are fairly symmet-

ric around the 1:1 line (Fig 8).

For soil classes, out-of-bag average prediction accuracy, reported by the packages, was

between 20–28% for the WRB classification system and between 34–48% for the USDA sys-

tem. The 10–fold cross-validation results showed that the weighted kappa for WRB classes is

42%, with map purity 28%; for USDA classes the kappa is 57%, while the map purity is 48%.

Although WRB classes seem to be somewhat more challenging to model than USDA subor-

ders, this comparison should be considered within the context of: (a) the number of classes,

and (b) similarity between classes. The WRB classification contains about two times more

classes than USDA suborders, and many WRB classes with highest confusion fall in taxo-

nomically similar groups. Further evaluation of classification accuracy has shown that, at the

level of WRB soil groups, map purity jumps to 60%, i.e. it becomes comparable to the USDA

system. Remaining WRB soil groups with map purity < 50% are Planosols, Phaeozems and

Ferrasols.

A more detailed assessment of prediction accuracy derived using the ROCR package, i.e. per

each individual class, shows that the average TPR is about 0.93 for USDA soil suborders

(Table 3), and about 0.90 for WRB classes (Table 4). Also maps of the scaled Shannon Entropy

index (Fig 9) indicate that produced soil class maps for USDA soil classification system are less

uncertain than for the WRB system: WRB classification is critically uncertain for Australia and

India, parts of Africa and highlands of Latin America. Maps of uncertainty closely reflect

extrapolation areas and could be potentially very useful for planning new soil surveys aimed at

mapping soil types. For example, Fig 10 shows that the highest confusion (lowest prediction

accuracy) is systematically connected with distribution of river valleys, urban areas and hill-

slopes.

In summary, the cross-validation results for predicting class probabilities indicate relatively

high correspondence between prediction probabilities and observed soil types, which is also

confirmed visually by overlaying observed classes and prediction probabilities. Nevertheless, it

appears from Tables 3 and 4 that for some classes, such as Cambisols, Luvisols, Fluvisols and

Planosols in the WRB system, and Aquepts, Fluvents and Aquents in the USDA Soil Taxo-

mony system, the confusion of predictions with other classes is still relatively high.

Discussion

In the following sections we address some remaining discussion points and suggest ways to

improve SoilGrids and embark on new research directions. Although we have reached current

effective limits imposed by software capabilities and availability of remote sensing data sources,

the accuracy of SoilGrids could still be improved. Globally, by adding more covariates based

on the most recent remote sensing data (see Fig 11), and locally, by combining global predic-

tions with local prediction models. Global models could be further improved especially by

revising (even re-designing) each of the three main components of the system:

• Soil training data,

• Statistical / Machine Learning models, and

• Covariate layers.

SoilGrids250m: Global gridded soil information
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Table 3. Classification accuracy for predicted USDA class probabilities based on 10–fold cross-validation, ordered according to number of occur-

rences. ME = “Mean Error”, TPR = “True Positive Rate”, AUC = “Area Under Curve”, N = “Number of occurrences”, USDA = “United States Department of

Agriculture” soil classification system. The 1st and 2nd most probable classes are taken from the confusion matrix.

Name ME (%) TPR AUC N 1st class 2nd class

Udalfs 0.0 0.88 0.93 6326 Udalfs Udults

Udults 0.0 0.91 0.95 4997 Udults Udalfs

Udolls 0.1 0.91 0.93 3901 Udolls Udalfs

Ochrepts 0.1 0.89 0.91 2720 Ochrepts Udalfs

Aqualfs 0.0 0.89 0.91 2594 Aqualfs Udalfs

Aquolls 0.1 0.89 0.90 2450 Udolls Aquolls

Udox 0.0 0.93 0.95 2229 Ustox Udox

Ustolls -0.2 0.95 0.97 2042 Ustolls Borolls

Borolls 0.1 0.97 0.98 2029 Borolls Albolls

Ustox 0.1 0.93 0.95 2024 Ustox Udox

Orthents 0.1 0.88 0.89 1911 Orthents Udults

Aquepts 0.0 0.87 0.88 1734 Aquolls Aquepts

Psamments 0.1 0.90 0.92 1725 Psamments Udults

Fluvents 0.1 0.84 0.85 1579 Udults Udalfs

Orthods 0.1 0.97 0.98 1538 Orthods Ochrepts

Udepts 0.1 0.90 0.91 1429 Udepts Udults

Aquents -0.1 0.84 0.85 1342 Aquepts Udalfs

Ustalfs -0.1 0.95 0.96 1332 Ustalfs Ustolls

Xerolls 0.0 0.97 0.98 1319 Xerolls Xeralfs

Argids -0.1 0.98 0.99 907 Argids Xerolls

Turbels 0.1 0.99 1.00 787 Turbels Orthels

Orthels 0.0 0.97 0.98 648 Ochrepts Orthels

Xeralfs -0.3 0.97 0.98 615 Xeralfs Xerolls

Usterts -0.2 0.97 0.98 590 Usterts Ustolls

Albolls -0.2 0.92 0.93 589 Borolls Aquolls

Xerepts -0.3 0.99 0.99 588 Xerepts Xeralfs

Arents -0.2 0.99 0.99 554 Arents Ustox

Aquults -0.2 0.94 0.94 380 Udults Aquults

Cambids -0.1 0.99 0.99 362 Cambids Argids

Humults -0.1 0.98 0.98 348 Humults Udults

Hemists -0.2 0.93 0.93 347 Ochrepts Hemists

Torrox -0.3 0.98 0.99 334 Ustox Torrox

Saprists -0.4 0.93 0.93 319 Saprists Udalfs

Histels -0.3 0.99 0.99 302 Histels Turbels

Aquods 0.0 0.94 0.94 301 Orthods Udults

Calcids -0.1 0.98 0.99 301 Argids Calcids

Ustults 0.0 0.99 0.99 286 Ustults Ustalfs

Fibrists 0.0 0.96 0.97 250 Fibrists Udults

Udands 0.0 0.99 0.99 234 Udands Udox

Xerands 0.0 0.99 0.99 231 Xerands Xerolls

Aquerts -0.2 0.95 0.95 226 Aqualfs Udalfs

Xererts 0.0 0.96 0.96 184 Xererts Xerolls

Uderts 0.0 0.95 0.96 177 Udults Uderts

Ustepts 0.0 0.97 0.97 175 Ustolls Ustepts

Cryands 0.0 0.99 0.99 161 Cryands Ochrepts

(Continued )
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Increasing and improving the quality and quantity of the training data

The most fruitful avenue for improving the current predictions is likely in improving the qual-

ity and quantity of soil profile data. ISRIC has invested decades in obtaining, digitizing, clean-

ing up and standardizing soil profile data. A large portion of these data (about 80,000 unique

points) is publicly available via ISRIC’s Web Feature Service WoSIS (http://wfs.isric.org/

geoserver/wosis/wfs) [61]; remaining soil profile data sets not publicly available via ISRIC’s

WoSIS WFS can be obtained by contacting the corresponding original data providers as listed

in the Acknowledgment section. This collection of soil profile data is of similar scope and util-

ity when compared to other international data initiatives in meteorology (e.g. Global Historical

Climatology Network) and biodiversity (http://gbif.org).

Although the training data shown in Fig 3 appear to be quite dense, there are still large gaps

in terms of representation of the feature space. Tropics, wetlands, semi-arid to hyper-arid

areas and mountains are still largely under-represented. There are undoubtedly millions of soil

field observations in the world unused for global soil mapping activities that could be collated

and used to improve predictions. FAO’s Global Soil Partnership (http://www.fao.org/

globalsoilpartnership/) has set as one of its main objectives the preparation of an international

compilation of reference soil profiles to help catalyze using soil data for decision making.

Hence, there are already some initiatives in this direction.

Harmonization of soil laboratory data and soil descriptive variables is another area that will

need to be improved. For example, we had to standardize soil depths for several databases by

re-aligning 0 depth to soil surface. Some soil databases only contain information about the

mineral soil and put the zero level at the start of the mineral soil. But such soils might have an

Table 3. (Continued)

Name ME (%) TPR AUC N 1st class 2nd class

Cryepts 0.0 0.98 0.98 150 Ochrepts Cryepts

Humods 0.0 0.92 0.92 149 Orthents Orthods

Cryods -0.1 0.99 1.00 133 Orthods Cryods

Torrerts -0.1 0.98 0.98 106 Ustolls Torrerts

Cryolls -0.2 0.99 0.99 79 Borolls Cryolls

Gelods -0.7 1.00 1.00 78 Turbels Gelods

Gypsids -0.1 0.99 0.99 70 Argids Gypsids

Vitrands -0.3 0.98 0.98 62 Vitrands Ochrepts

Torrands -0.3 0.99 0.99 60 Xerolls Torrands

Durids -0.3 0.99 0.99 59 Argids Xerolls

Xerults -0.3 0.97 0.97 53 Xeralfs Humults

Rendolls -0.5 0.93 0.93 41 Udalfs Ochrepts

Salids -0.6 0.94 0.94 37 Argids Fluvents

Cryalfs -0.7 1.00 1.00 32 Ochrepts Borolls

Folists -0.5 0.99 0.99 30 Orthods Cryods

Gelands -1.0 0.97 0.97 26 Gelods Turbels

Perox -0.7 0.99 0.99 21 Udults Perox

Aquands -0.7 0.98 0.98 19 Xerolls Udands

Ustands -0.9 1.00 1.00 17 Ustalfs Orthents

Aquox -1.0 0.98 0.98 16 Udults Udox

Cryids 0.99 0.99 8 Argids Borolls

Gelepts 0.83 0.83 6 Ochrepts Turbels

doi:10.1371/journal.pone.0169748.t003
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Table 4. Classification accuracy for predicted WRB class probabilities based on 10–fold cross-validation, ordered according to number of occur-

rences. ME = “Mean Error”, TPR = “True Positive Rate”, AUC = “Area Under Curve”, N = “Number of occurrences”, WRB = “World Reference Base” soil clas-

sification system. The 1st and 2nd most probable classes are taken from the confusion matrix.

Name ME (%) TPR AUC N 1st class 2nd class

Haplic Cambisols 0.1 0.78 0.81 5619 Haplic Cambisols Haplic Cambisols (Dystric)

Haplic Luvisols 0.1 0.86 0.88 2975 Haplic Luvisols Haplic Cambisols

Haplic Acrisols 0.0 0.93 0.94 2607 Haplic Acrisols Haplic Ferralsols

Haplic Ferralsols -0.1 0.94 0.95 1887 Haplic Ferralsols Haplic Acrisols

Haplic Fluvisols -0.1 0.88 0.89 1776 Haplic Fluvisols (Calcaric) Haplic Fluvisols (Eutric)

Haplic Calcisols 0.0 0.93 0.94 1745 Haplic Calcisols Calcaric Regosols

Haplic Kastanozems 0.0 0.96 0.97 1718 Haplic Kastanozems Haplic Luvisols

Gleyic Luvisols 0.0 0.92 0.93 1686 Albic Luvisols Gleyic Luvisols

Aric Regosols -0.2 0.91 0.92 1488 Calcaric Regosols Haplic Leptosols

Haplic Chernozems 0.1 0.96 0.97 1394 Haplic Chernozems Haplic Kastanozems

Albic Luvisols -0.1 0.94 0.95 1389 Gleyic Luvisols Haplic Luvisols

Calcaric Regosols -0.2 0.92 0.93 1379 Aric Regosols Haplic Leptosols

Haplic Podzols 0.1 0.96 0.97 1359 Haplic Podzols Haplic Cambisols

Haplic Cambisols (Dystric) 0.0 0.90 0.91 1334 Haplic Cambisols Haplic Podzols

Haplic Cambisols (Calcaric) -0.1 0.92 0.92 1173 Haplic Cambisols Haplic Calcisols

Haplic Phaeozems -0.1 0.90 0.91 1114 Haplic Phaeozems Haplic Chernozems

Haplic Lixisols 0.0 0.92 0.93 1094 Haplic Lixisols (Chromic) Haplic Lixisols

Haplic Leptosols 0.0 0.91 0.92 1092 Haplic Leptosols Haplic Leptosols (Eutric)

Haplic Gleysols 0.0 0.88 0.89 1054 Haplic Gleysols (Eutric) Haplic Cambisols

Haplic Vertisols 0.1 0.93 0.93 1040 Haplic Vertisols (Eutric) Haplic Vertisols

Haplic Arenosols 0.1 0.91 0.92 935 Haplic Arenosols Haplic Cambisols

Ferralic Arenosols 0.1 0.96 0.97 920 Ferralic Arenosols Haplic Ferralsols

Haplic Cryosols 0.0 0.99 1.00 884 Haplic Cryosols Haplic Cambisols

Haplic Cambisols (Eutric) 0.1 0.84 0.85 857 Haplic Cambisols Haplic Luvisols

Haplic Alisols 0.1 0.94 0.95 827 Haplic Acrisols Haplic Cambisols

Luvic Phaeozems -0.4 0.90 0.91 741 Luvic Phaeozems Haplic Luvisols

Rendzic Leptosols 0.0 0.94 0.95 695 Haplic Cambisols Rendzic Leptosols

Haplic Fluvisols (Calcaric) 0.0 0.94 0.94 692 Haplic Fluvisols Haplic Calcisols

Petric Calcisols 0.1 0.97 0.98 679 Petric Calcisols Haplic Calcisols

Haplic Regosols (Eutric) 0.1 0.86 0.87 677 Haplic Cambisols Haplic Luvisols

Lithic Leptosols 0.0 0.93 0.93 655 Haplic Ferralsols Haplic Acrisols

Umbric Gleysols 0.0 0.91 0.92 621 Mollic Gleysols Calcic Gleysols

Mollic Gleysols 0.0 0.91 0.91 575 Umbric Gleysols Calcic Gleysols

Haplic Vertisols (Eutric) 0.1 0.95 0.95 568 Haplic Vertisols Haplic Kastanozems

Haplic Gypsisols 0.1 0.98 0.98 565 Haplic Gypsisols Aric Regosols

Haplic Solonetz 0.1 0.92 0.92 539 Gleyic Solonetz Solodic Planosols

Calcic Gleysols 0.0 0.90 0.91 514 Umbric Gleysols Mollic Gleysols

Haplic Nitisols (Rhodic) 0.1 0.94 0.95 492 Haplic Ferralsols Haplic Acrisols

Haplic Fluvisols (Eutric) 0.1 0.91 0.91 465 Haplic Fluvisols Haplic Ferralsols

Haplic Lixisols (Chromic) 0.0 0.97 0.97 441 Haplic Lixisols Haplic Ferralsols

Calcic Vertisols -0.1 0.93 0.93 437 Calcic Vertisols Haplic Vertisols

Calcic Kastanozems -0.1 0.95 0.95 415 Haplic Kastanozems Haplic Luvisols

Leptic Regosols 0.1 0.96 0.96 404 Petric Calcisols Haplic Luvisols

Haplic Luvisols (Chromic) -0.1 0.93 0.93 396 Haplic Luvisols Haplic Ferralsols

Haplic Solonchaks 0.1 0.95 0.95 383 Haplic Solonchaks (Sodic) Haplic Solonchaks

(Continued )
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Table 4. (Continued)

Name ME (%) TPR AUC N 1st class 2nd class

Luvic Chernozems -0.1 0.93 0.93 377 Haplic Kastanozems Luvic Phaeozems

Acric Ferralsols 0.0 0.97 0.98 371 Haplic Ferralsols Acric Ferralsols

Fibric Histosols 0.0 0.96 0.96 371 Fibric Histosols Haplic Acrisols

Calcic Luvisols 0.0 0.92 0.92 369 Haplic Cambisols Haplic Luvisols

Calcic Chernozems 0.0 0.94 0.94 358 Calcic Chernozems Haplic Cambisols

Aluandic Andosols 0.0 0.97 0.97 341 Aluandic Andosols Haplic Cambisols

Luvic Calcisols 0.0 0.95 0.95 322 Haplic Calcisols Haplic Kastanozems

Protic Arenosols 0.0 0.99 0.99 322 Protic Arenosols Haplic Leptosols

Haplic Albeluvisols -0.1 0.97 0.97 321 Haplic Albeluvisols Haplic Cambisols

Mollic Solonetz -0.1 0.94 0.94 312 Gleyic Solonetz Haplic Kastanozems

Haplic Acrisols (Ferric) -0.1 0.95 0.95 310 Haplic Acrisols Haplic Cambisols

Haplic Planosols (Eutric) 0.0 0.89 0.89 310 Haplic Podzols Haplic Acrisols

Haplic Gleysols (Eutric) -0.1 0.93 0.93 306 Haplic Gleysols Haplic Acrisols

Ferralic Cambisols 0.0 0.93 0.93 301 Haplic Ferralsols Haplic Acrisols

Cryic Histosols -0.1 0.99 0.99 299 Cryic Histosols Haplic Cryosols

Gleyic Solonetz -0.2 0.94 0.94 282 Mollic Solonetz Haplic Solonetz

Haplic Cambisols (Humic) 0.0 0.92 0.93 273 Haplic Cambisols Haplic Acrisols

Leptic Phaeozems 0.1 0.97 0.97 267 Leptic Phaeozems Haplic Luvisols

Haplic Regosols (Dystric) 0.0 0.87 0.87 262 Haplic Cambisols Haplic Acrisols

Haplic Leptosols (Eutric) 0.0 0.93 0.93 261 Haplic Leptosols Haplic Calcisols

Acric Plinthosols 0.1 0.97 0.97 251 Haplic Acrisols Haplic Ferralsols

Hemic Histosols 0.0 0.97 0.97 250 Hemic Histosols Albic Luvisols

Endogleyic Cambisols 0.0 0.87 0.87 249 Haplic Cambisols Haplic Acrisols

Haplic Cambisols (Chromic) 0.0 0.93 0.93 242 Haplic Cambisols Haplic Ferralsols

Vertic Cambisols 0.1 0.88 0.88 241 Haplic Ferralsols Haplic Cambisols

Leptic Luvisols 0.2 0.96 0.97 229 Haplic Luvisols Leptic Phaeozems

Solodic Planosols 0.0 0.96 0.96 222 Haplic Solonetz Haplic Kastanozems

Hypoluvic Arenosols 0.0 0.96 0.96 205 Hypoluvic Arenosols Haplic Arenosols

Leptic Cambisols 0.1 0.94 0.94 199 Haplic Luvisols Petric Calcisols

Umbric Ferralsols 0.1 0.96 0.96 192 Haplic Ferralsols Haplic Acrisols

Gleyic Podzols 0.1 0.95 0.95 176 Gleyic Podzols Haplic Acrisols

Turbic Cryosols 0.0 0.99 1.00 168 Haplic Cryosols Turbic Cryosols

Vitric Andosols 0.1 0.97 0.97 166 Haplic Cambisols Aluandic Andosols

Haplic Acrisols (Humic) 0.0 0.96 0.96 164 Haplic Acrisols Haplic Cambisols

Haplic Fluvisols (Arenic) 0.0 0.98 0.98 163 Haplic Fluvisols Ferralic Arenosols

Stagnic Luvisols 0.0 0.93 0.93 163 Haplic Cambisols Haplic Luvisols

Mollic Leptosols 0.0 0.90 0.90 162 Petric Calcisols Haplic Leptosols

Haplic Acrisols (Alumic) 0.0 0.98 0.98 156 Haplic Acrisols Haplic Ferralsols

Plinthic Acrisols 0.0 0.94 0.94 152 Haplic Acrisols Plinthic Acrisols

Calcic Solonetz 0.0 0.93 0.93 149 Haplic Calcisols Haplic Kastanozems

Haplic Ferralsols (Xanthic) 0.0 0.96 0.96 146 Haplic Ferralsols Haplic Acrisols

Vertic Luvisols -0.1 0.93 0.94 140 Haplic Cambisols Haplic Luvisols

Haplic Lixisols (Ferric) -0.1 0.96 0.96 134 Haplic Lixisols Haplic Acrisols

Mollic Vertisols 0.0 0.96 0.96 133 Mollic Vertisols Haplic Cambisols

Haplic Solonchaks (Sodic) -0.1 0.97 0.97 130 Haplic Solonchaks Haplic Arenosols

Sapric Histosols -0.1 0.90 0.90 128 Haplic Cambisols Fibric Histosols

Haplic Ferralsols (Rhodic) -0.1 0.96 0.96 125 Haplic Ferralsols Haplic Acrisols

(Continued )
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organic layer as well. Since the thickness of the organic horizon of these soil profiles is not

reported, their vertical coordinates could not be corrected. There are many situations like this

that require careful analysis of harmonization steps, so that any serious over or under-estima-

tion can be avoided.

It is also fundamentally important that we do not limit ourselves to legacy soil profile data

only. The soil science community needs to actively begin investing in collecting new soil pro-

file field observations, especially in the previously mentioned ecological and climatic zones

that have been under-sampled. For example, the AfSIS project (http://africasoils.net) has spent

already half a decade on collecting new samples for Africa. We believe that there is great poten-

tial in undertaking various types of feature space distribution analysis (see e.g. Minasny et al.

[62] and Fitzpatrick et al. [63]) and optimizing new sampling of additional soil profiles using,

for example, Latin Hypercube sampling principles. By adding only a few hundred new points

that are carefully allocated in extrapolation areas, the accuracy of predictions is likely to

improve more rapidly than if we double the number of points in areas already well repre-

sented. Collection of the new samples could even be implemented via crowd labour or crowd-

sourcing systems so that also local soil surveyors / enthusiasts could get involved (we are

currently testing using MySoil observations contributed by non-specialists, kindly donated to

SoilGrids by the British Geological Survey).

Table 4. (Continued)

Name ME (%) TPR AUC N 1st class 2nd class

Calcic Gypsisols -0.4 0.96 0.96 124 Calcaric Regosols Haplic Calcisols

Haplic Cambisols (Sodic) -0.1 0.98 0.98 120 Haplic Cambisols Ferralic Arenosols

Haplic Calcisols (Sodic) -0.4 0.98 0.98 115 Haplic Calcisols Haplic Cambisols

Haplic Fluvisols (Dystric) -0.2 0.93 0.93 107 Haplic Fluvisols Haplic Ferralsols

Haplic Gleysols (Dystric) -0.3 0.91 0.91 100 Haplic Gleysols Haplic Ferralsols

Gypsic Solonchaks -0.4 0.98 0.98 98 Haplic Gypsisols Calcaric Regosols

Haplic Luvisols (Ferric) -0.2 0.95 0.95 98 Haplic Luvisols Haplic Lixisols

Haplic Arenosols (Calcaric) -0.3 0.94 0.94 97 Haplic Arenosols Haplic Calcisols

Umbric Albeluvisols -0.2 0.99 1.00 97 Umbric Albeluvisols Haplic Albeluvisols

Alic Nitisols -0.1 0.98 0.98 70 Haplic Acrisols Alic Nitisols

Haplic Andosols -0.2 0.93 0.93 67 Aluandic Andosols Haplic Luvisols

Haplic Planosols (Dystric) 0.0 0.92 0.92 62 Ferralic Arenosols Haplic Ferralsols

Luvic Stagnosols 0.0 0.99 0.99 61 Haplic Cambisols Gleyic Luvisols

Haplic Umbrisols 0.0 0.93 0.93 57 Haplic Cambisols Haplic Acrisols

Albic Arenosols -0.1 0.93 0.93 54 Haplic Acrisols Haplic Arenosols

Lixic Plinthosols -0.2 0.94 0.94 49 Haplic Ferralsols Haplic Acrisols

Leptic Umbrisols -0.4 0.97 0.97 40 Haplic Luvisols Haplic Leptosols

Petric Durisols -0.3 1.00 1.00 39 Petric Durisols Haplic Phaeozems

Cutanic Alisols -0.4 0.98 0.98 34 Haplic Cambisols Cutanic Alisols

Endogleyic Planosols -0.2 0.93 0.93 34 Haplic Acrisols Haplic Luvisols

Haplic Regosols (Sodic) -0.5 0.97 0.97 34 Haplic Vertisols Leptic Regosols

Luvic Planosols -0.4 0.88 0.88 29 Haplic Luvisols Haplic Cambisols

Calcic Histosols -0.9 0.94 0.94 18 Haplic Acrisols Haplic Gleysols

Vetic Acrisols -1.6 0.90 0.90 15 Haplic Acrisols Haplic Ferralsols

Histic Albeluvisols -2.3 1.00 1.00 13 Umbric Albeluvisols Fibric Histosols

Vitric Cryosols -2.3 1.00 1.00 13 Vitric Cryosols Haplic Cambisols

doi:10.1371/journal.pone.0169748.t004
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Improving the modeling framework

A major improvement from SoilGrids1km to SoilGrids250m is that we now consistently use

machine learning techniques to generate predictions. In the previous version of SoilGrids we

used various types of (Generalized) Linear Models in combination with natural splines to

model soil property-depth relationships, but this resulted in soil property-depth relationships

that were the same across the globe, which is unrealistic and suboptimal. To tackle such prob-

lems we now use dominantly tree-based models—random forest and gradient tree boosting—

to account for local relationships between soil variables and covariates. Fig 2 (left) shows that,

Fig 9. Maps of scaled Shannon Entropy index (Eq 5) for USDA and WRB soil classification maps.

doi:10.1371/journal.pone.0169748.g009
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indeed, predictions produced using tree-based models adjust locally to observed values. The

current version of SoilGrids is thus, we contend, able to better represent both global and local

patterns.

It has already been demonstrated that random forest can outperform linear models, espe-

cially in being able to better represent complex non-linear relationships in large data sets [64–

66]. Likewise, gradient tree boosting has already won several Kaggle.com competitions (Kaggle

is a platform for predictive modeling and analytics competitions on which companies and

researchers post their data and statisticians and data miners from all over the world compete

to produce the best models). However, tackling the complexities of data size has been a major

challenge. In the case of SoilGrids, the regression matrices had up to one million point pairs

with over 150 covariates, hence their size and complexity well exceeds what can be handled

with desktop computers. Ultimately, we decided to primarily rely on three R packages—

caret [49], ranger [47] and xgboost [48]—that have proven to be capable of processing

huge raster stacks. By using these three open source packages and a single dedicated server

Fig 10. Example of scaled Shannon Entropy index for USDA and WRB soil classification maps with a zoom in on USA state Illinois near the

city of Chicago. This figure uses the same legend as used in Fig 9.

doi:10.1371/journal.pone.0169748.g010
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(current costs of about $800 / month) we were able to optimize and fit all models needed to

generate SoilGrids within a few hours, and to generate all predictions for the entire world

within 12 days.

Machine learning (ML) greatly simplifies model fitting: basically, a soil surveyor does not

need to suggest or impose any relationships—the analyst only needs to list a target variable

and covariates, and machine learning does the ‘magic’ of optimizing model parameters. On

the one hand this is an attractive property because using the ML framework for global soil

mapping allows mapping hundreds of soil variables in parallel with little human interaction.

On the other hand it has also risks and limitations:

• ML is sensitive to noise and errors in the data. Even a few typos in the input values can result

in significant blunders in output maps,

• The computational intensity of ML, when compared to fitting linear models or similar, is an

order of magnitude greater. As the number of training points grows, the computational load

Fig 11. List of some remote sensing data of relevance for global soil mapping projects (i.e. with a near to global

coverage and with remote sensing technology of interest to soil mapping). Landsat 8 is part of the Landsat Data

Continuity Mission (LDCM) maintained by NASA and the United States Geological Survey (USGS). ALOS Global Digital

Surface Model is a product of the Japanese Aerospace Exploration Agency. Sentinel–1,2 is the Earth observation

mission developed by the European Space Agency as part of the Copernicus Programme. WorldDEM™ is a commercial

product distributed by Airbus Defence and Space.

doi:10.1371/journal.pone.0169748.g011
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grows exponentially. At some stage, it becomes currently infeasible and overly expensive to

compute predictions using machine learning,

• Extrapolation of models fitted using ML remains risky. Without using pseudo-points to fill-

in data gaps in feature space for some parameters, machine learning can potentially produce

worse maps (on average for most of the soil mask) than linear models,

• Because the sampling locations are clearly biased towards agricultural areas, and because

most of the training points come from the developed world (especially USA), it is very well

possible that SoilGrids predictions are significantly biased in undersampled parts of the

world. In principle, the best solution to this problem is to continuously add more points

from undersampled areas, especially in Africa (tropical soils and wetlands) and the Russian

Federation,

• With ML approaches it is difficult to derive spatially explicit measures of the prediction accu-

racy. We calculated accuracy measures using 10–fold cross-validation, but these are only

global measures.

• ML approaches have a high degree of “black box” modeling and it is difficult to incorporate

knowledge of soil forming processes in the prediction algorithm. But perhaps we can also

learn from ML models by closer inspection and interpretation of how dominant covariates

influence soil property and soil class predictions.

Could machine learning put soil mappers out of work? Probably not. Solid knowledge of

soil science, spatial statistics and/or geostatistics in projects such as SoilGrids is needed more

than ever. For example, it is clear that in order to improve SoilGrids, more focus will need to

be put on improving the feature space representation (adding extra samples) and on improv-

ing visualization and interpretation of complex relationships. Such improvements are not pos-

sible without understanding principles of spatial sampling and soil-environment relationships.

Expert knowledge on soil-landscape relations and soil distribution remains important to eval-

uate the results and assess if predicted spatial patterns make sense from a pedological view-

point. Even though the existing machine learning methods have proven to show improved

predictive performance, much work remains to make them more robust, less sensitive to blun-

ders, incorporate soil-landscape process knowledge and make them more suited for input data

of variable accuracy.

With the current version of SoilGrids, we have also not yet adequately addressed the prob-

lem of vertical soil stratigraphy. At this stage, we remain unable to properly model how some

soil horizons show smooth transition of soil properties, and some show clear and abrupt dis-

continuities (as in geological layers on a meso-scale). In the next update of SoilGrids we hope

to improve modeling and prediction of occurrence of diagnostic soil horizons (e.g. Histic,

Nitic, Albic etc) in 3D, so that transitions between horizons can be represented more

accurately.

Preparation and conversion of soil class input data could also be much improved. Several

research groups [67, 68] are now looking into automating soil classification (i.e. by using auto-

mated or semi-automated soil classification software). Eberhardt [69], for example, demon-

strated using German soil profile data that soil classification can be completely automatized.

Future versions of SoilGrids could also try to derive soil classes by applying exact rules per

pixel, instead of trying to predict them from point data. This might be an ambitious project—

often the classification systems (keys and rules of classification) can be very detailed and

require a comprehensive combination of diagnostic properties, laboratory data, soil-moisture

and temperature regimes, etc. in order to deduce the correct classification. This is without

SoilGrids250m: Global gridded soil information

PLOS ONE | DOI:10.1371/journal.pone.0169748 February 16, 2017 29 / 40



considering the sensitivity of such classifiers to data gaps and uncertainties. Incorporating

uncertainty into such complex soil classification algorithms is yet another challenge. So far, we

have managed to produce global maps of the scaled Shannon Entropy index (Fig 9) that clearly

indicate under-represented areas. A sensible approach to improving predictions of soil types

would be to set the sampling intensity proportional to the Shannon Entropy index or

completely focus on areas where the Shannon Entropy index is > 80%. In that sense, there

seems to be slightly more work needed for the WRB classification system than for the USDA

system.

We have also so far explicitly avoided trying to model posterior distributions of target var-

iables, i.e. map uncertainty for each soil variable. Although tools for modeling uncertainty in

ML methods already exist (see e.g. Meinshausen [70]), these are hundreds of times more

computationally intensive and will probably need to be re-implemented in some high-per-

formance computing infrastructure. One future objective is to implement a framework to

model uncertainties of all predictions using a robust statistical framework, such as quantile

regression forests, but this might be highly challenging, especially when the data volumes

grow larger.

Another opportunity for improvement lies in using spatiotemporal modeling [71, 72] vs

purely spatial modeling. Stockmann et al. [2] recently made progress in modeling global soil

organic carbon dynamics, mainly using time-series of MODIS land cover images, but numer-

ous challenges remain:

• There might not be enough well-distributed soil profile data in the time-domain that support

fitting of spatiotemporal (and/or dynamic) models. As we move back further in the past,

there are fewer and fewer observations, so potential time-domain gaps are possibly an order

of magnitude more serious than spatial data gaps,

• Some soil properties such as soil water content, soil temperature, and even soil nutrients,

change not simply within seasons, but also within weeks or days. At this stage, global fitting

of spatiotemporal models for such variables that vary at short time scales might remain unat-

tainable (until new global soil monitoring networks are established),

• Legacy soil profile data exhibit a significant noise (diversity of methods, laboratories) so that,

for example for soil organic carbon, where temporal dynamics are slow, it will be difficult to

detect real changes in time in a situation where the signal-to-noise ratio is low,

• It is almost impossible to properly validate spatiotemporal predictions produced for past

periods of time. There are very few and sparse validation soil data collected using objective

probability sampling designs (as described in Brus et al. [60]). Eventually, we might never

know how accurate our models are in predicting the past status of soil from 50 or 100 years

ago. One possible solution to this problem is linking soil science more directly with paleon-

tology and archeology, but this will probably not work for all soil variables.

Predicting at resolutions finer than 250 meter

Because the algorithms and software we have used in this work are already optimized for

processing large data, this opens a possibility to further speed up model fitting and predic-

tion and to generate predictions at ever finer resolutions. Fig 11 identifies some new remote

sensing data land products of relevance to global soil mapping. Note that some remote sens-

ing products, such as Landsat 8 and ASTER (distributed as scenes), require significant pro-

cessing capacities before they can be assembled and prepared for use in global soil mapping.

Nevertheless, considering the amount of remote sensing data available publicly today, we
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anticipate that the Open Source software used in this work will soon (12–24 months) be able

to support generation of 30 m resolution SoilGrids, provided that enough resources exist to

cover the costs of preparing soil covariates and producing global predictions at these fine

resolutions.

Presently, the biggest challenges for upgrading SoilGrids to finer resolution are the

resources required to prepare all required remote sensing input data and computational capac-

ity needed to make fine resolution predictions globally. The software seems to be much less of

a problem. Although R has been often criticized for not being suited for large GIS layers, our

experience with SoilGrids has convinced us that, with proper combination of parallelization

and tiling of objects, and by using packages implemented in C++ or similar, equally efficient

computing can be achieved with ranger and xgboost (hence within R) or by using soft-

ware such as h2o (based on Java). The remaining bottleneck of R we experienced was the

size of models produced using random forest—the objects often exceeded 5–10 GiB and as

such require significant RAM during predictions. Such memory problems in R could possibly

be solved via the following two strategies:

1. Disk caching: by using the ff or a similar packages to save the forests on disk,

2. Efficient tree representation: transform trees to a simpler structure with the same output.

In the case of random forest, the number of trees required for a given accuracy depends on

the number of rows and columns, i.e. the number of observations (n) and covariates (p). Usu-

ally, for many rows only few trees are required, while for p� n problems (for example in

genetics) many more trees are needed. It should be generally fine to reduce the number of

trees to fewer than 300 but this could be at the expense of loss in accuracy. Lopes [73] shows a

framework, based on bootstrapping, to detect an optimal number of trees given some error

threshold. For example, in many cases, even 150 trees is sufficient to achieve stable results after

which a trade-off between computation time and accuracy offers no additional advantages.

We have not tried fine-tuning the number of trees per property (we consistently use 300 trees

as a practical compromise between precision and computing time) because this would have

been an additional load to the project.

Another serious challenge to producing finer resolution SoilGrids is the current lack of

adequately detailed geological data, i.e. data to represent the underlying lithology and min-

eralogy. We have thus far used the Global Lithological Map (GLiM) [35] as the key layer to

represent parent material, but this layer is probably even coarser than 1 km resolution

remote sensing covariates, and still contains numerous artifacts such as country/state bor-

ders. Although the OneGeology initiative is of obvious interest to global soil mapping proj-

ects, it has not, so far, delivered any globally consistent and complete information on parent

material. Likewise, the latest most accurate DEM of the world (WorldDEM™) is an order of

magnitude more accurate and more detailed than the SRTM DEM [74] and as such would

be an ideal covariate for many regional and global soil mapping projects. However, it will

likely remain a commercial product available to larger business only (civil engineering and

mineral exploration), and hence of limited use to global soil mappers. In that sense, USA’s

NASA and USGS, with its MODIS, Landsat and similar civil-applications missions will

likely remain the main source of spatial covariate data to support global soil mapping

initiatives.

Other potentially useful covariates for predicting soil properties and classes could be maps

of paleolithic i.e. pre-historic climatic conditions of soil formation, e.g. glacial landscapes and

processes, past climate conditions and similar. These could likely become significant predic-

tors of many current soil characteristics. Information on pre-historic climatic conditions and
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land use is unfortunately often not available, especially not at detailed cartographic scales,

although there are now several global products that represent, for example, dynamics of land

use / changes of land cover (see e.g. HYDE data set by Klein et al. [75]) through the past 1500+

years. As the spatial detail and completeness of such pre-historic maps increases, they will

become potentially interesting covariates for global soil modeling.

Merging global and local: A system for automated soil image fusion

SoilGrids is not expected to be as accurate or relevant as locally produced maps and models

that make use of considerably greater amounts of local point data and finer local covariates.

This is especially the case for OECD countries that can draw upon orders of magnitude

more soil profile data than were used in this work (for illustration, it is estimated that

German Federal agencies alone have in possession 2–3 million complete soil profiles).

Comparison of SoilGrids with similar national or continent-wide products shows that there

is a general match in spatial patterns for many physical and chemical soil properties,

although there are still substantial differences (Fig 12). This indicates that promising possi-

bilities exist for further combination of local and global predictions (see further

discussion).

For both Tasmania and California, SoilGrids seems to show somewhat smoother predic-

tions, with some smoothing of higher and lower values, which is especially visible in the cross-

histogram scatter plots (Fig 12). SoilGrids tends to overestimate soil pH for parts of Tasmania

covered with rainforests mainly. There were not many ground observations to support the pre-

diction models for those areas, hence some systematic deviation could be expected and will

likely occur in other similar areas as well. We did not run a systematic comparison of values

for all soil properties, but Fig 12 indicates that merging SoilGrids250m with 100m resolution

predictions using higher density of local soil profiles could help to gradually improve accura-

cies locally and to fill gaps in locally generated predictions.

Mulder et al. [10] correctly recognized that, in many areas in the world, locally produced

predictions of soil properties could likely be significantly more accurate than SoilGrids. Our

hope is, nevertheless, that SoilGrids250m will be used by national and regional soil data pro-

duction teams with, or as a supplement to, local data, and that ultimately most users will use

merged (ensemble) global-local predictions for final decision making. We especially recom-

mend the following two frameworks for combining global and local data:

1. SoilGrids predictions as covariate layers for producing finer resolution local predictions of

soil properties (i.e. as an input for downscaling),

2. Ensemble predictions = SoilGrids + local soil spatial prediction models combined.

Option 2, i.e. produce ensemble predictions for smaller areas for which finer resolution

and/or higher quality soil covariates are available, is possibly the most attractive option consid-

ering that local and global predictions can then be generated independently. In that sense, Soil-

Grids could also be considered to be just one (the coarsest) component of a global soil

variation curve (Fig 13). But how many components to use to represent soil variation? Are two

components enough? How to optimally merge components where the accuracy is unknown

(not enough ground data for validation)? These will be areas of further research. In that con-

text, Malone et al. [77] recently made progress in testing and developing methods for merging

predictions from polygon-based maps and maps derived using spatial predictions. However,

running such models in an automated way for large areas (i.e. a system for an automated soil

image fusion) might take years before an operational system for global soil data fusion is fully

functional.
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Conclusions

Soil has long been considered one of the least developed global environmental layers with data

available only at coarse resolutions and with limited accuracy [78, 79]. ISRIC—World Soil

Information has a vision and a mission to produce soil information and map products that are

globally complete and consistent, scientifically robust, open, transparent and reproducible,

continuously improved and updated, easy to discover and access, easy to use and meaningful

to users. With this next generation SoilGrids250m we hope to continue to demonstrate prog-

ress in the production and distribution of improved global soil map products and to motivate,

especially non-soil scientists, to use these new soil data in their models and spatial planning,

i.e. directly as input for generation of soil functional properties and agro-ecological variables

and indicators to support decision making. With its Open Data license and web-services, we

aim to serve quality soil information freely and universally for science, society and a sustain-

able future.

Fig 12. Comparison between predicted soil pH: (above) SoilGrids (our predictions) for part of California and predictions based on the SSURGO

data set (for 0–200 cm depth interval) developed by the National Cooperative Soil Survey, (below) SoilGrids (our predictions) for Tasmania and

predictions based on the Soil and Landscape Grid of Australia [76] (for 0–5 cm depth interval). The correlation coefficients between the two data

sources are 0.79 and 0.71, respectively. Crosses on the map indicate soil profiles used for generating SoilGrids.

doi:10.1371/journal.pone.0169748.g012
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We have demonstrated, using a series of cross-validation tests, that the new version of

SoilGrids represents a significant improvement upon the previous products at 1 km resolu-

tion, especially in terms of spatial detail and attribute accuracy. Future work is required to

determine if these improvements in accuracy could also help produce more accurate Global

Gridded Crop Models (GGCMs) that allow for more reliable estimates of impact of climate

change and land degradation on food production [8]. Data accessibility problems with Soil-

Grids have also been addressed: SoilGrids are now available for viewing in fusion with satel-

lite imagery via the data portal SoilGrids.org (Fig 14). SoilGrids rasters can also be

downloaded via FTP for smaller areas; at point locations through the SoilInfo App and the

REST SoilGrids. There should be fewer and fewer obstacles for ecologists, agronomists,

hydrologists, climatologists, foresters and spatial planners to discover, obtain and use soil

data in their daily work.

Fig 13. SoilGrids can be considered the ‘coarsest’ component of the global soil variation ‘signal’ curve. Other components, e.g. finer

products based on local / more detailed 250–100 m resolution imagery, could be added to produce a merged product.

doi:10.1371/journal.pone.0169748.g013
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71. Kilibarda M, Hengl T, Heuvelink G, Gräler B, Pebesma E, Perčec TadićM, et al. Spatio-temporal inter-

polation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical

Research: Atmospheres. 2014; 119(5):2294–2313.
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