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Preliminary report
Miljan Kovačević, Nenad Ivanišević, Tina Dašić, Ljubo Marković

Application of artificial neural networks for hydrological modelling in karst

The possibility of short-term water flow forecasting in a karst region is presented in 
this paper. Four state-of-the-art machine learning algorithms are used for the one 
day ahead forecasting: multi-layer perceptron neural network, radial basis function 
neural network, support vector machines for regression (SVR), and adaptive neuro 
fuzzy inference system (ANFIS). The results show that the ANFIS model outperforms 
other algorithms when the root mean square error and mean absolute error are 
used as quality indicators.
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Prethodno priopćenje
Miljan Kovačević, Nenad Ivanišević, Tina Dašić, Ljubo Marković

Primjena neuronskih mreža za hidrološko modeliranje u krškom području

U ovom radu je razmatrana mogućnost kratkoročnog predviđanja protoka vode u krškom 
području. Četiri suvremena algoritma strojnog učenja su korištena za predviđanje 
protoka jedan dan unaprijed i to: neuronska mreža s višeslojnim perceptronom, 
neuronska mreža s radijalnom aktivacijskom funkcijom, metoda potpornih vektora 
za regresiju (SVR), adaptivni neuroneizraziti (fuzzy) sustav zaključivanja (ANFIS). 
Rezultati pokazuju da ANFIS model nadmašuje ostale algoritme kada se korijen srednje 
kvadratne popogreške i srednja apsolutna pogreška upotrijebe kao mjere kvalitete.

Ključne riječi:
umjetna neuronska mreža, SVR, ANFIS, odnos oborine-otjecanje u krškom području 

Vorherige Mitteilung
Miljan Kovačević, Nenad Ivanišević, Tina Dašić, Ljubo Marković

Anwendung von neuralen netzen für die hydrologische modellierung im 
karstgebiet

In dieser Abhandlung wird die Möglichkeit einer kurzfristigen Vorhersage des 
Wasserflusses im Karstgebiet betrachtet. Vier moderne maschinelle Lernalgorithmen 
wurden angewendet, um den Durchfluss einen Tag im Voraus vorherzusagen, und 
dies: neurales Netz mit mehrschichtigem Perzeptron, neurales Netz mit radialer 
Aktivierungsfunktion, unterstützende Vektoren.Regressionsmethode (SVR), 
adaptives Neuro-Fuzzy-Inferenzsystem (ANFIS). Die Ergebnisse zeigen, dass das 
ANFIS-Modell die übrigen Algorithmen übertrifft, wenn die Wurzel des mittleren 
quadratischen Fehlers und des mittleren absoluten Fehlers als Qualitätsmaß 
herangezogen wird.

Schlüsselwörter:
künstliches neurales Netz, SVR, ANFIS, Verhältnis Niederschlag-Abfluss im Karstgebiet
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1. Introduction

Water resources systems are complex systems featuring 
numerous interactions and complex structures. They are 
characterized by a number of uncertainties regarding the system 
input, required system output, state of the system, goals, 
models, etc. In such conditions, the system management is very 
complex and difficult. One of the key parameters in all water 
resources planning and management tasks is the availability of 
water resources, usually defined as the flow rate at the gauging 
station. Various hydrological models can be applied to reduce 
uncertainties of this parameter, including stochastic models (e.g. 
regression, neural networks) or process-based (deterministic) 
models. They usually rely on meteorological observations and 
catchment characteristics.
Hydrological forecasting is commonly used for the prediction of 
river flow. It can be divided into short-term, mid-term and long-
term forecasting [1]. Based on principles adopted by the World 
Meteorological Organization (WMO), short-term hydrological 
forecasts cover a period of up to two days, mid-term forecasts 
apply to a period ranging from 2 to 10 days, and long-term 
hydrological forecasts refer to a period exceeding 10 days.
The case study described in the paper refers to a karst area 
in Bosnia and Herzegovina, with numerous ponors, springs, 
estavelles, karst poljes, and underground karst channels. 
Water flow in karstic zones is considered to be a complex 
hydrogeological phenomenon [2, 3]. Surface water flow is rarely 
encountered, and groundwater flow is directed depending on the 
existence of underground karst conduits. The function of these 
karstic conduits is complex and subject to extreme seasonal 
variations, including flow reversals. Modelling water flow in such 
hydrogeological conditions is highly complex and is hindered by 
numerous uncertainties. Therefore, a "black-box" approach was 
applied to predict discharge. More precisely, four machine learning 
algorithms were applied and their results were compared.
The application of machine learning to hydrological modelling 
problems constitutes a constantly growing field of research. 
In general terms, machine learning methods are suitable 
for modelling and forecasting the changes of functional 
characteristics of various systems, as they can be trained to 
find solutions, recognize model behaviour, classify data, and 
predict future events [4]. In hydrology, machine learning is 
most often applied to forecast water flow and water levels 
in rivers [5], although it can also be used in problems related 
to the transport of sediments [6], water quality modelling [7], 
identification of water areas prone to flooding [8], and in many 
other applications related to water resources.
Artificial Neural Networks (ANN) such as the Multi-Layer 
Perceptron (MLP), Generalized Regression Neural Networks 
(GRNN), and Radial Basis Function (RBF), rank among the 
machine learning techniques that are most widely applied in the 
sphere of hydrological modelling [9].

An Adaptive Neuro-Fuzzy Inference System (ANFIS) 
integrates both neural networks and fuzzy logic principles 
with the inference system that corresponds to a set of fuzzy 
if–then rules that can approximate nonlinear functions. 
Hence, it can potentially benefit from both the ANN and 
fuzzy logic within a single framework. Sanikhani et al. (2015) 
modelled two different ANFIS models – the ANFIS with 
grid partition (ANFIS-GP) and the ANFIS with subtractive 
clustering (ANFIS-SC) with gene expression programming 
(GEP) – in order to forecast one, two, and three months in 
advance the lake level fluctuations at Manyas and Tuz lakes 
in Turkey [10]. Rezaeianzadeh et al. (2014) applied the ANN, 
ANFIS and regression models for forecasting the maximum 
daily flow at the outlet of the Khosrow Shirin watershed, 
located at the Fars Province in Iran [11]. Tien Bui et al. (2016) 
proposed a neural fuzzy inference system and metaheuristic 
optimization for the flood susceptibility modelling. A high-
frequency tropical cyclone area of the Tuong Duong district 
in Central Vietnam was used as a case study [12]. Chang et 
al. (2014) modelled water quality using two static artificial 
neural networks (MLP and ANFIS) and one dynamic artificial 
neural network (NARX) for the Dahan River basin in Taiwan 
[13]. 
Support Vector Machines (SVM) belong to a group 
of supervised learning models that are used for the 
classification and regression analyses. In addition to 
performing linear classification or regression, SVMs can 
efficiently perform a non-linear classification/regression 
using the so called kernel trick, by learning mapping into 
the high dimensional kernel induced feature space. Grenata 
et al. (2015) applied SVMs for rainfall-runoff modelling 
using the SVM regression variant called Support Vector 
Regression (SVR) for two experimental basins located in 
northern Italy [14]. Hosseini and Mahjouri (2016) presented 
a new rainfall-runoff model called SVR-GANN, where the 
SVR model is combined with a geomorphology-based ANN 
model in a case study of three sub-basins located in a semi-
arid region in Iran [15]. Gizaw and Gun (2016) developed 
the Regional Flood Frequency Analysis (RFFA) model based 
on SVR to estimate regional flood quantiles for two study 
areas in Canada [16]. He et al (2014) compared ANFIS and 
SVM for forecasting river flow in a semiarid mountain region 
in north-western China [17]. Gong et al. (2015) used the 
ANN, SVM and ANFIS for forecasting groundwater levels 
near Lake Okeechobee, Florida [18]. 
A comparative analysis of several state-of-the-art 
machine learning algorithms for rainfall and runoff 
forecasting for the Buna Spring is presented in the paper. 
The MLP and RBF neural networks, and SVM and ANFIS 
algorithms for short-term prediction of river flow based 
on the precipitation and flow in the previous two days, are 
analysed.
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2.  Machine learning techniques for hydrological 
modelling

2.1. Multilayer perceptron neural network 

The multilayer perceptron is a feed-forward neural network 
consisting of at least three layers: input layer L1, hidden layer 
L2, and output layer L3. Each layer is composed of one or more 
processing units called neurons, where each neuron in one 
layer is connected to each neuron of the next layer, as shown 
in Figure 1a. Multiple neuron layers with nonlinear transfer 
functions allow the network to learn nonlinear relationships 
between input and output vectors.
Most often the sigmoid activation function is used in the hidden 
layer. It is defined by:

 (1)

while the linear activation function is used in the output layer. 
The ANN with one hidden layer whose neurons have the 
sigmoid activation function, and whose neurons in the output 
layer have the linear activation function, can approximate 
multidimensional function for the given set of data when there 
is a sufficient number of neurons in the hidden layer [19].
The number of neurons in the hidden layer is determined 
experimentally. It is possible to determine the upper limit, i.e. 
the maximum number of neurons in the hidden layer that can 
be used for modelling the system represented by a specific set 
of data. It is suggested to accept the lower value of the number 
of neurons in the hidden layer NH given by (2) and (3), where NI 

represents the number of inputs in the neural network, and NS 

represents the number of samples for training [20, 21].

 (2)

 (3)

The use of the MLP neural network with one hidden layer 
trained with Levenberg-Marquardt algorithm is proposed in 
this paper.

2.2. Radial basis function neural network

The RBF neural network is composed of an input layer, a hidden 
layer, and an output layer. Neurons in the hidden layer contain 
the nonlinear RBF activation function (Figure 1.b). Given input  
= {x1, x2, ..., xn}  R, the output of the network ϕ is given by

 (4)

where N is the number of neurons in the hidden layer, t is the 
radius (spread) of the radial basis function, ci is the center vector 
of i-th neuron, and ωi is the weight of i-th neuron. 
Different types of radial basis functions could be used, but 
the one used in this paper is the Gaussian function . 
The norm is typically taken to be the Euclidean distance. The 
Euclidean distance is computed from the point being evaluated 
to the centre of each neuron, and the radial basis function is 
applied to the distance to compute the weight for each neuron. 
The parameters ωi, ci and t are determined to optimize the fit 
between ϕ and the data [22].
Given n training data points {(x1, y1), ..., (xn, yn)}, the goal of the 
RBF network learning algorithm is to produce such set ci and 
weights ωi (i = 1, 2, ..., N) so that (xj) ≈yj, (j = 1, 2, ..., n).
The RBF network positions one or more RBF neurons in the 
space described by the inputs. The radial basis function for 
neuron is defined by a centre and a radius. The farther a neuron 
is from the point being evaluated, the less influence it has and 
the corresponding weight ωi is smaller. However, with larger 
radius, neurons farther from a point have greater influence 
compared to the case when radius is smaller.

2.3.  Support vector machines for 
regression

Suppose a set of training data {(x1, y1), ..., 
(xn, yn)}  Rn x R, is given, where xi denotes 
observations and yi are the observed 
response values (targets) for these 
observations. The SVR technique (Figure 
1.c) aims to find an approximating 
function f(x) that has an ε deviation from 
the observed targets yi for all training 
data xi.
For the linear SVR, this approximating 
function (4) can be written as 

f(x) =  + b sa ω  X, b  (5)Figure 1.  Analysed model types: a) MLP neural network; b) RBF neural network; c) SVR;  
d) ANFIS
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where  represents the dot product. In order to get a 
suitable approximating functions f one should search for small 
ω and constant C, which will optimize an objective function 
given in [5]:

min  (6)

subject to  (7)

where xi and xi 
* are slack variables, as shown in Figure 2. The 

constant C > 0 is the parameter chosen by the user that denotes 
the amount of deviation larger than ε that can be tolerated. An 
increase in C penalizes larger errors (larger xi and xi 

*) and, in this 
way, it leads to the decrease in approximation error. Another 
parameter chosen by the user is the required precision ε.

Figure 2. Nonlinear SVR with ε insensitive loss function

The solution of (6) and (7) can be found by introducing a 
Lagrangian function with the dual set of variables. The final 
approximate function can be written as

 i zato  (8)

and the bias term b as

b = yi -  - ε for 0 < a1 < C
 (9)
b = yi -  + ε for 0 <  < C

When training patterns xi are mapped to a higher dimensional 
space using the mapping , the dot product is 

. The final approximate function then 
becomes

 (10)

For linear SVR, the kernel is , while different 
kernel functions, e.g. polynomial, sigmoid or RBF, can be used in 
nonlinear case. RBF and sigmoid kernels used in this paper are 
defined as presented in [11, 15-18]: 

 (11)

 (12)

2.4. Adaptive neuro-fuzzy inference system

The adaptive neuro-fuzzy inference system (ANFIS) is a sort 
of neural network (figure 1.d) that is based on the Sugeno 
fuzzy inference system. Its inference system corresponds to a 
set of fuzzy if–then rules that have the learning capability for 
approximating nonlinear functions [22]. 
Figure 2.d shows an ANFIS system with two inputs, one output 
and two rules defined as:

Rule 1: If x = A1 and y = B1, than f1 = p1x+q1y+r1 (13)

Rule 2: If x = A2 and y = B2, than f2 = p2x+q2y+r2 (14)

where Ai and Bi are the fuzzy sets, fi is the output within the 
fuzzy region specified by the fuzzy rule, pi, qi, and ri are the linear 
parameters in then-part (consequent part) of the Sugeno fuzzy 
model.
The input variables are fuzzified in the first hidden layer. The 
fuzzification process transforms the values of inputs into fuzzy 
membership values using a fuzzy membership function. The 
Gaussian function (15) is used in this study.

 (15)

where mAi(x) and mBi(y) are the membership functions, d and c 
are the width and the centre of the function, respectively. The 
antecedent (or premise) part of the rules is constructed in the 
second layer. The output is called the firing strengths (wi) and is 
computed by multiplying all the incoming signals:

wi = mAi(x) · mBi(y); i = 1, 2 (16)

In the next step, the normalized firing strengths  are computed 
in layer 3 using:

; i = 1, 2 (17)

The defuzzification is performed in layer 4 using:

  (18)

The final values are calculated in layer 5 using:
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Output values ; i = 1, 2 (19)

2.5. Evaluation and performance assessment

The performance of the models developed in this study was 
assessed using various statistical performance criteria. The 
statistical measures considered were the root mean square error 
(RMSE), mean absolute error (MAE), coefficient of determination 
(R2), and the Nash-Sutcliffe efficiency coefficient (CE).
The RMSE is the measure of differences between values 
predicted by the model oK and the actually observed (measured) 
values of the river flow dK (20). It represents the measure of 
general accuracy of the model.

 (20)

MAE is another general measure of model accuracy, and is used 
to represent the mean absolute error of the model according to 
equation (21).

 (21)

The coefficient of determination R2 is defined by equation (22).

 (22)

where oK is the mean of the values predicted by the model, and 
dK is the mean of the observed values.
The Nash-Sutcliffe model efficiency coefficient CE is commonly 
used to assess the predictive power of hydrological discharge 
models. It is defined as:

 (23)

CE can range from -∞ to 1. CE = 1 corresponds to a perfect 
match between the observed and predicted values. Legates 
and McCabe [23] suggest that at least one relative (e.g. CE or R2) 
and at least one absolute (e.g. RMSE or MAE) measure of error 
should be used for model evaluation.

3. Case study of Buna spring

The described techniques are used to model discharge at 
the karst spring Buna in Eastern Herzegovina, Bosnia and 
Herzegovina (Figure 3). The case study area is a part of the 
Dinaric karst region, composed mainly of soluble carbonate 
rocks [2]. It is characterized by the existence of surface and 
underground karst phenomena, such as ponors, springs, 
estavelles, underground karst channels and stepwise karst 
poljes with elevations ranging from approximately 900 m to the 
sea level. In karst poljes, the surface water flows exist and are 
active only during precipitation period of the year. They sink into 
ponors, usually along the southern perimeter of poljes.
The discharge points are usually situated along the northern 
perimeter of the lower polje. The Buna River (Figure 3) is one 

Figure 3. Overview of karst fields and their underground connections
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of rare permanent surface flows in Eastern Herzegovina. The 
Buna River becomes tributary of the Neretva River to the 
downstream of the city of Mostar. The hydrological catchment 
area of the Buna spring includes a much wider area compared 
to its orographic catchment. The catchment area of the Buna 
Spring includes a broad area of the Zalomka River catchment, 
the large part of Nevesinjsko Polje, Lukavačko Polje and Slato 
Polje catchments, and the catchment area between Nevesinjsko 
Polje and a part of Velež Mountain. The most important part 
of the Buna Spring catchment area is the mountainous area 
between Nevesinjsko Polje and the spring.
The Buna Spring is one of the most famous springs in Dinaric 
karst. It is formed at the contact of Cretaceous limestones and 
Eocene flysch, at the elevation of 36 m above sea level. The 
gauging station Blagaj is situated directly to the downstream 
of the spring. The mean annual discharge is Qmean = 23.7 m3/s, 
while the minimum and maximum discharges are Qmin = 2.95 
m3/s and Qmax = 380 m3/s, respectively [2]. The catchment 
area of the Buna Spring is divided into several sub-catchment 
areas (Figure 3). The area marked "B1" is the direct orographic 
catchment area. It is a mountainous area (Velež foothills) and 
the water from this area flows directly to the Buna Springs. 
The water from the area marked "N" sinks into swallow holes 
(ponors) at the western part of Nevesinjsko Polje, flows through 
underground karst channels and discharges at the Buna Spring. 
A part of the water from areas Z1 and Z2 that sinks along the 
Zalomka River also discharges at the Buna Spring. This part of 
the catchment is included in calculation through discharges at 
the gauging station Rilje situated at the Zalomka River.
Methods used to model the Buna Spring discharge are based 
on the "black-box" principle. Inputs and outputs are analysed 
in order to obtain the mapping operators. Input values are the 
average daily rainfall at the catchment area, river flow at the 
hydrological station Rilje, and flow during previous days at the 
gauging station Blagaj. On site research, performed by tracing 
the water at swallow holes, provided information about the 
time when the tracer appears at the spring, which led to the 
conclusion that the time needed for the system to react was 
two days (due to karst nature of the terrain) [2]. Since there is 
a delay effect of the input values compared to output values, 
a special analysis was conducted indicating that the model 
accuracy is not affected by the two-day time extension. Input 
vectors are formed using precipitation and flow during the 
previous two days that is:

 (24)

where

 - Daily value of precipitation on i-th day for zone B1,
 - Daily value of precipitation on i-th day for zone N,

 - Daily flow on i-th day at Rilje Station,
 - Daily flow on i-th day at Blagaj Station (1 day ahead).

The total number of available data is 4747. 70 % of the collected 
data is used for network training, 15 % of the data is used for 
validation, and 15 % of data is used for network testing. The data 
for network training covers the time span from 3 September 
1971 to 7 October 1980. The data for validation covers the time 
span from 8 October 1980 to 19 September 1982, while the 
network testing data covers the time span from 20 September 
1982 to 31 August 1984. Flow values which refer to the training 
period range from the minimum value of 2,8 m3/s to the 
maximum value of 115,35 m3/s, while extreme values for the 
validation set range from 3,1 m3/s to 108,00 m3/s, and extreme 
values for the test set range from 2,95 m3/s to 94,9 m3/s. The 
same training, validation and test sets are used for all models.

4. Results and discussion

Rainfall and runoff forecasting results for the Buna River, as 
based on four machine learning techniques: MLP and RBF 
neural networks, SVR and ANFIS, are presented. The same set 
of input features is used for all models, i.e. 8 input variables that 
define precipitation and flow in the previous two days. 

Figure 4.  Comparative overview of statistical performance values 
for different architectures of MLP neural networks: a) root 
mean square error (RMSE) and mean absolute error (MAE); 
b) coefficient of determination (R2) and Nash-Sutcliffe 
efficiency coefficient (CE)

The models were assessed using the root mean square error 
(RMSE), mean absolute error (MAE), coefficient of determination 
(R2) and Nash-Sutcliffe efficiency coefficient (CE) as performance 
measures. The performance was evaluated using a test data set 
that was not included in the training. The same test data set 
was used for all the algorithms.
For the MLP neural network, the number of neurons in the 
input layer is determined by input variables, i.e. it consists of 
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an optimal number of neurons in the hidden layer equals 13 
with spread 0.6 (green line in Figure 5). 
The SVR model was tested using linear, RBF, and sigmoid 
kernels. The normalization, which scales all input data into the 
range [0,1], was done prior to training and testing. Optimum 
model parameters were determined using grid search [25] for 
all kernels (C = 0.038650 and ε = 0.019523 for the linear kernel; 
C = 0.105115; ε = 0.005524; g = 0.297305 for the RBF kernel; 
and C = 0.197405; ε = 0.0191385; g = 0.178585 for the sigmoid 
kernel). The LIBSVM library was used for SVR implementation 
[26]. 
A hybrid-learning algorithm was applied for tuning the ANFIS 
parameters. The gradient method was employed to tune the 
premise parameters, while the least squares method was used 
to identify the consequent linear parameters. The input layer 
consists of eight input variables, while the output layer contains 
one output variable. The input and output variables are linearly 
normalized to [0,1] interval before being used by the ANFIS. 
The number of fuzzy membership functions of each input was 
set to 2. The input membership functions were Gaussian. An 
appropriate structure has to be established in order to begin 
training of the fuzzy inference system (FIS). In this study, the 
FIS structure was generated by means of subtractive clustering 
[10, 27], which is used to determine regions in the feature space 
with high densities of data points. The point with the maximum 
number of neighbours is selected as the cluster centre. The data 
points within a previously specified fuzzy radius are subtracted, 
and the algorithm looks for a new point with the highest number 
of neighbours. This process iterates until all data points are 
examined. Two clusters are used in this study. The fuzzy radius 
was changed from 0.15 to 0.50 with step 0.01. The value 0.22 
was determined as an optimum value using the RMSE as the 
criterion. The number of training epochs was set to 100.
The performance of all models using RMSE, MAE,  R2  and CE as 
performance measures is shown in Table 1. The best performing 
model is highlighted in each column. When RMSE and MAE 
are used as performance measure, then the ANFIS model has 
the best performance. For R2 and CE, all the models perform 
similarly, with the SVR using linear kernel slightly outperforming 
other models for the R2 performance measure, and the RBF 
neural network being the best model for the CE performance 
measure. In both cases, the ANFIS was the second best model. 

8 neurons, while there is only one neuron in the output layer. 
The number of neurons in the hidden layer was determined 
experimentally. The upper limit, i.e. the maximum number of 
neurons in the hidden layer that can be used in modelling, was 
set to 17 neurons, according to equations (2) and (3).
Multifold training of the network was done for the number of 
neurons in the hidden layer between 1 and 17, as shown in 
Figure 4. One can observe that an optimum number of neurons 
in the hidden layer equals 8, which is confirmed using three 
quality criteria, RMSE, MAE and R2 (Figure 4).
The RBF neural network contains the same number of 
neurons in the input and the output layer as MLP, while 
an optimum number of neurons in the hidden layer was 
determined experimentally. It ranges from 1 to 100 neurons, 
as shown in Figure 5. A larger number of neurons was used 
as the upper limit compared to MLP because the radial basis 
function in the hidden layer produces a significant non-zero 
response only when the input falls within a small localized 
region of the input space [24]. 

Figure 5.  Performance of RBF model with different numbers of 
neurons in hidden layer and different spreads

The Gaussian function was used as the transfer function. 
The parameter spread controls the width of the Gaussian, 
which means that it determines how much of the input space 
the RBF neuron will respond to. The spreads between 0.1 
and 3 with step 0.1 were examined in order to find the best 
value that gives the minimum MSE. It can be observed that 

Model
Performance measure

RMSE MAE R2 CE

MLP 4.870 2.399 0.920 0.930

RBF 4.993 2.544 0.927 0.947

SVR-RBF kernel 4.715 2.272 0.925 0.928

SVR-Linear kernel 4.819 2.507 0.946 0.921

SVR-Sigmoid kernel 4.815 2.459 0.922 0.921

ANFIS 4.615 2.255 0.928 0.937

Table 1. Performance of MLP and RBF neural networks, SVR and ANFIS models 



Građevinar 1/2018

GRAĐEVINAR 70 (2018) 1, 1-108

Miljan Kovačević, Nenad Ivanišević, Tina Dašić, Ljubo Marković

Hence, based on all four criteria, we have chosen ANFIS as the 
most optimal model for short-term prediction of one day ahead 
river flow based on precipitation and flow during the previous 
two days, and have perforemd all subsequent analyses using 
this model. The comparison of the observed values and values 
modelled by the ANFIS, as well as regression plots for train and 
test data, are given in Figure 6.

Figure 6.  a) Comparison of observed values and values modelled by 
ANFIS, b) regression plots for train and test data for ANFIS

All eight input variables (daily precipitations and daily flows) were 
used for all previously tested models, without assessing the 
importance of each individual variable on the model prediction 
accuracy. The variable selection activity was performed in further 
analysis. Only the most relevant variables were used in the 
modelling, while irrelevant and redundant input variables that do 
not contribute to the accuracy of the predictive model, or that may 
in fact decrease its accuracy, were removed. This not only reduces 
the complexity of the model, but it also speeds up the learning task. 
The exhaustive search technique [28, 29]  was applied for this task. 
2N - 1 = 255 possible combinations of variables and 255 different 
ANFIS models were generated for a given set of N = 8 input variables, 
designated as . The 
10-fold cross validation was used to determine the MSE for each 
model. An optimum subset of input variables is the one that gives 
the model with the smallest MSE. 

Furthermore, the frequency of occurrence of each input 
variable in all generated models was assessed and, based on 
this frequency, the most relevant variables were determined. 
The results of this analysis, provided in Figure 7, show that 
variable 8  ( )  is relevant in all models, while the frequency 
of variables 1, 2, 4, and 6 ( ) is lower by 
approximately 20-30 %. These variables are followed by 
variables 5 and 7 ( ) which were by 50 % less frequent. 
The least important input variable is variable 3 ( ).

Figure 7. Frequency of occurrence of input variables in models

The results for the models that omit only variable 3 (model 1 in 
Table 2) and all three variables (model 2 in Table 2) are provided, 
as the variables 3, 5 and 7 ( ) are significantly less 
important compared to other variables. Note that the binary 
value (1 or 0) denotes whether a particular variable is included in 
the model or not. The comparison of the obtained performance 
with the results using all 8 input variables (model 3 in Table 2) 
reveals that using only the subset of 5 input variables gives 
comparable results using RMSE as performance measure, or 
even outperforms it when R2 and CE are used as performance 
measures.

5. Conclusion 

This paper provides a comparative analysis of a variety of state-
of-the-art machine learning algorithms for the task of short-
term forecasting of river flow in a karst region. Several neural 
network architectures were tested, i.e. MLP and RBF neural 

Model
Input variables Performance measure

RMSE MAE R2 CE

1. 1 1 0 1 1 1 1 1 4.633 2.421 0.942 0.953

2. 1 1 0 1 0 1 0 1 4.693 2.520 0.940 0.952

3. 1 1 1 1 1 1 1 1 4.615 2.255 0.928 0.937

Table 2. Models with subset of input variables
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