Galanakis, N.

Link to this page

Authority KeyName Variants
654a3b5e-c31a-4715-a936-579e8097652e
  • Galanakis, N. (1)
Projects
No records found.

Author's Bibliography

Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study

Tomić, Igor; Penna, Andrea; DeJong, Matthew; Butenweg, Christoph; Correia, Antonio; Candeias, Paulo Xavier; Senaldi, Ilaria; Guerrini, Gabriele; Malomo, Daniele; Wilding, Bastian; Pettinga, Didier; Spanenburg, Mark; Galanakis, N.; Oliver, S.; Parisse, Francesco; Marques, Rui; Cattari, Serena; Lourenco, Paulo; Galvez, Francisco; Dizhur, Dmytro; Ingham, Jason; Ramaglia, Giancarlo; Lignola, Gian Piero; Prota, Andrea; AlShawa, Omar; Liberatore, Domenico; Sorrentino, Luigi; Gagliardo, Raffaele; Godio, Michele; Portioli, Francesco; Landolfo, Raffaele; Solarino, Fabio; Bianchini, Nicoletta; Ciocci, Maria Pia; Romanazzi, Antonio; Asikoglu, Abide; D'Anna, Jennifer; Ramirez, Rafael; Romis, Federico; Marinković, Marko; Đorđević, Filip; Beyer, Katrin

(2023)

TY  - JOUR
AU  - Tomić, Igor
AU  - Penna, Andrea
AU  - DeJong, Matthew
AU  - Butenweg, Christoph
AU  - Correia, Antonio
AU  - Candeias, Paulo Xavier
AU  - Senaldi, Ilaria
AU  - Guerrini, Gabriele
AU  - Malomo, Daniele
AU  - Wilding, Bastian
AU  - Pettinga, Didier
AU  - Spanenburg, Mark
AU  - Galanakis, N.
AU  - Oliver, S.
AU  - Parisse, Francesco
AU  - Marques, Rui
AU  - Cattari, Serena
AU  - Lourenco, Paulo
AU  - Galvez, Francisco
AU  - Dizhur, Dmytro
AU  - Ingham, Jason
AU  - Ramaglia, Giancarlo
AU  - Lignola, Gian Piero
AU  - Prota, Andrea
AU  - AlShawa, Omar
AU  - Liberatore, Domenico
AU  - Sorrentino, Luigi
AU  - Gagliardo, Raffaele
AU  - Godio, Michele
AU  - Portioli, Francesco
AU  - Landolfo, Raffaele
AU  - Solarino, Fabio
AU  - Bianchini, Nicoletta
AU  - Ciocci, Maria Pia
AU  - Romanazzi, Antonio
AU  - Asikoglu, Abide
AU  - D'Anna, Jennifer
AU  - Ramirez, Rafael
AU  - Romis, Federico
AU  - Marinković, Marko
AU  - Đorđević, Filip
AU  - Beyer, Katrin
PY  - 2023
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/3060
AB  - City centres of Europe are often composed of unreinforced masonry structural aggregates, whose seismic response is challenging to predict. To advance the state of the art on the seismic response of these aggregates, the Adjacent Interacting Masonry Structures (AIMS) subproject from Horizon 2020 project Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA) provides shake-table test data of a two-unit, double-leaf stone masonry aggregate subjected to two horizontal components of dynamic excitation. A blind prediction was organized with participants from academia and industry to test modelling approaches and assumptions and to learn about the extent of uncertainty in modelling for such masonry aggregates. The participants were provided with the full set of material and geometrical data, construction details and original seismic input and asked to predict prior to the test the expected seismic response in terms of damage mechanisms, base-shear forces, and roof displacements. The modelling approaches used differ significantly in the level of detail and the modelling assumptions. This paper provides an overview of the adopted modelling approaches and their subsequent predictions. It further discusses the range of assumptions made when modelling masonry walls, floors and connections, and aims at discovering how the common solutions regarding modelling masonry in general, and masonry aggregates in particular, affect the results. The results are evaluated both in terms of damage mechanisms, base shear forces, displacements and interface openings in both directions, and then compared with the experimental results. The modelling approaches featuring Discrete Element Method (DEM) led to the best predictions in terms of displacements, while a submission using rigid block limit analysis led to the best prediction in terms of damage mechanisms. Large coefficients of variation of predicted displacements and general underestimation of displacements in comparison with experimental results, except for DEM models, highlight the need for further consensus building on suitable modelling assumptions for such masonry aggregates.
T2  - Bulletin of Earthquake Engineering
T1  - Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study
DO  - 10.1007/s10518-022-01582-x
ER  - 
@article{
author = "Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Antonio and Candeias, Paulo Xavier and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Wilding, Bastian and Pettinga, Didier and Spanenburg, Mark and Galanakis, N. and Oliver, S. and Parisse, Francesco and Marques, Rui and Cattari, Serena and Lourenco, Paulo and Galvez, Francisco and Dizhur, Dmytro and Ingham, Jason and Ramaglia, Giancarlo and Lignola, Gian Piero and Prota, Andrea and AlShawa, Omar and Liberatore, Domenico and Sorrentino, Luigi and Gagliardo, Raffaele and Godio, Michele and Portioli, Francesco and Landolfo, Raffaele and Solarino, Fabio and Bianchini, Nicoletta and Ciocci, Maria Pia and Romanazzi, Antonio and Asikoglu, Abide and D'Anna, Jennifer and Ramirez, Rafael and Romis, Federico and Marinković, Marko and Đorđević, Filip and Beyer, Katrin",
year = "2023",
abstract = "City centres of Europe are often composed of unreinforced masonry structural aggregates, whose seismic response is challenging to predict. To advance the state of the art on the seismic response of these aggregates, the Adjacent Interacting Masonry Structures (AIMS) subproject from Horizon 2020 project Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA) provides shake-table test data of a two-unit, double-leaf stone masonry aggregate subjected to two horizontal components of dynamic excitation. A blind prediction was organized with participants from academia and industry to test modelling approaches and assumptions and to learn about the extent of uncertainty in modelling for such masonry aggregates. The participants were provided with the full set of material and geometrical data, construction details and original seismic input and asked to predict prior to the test the expected seismic response in terms of damage mechanisms, base-shear forces, and roof displacements. The modelling approaches used differ significantly in the level of detail and the modelling assumptions. This paper provides an overview of the adopted modelling approaches and their subsequent predictions. It further discusses the range of assumptions made when modelling masonry walls, floors and connections, and aims at discovering how the common solutions regarding modelling masonry in general, and masonry aggregates in particular, affect the results. The results are evaluated both in terms of damage mechanisms, base shear forces, displacements and interface openings in both directions, and then compared with the experimental results. The modelling approaches featuring Discrete Element Method (DEM) led to the best predictions in terms of displacements, while a submission using rigid block limit analysis led to the best prediction in terms of damage mechanisms. Large coefficients of variation of predicted displacements and general underestimation of displacements in comparison with experimental results, except for DEM models, highlight the need for further consensus building on suitable modelling assumptions for such masonry aggregates.",
journal = "Bulletin of Earthquake Engineering",
title = "Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study",
doi = "10.1007/s10518-022-01582-x"
}
Tomić, I., Penna, A., DeJong, M., Butenweg, C., Correia, A., Candeias, P. X., Senaldi, I., Guerrini, G., Malomo, D., Wilding, B., Pettinga, D., Spanenburg, M., Galanakis, N., Oliver, S., Parisse, F., Marques, R., Cattari, S., Lourenco, P., Galvez, F., Dizhur, D., Ingham, J., Ramaglia, G., Lignola, G. P., Prota, A., AlShawa, O., Liberatore, D., Sorrentino, L., Gagliardo, R., Godio, M., Portioli, F., Landolfo, R., Solarino, F., Bianchini, N., Ciocci, M. P., Romanazzi, A., Asikoglu, A., D'Anna, J., Ramirez, R., Romis, F., Marinković, M., Đorđević, F.,& Beyer, K.. (2023). Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study. in Bulletin of Earthquake Engineering.
https://doi.org/10.1007/s10518-022-01582-x
Tomić I, Penna A, DeJong M, Butenweg C, Correia A, Candeias PX, Senaldi I, Guerrini G, Malomo D, Wilding B, Pettinga D, Spanenburg M, Galanakis N, Oliver S, Parisse F, Marques R, Cattari S, Lourenco P, Galvez F, Dizhur D, Ingham J, Ramaglia G, Lignola GP, Prota A, AlShawa O, Liberatore D, Sorrentino L, Gagliardo R, Godio M, Portioli F, Landolfo R, Solarino F, Bianchini N, Ciocci MP, Romanazzi A, Asikoglu A, D'Anna J, Ramirez R, Romis F, Marinković M, Đorđević F, Beyer K. Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study. in Bulletin of Earthquake Engineering. 2023;.
doi:10.1007/s10518-022-01582-x .
Tomić, Igor, Penna, Andrea, DeJong, Matthew, Butenweg, Christoph, Correia, Antonio, Candeias, Paulo Xavier, Senaldi, Ilaria, Guerrini, Gabriele, Malomo, Daniele, Wilding, Bastian, Pettinga, Didier, Spanenburg, Mark, Galanakis, N., Oliver, S., Parisse, Francesco, Marques, Rui, Cattari, Serena, Lourenco, Paulo, Galvez, Francisco, Dizhur, Dmytro, Ingham, Jason, Ramaglia, Giancarlo, Lignola, Gian Piero, Prota, Andrea, AlShawa, Omar, Liberatore, Domenico, Sorrentino, Luigi, Gagliardo, Raffaele, Godio, Michele, Portioli, Francesco, Landolfo, Raffaele, Solarino, Fabio, Bianchini, Nicoletta, Ciocci, Maria Pia, Romanazzi, Antonio, Asikoglu, Abide, D'Anna, Jennifer, Ramirez, Rafael, Romis, Federico, Marinković, Marko, Đorđević, Filip, Beyer, Katrin, "Shake‑table testing of a stone masonry building aggregate: overview of blind prediction study" in Bulletin of Earthquake Engineering (2023),
https://doi.org/10.1007/s10518-022-01582-x . .
13