Butenweg, Christoph

Link to this page

Authority KeyName Variants
867fed92-9a3d-4095-8540-435065c2e98e
  • Butenweg, Christoph (11)
Projects

Author's Bibliography

Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading

Milijaš, Aleksa; Marinković, Marko; Butenweg, Christoph; Klinkel, Sven

(2023)

TY  - JOUR
AU  - Milijaš, Aleksa
AU  - Marinković, Marko
AU  - Butenweg, Christoph
AU  - Klinkel, Sven
PY  - 2023
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/3061
AB  - Reinforced concrete (RC) frames with masonry infills can be encountered all over the world, especially in earthquake prone regions. Although masonry infills are usually not considered in the design process, in the case of seismic loading they are subjected to inplane and out-of-plane forces that can act separately or simultaneously. In recent earthquakes it was observed that seismic loads can severely damage masonry infills or even cause their complete collapse, especially when the loads act simultaneously. Due to this, effects of interaction of in-plane and out-of-plane loads on seismic performance of masonry infills have received more attention recently. However, most of studies focus only on fully infilled frames, even though openings, such as windows and doors are essential parts of infills that substantially affect the seismic response of masonry infills. Therefore, this article presents the results of a comprehensive experimental study on nine full-scale traditional masonry RC frames infilled with modern hollow clay bricks for configurations with and without window and door openings under separate, sequential and combined inplane and out-of-plane loading. Based on the results, a detailed comparison and interpretation for the different infill and loading configurations is presented. The test results clearly show the unfavourable influence of openings and combined loading conditions as well as the importance of the quality of execution of the circumferential mortar joint between infill and frame. The new findings can be used as a basis for the required development of innovative solutions to improve significantly the seismic performance of RC frames with masonry infills.
T2  - Bulletin of Earthquake Engineering
T1  - Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading
DO  - 10.1007/s10518-023-01664-4
ER  - 
@article{
author = "Milijaš, Aleksa and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven",
year = "2023",
abstract = "Reinforced concrete (RC) frames with masonry infills can be encountered all over the world, especially in earthquake prone regions. Although masonry infills are usually not considered in the design process, in the case of seismic loading they are subjected to inplane and out-of-plane forces that can act separately or simultaneously. In recent earthquakes it was observed that seismic loads can severely damage masonry infills or even cause their complete collapse, especially when the loads act simultaneously. Due to this, effects of interaction of in-plane and out-of-plane loads on seismic performance of masonry infills have received more attention recently. However, most of studies focus only on fully infilled frames, even though openings, such as windows and doors are essential parts of infills that substantially affect the seismic response of masonry infills. Therefore, this article presents the results of a comprehensive experimental study on nine full-scale traditional masonry RC frames infilled with modern hollow clay bricks for configurations with and without window and door openings under separate, sequential and combined inplane and out-of-plane loading. Based on the results, a detailed comparison and interpretation for the different infill and loading configurations is presented. The test results clearly show the unfavourable influence of openings and combined loading conditions as well as the importance of the quality of execution of the circumferential mortar joint between infill and frame. The new findings can be used as a basis for the required development of innovative solutions to improve significantly the seismic performance of RC frames with masonry infills.",
journal = "Bulletin of Earthquake Engineering",
title = "Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading",
doi = "10.1007/s10518-023-01664-4"
}
Milijaš, A., Marinković, M., Butenweg, C.,& Klinkel, S.. (2023). Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading. in Bulletin of Earthquake Engineering.
https://doi.org/10.1007/s10518-023-01664-4
Milijaš A, Marinković M, Butenweg C, Klinkel S. Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading. in Bulletin of Earthquake Engineering. 2023;.
doi:10.1007/s10518-023-01664-4 .
Milijaš, Aleksa, Marinković, Marko, Butenweg, Christoph, Klinkel, Sven, "Experimental results of reinforced concrete frames with masonry infills with and without openings under combined quasi‑static in‑plane and out‑of‑plane seismic loading" in Bulletin of Earthquake Engineering (2023),
https://doi.org/10.1007/s10518-023-01664-4 . .
4

Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities

Butenweg, Christoph; Bursi, Oreste; Nardin, Chiara; Lanese, Igor; Pavese, Alberto; Marinković, Marko; Paolacci, Fabrizio; Quinci, Gianluca

(2021)

TY  - CONF
AU  - Butenweg, Christoph
AU  - Bursi, Oreste
AU  - Nardin, Chiara
AU  - Lanese, Igor
AU  - Pavese, Alberto
AU  - Marinković, Marko
AU  - Paolacci, Fabrizio
AU  - Quinci, Gianluca
PY  - 2021
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2472
AB  - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.
C3  - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP 2021
T1  - Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2472
ER  - 
@conference{
author = "Butenweg, Christoph and Bursi, Oreste and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca",
year = "2021",
abstract = "Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.",
journal = "Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP 2021",
title = "Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2472"
}
Butenweg, C., Bursi, O., Nardin, C., Lanese, I., Pavese, A., Marinković, M., Paolacci, F.,& Quinci, G.. (2021). Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities. in Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP 2021.
https://hdl.handle.net/21.15107/rcub_grafar_2472
Butenweg C, Bursi O, Nardin C, Lanese I, Pavese A, Marinković M, Paolacci F, Quinci G. Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities. in Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP 2021. 2021;.
https://hdl.handle.net/21.15107/rcub_grafar_2472 .
Butenweg, Christoph, Bursi, Oreste, Nardin, Chiara, Lanese, Igor, Pavese, Alberto, Marinković, Marko, Paolacci, Fabrizio, Quinci, Gianluca, "Experimental investigation on the seismic performance of a multicomponent system for major-hazard industrial facilities" in Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP 2021 (2021),
https://hdl.handle.net/21.15107/rcub_grafar_2472 .

Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays

Marinković, Marko; Butenweg, Christoph

(2020)

TY  - CONF
AU  - Marinković, Marko
AU  - Butenweg, Christoph
PY  - 2020
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2189
AB  - Reinforced concrete (RC) structures with masonry infills are widely used for several types of buildings all over the world. However, it is well known that traditional masonry infills constructed with rigid contact to the surrounding RC frame performed rather poor in past earthquakes. Masonry infills showed se-vere in-plane damages and failed in many cases under out-of-plane seismic loading. As the undesired interac-tions between frames and infills changes the load transfer on building level, complete collapses of buildings were observed. A possible solution is uncoupling of masonry infills to the frame to reduce the infill contribu-tion activated by the frame deformation under horizontal loading. The paper presents numerical simulations on RC frames equipped with the innovative decoupling system INODIS. The system was developed within the European project INSYSME and allows an effective uncoupling of frame and infill. The simulations are car-ried out with a micro-modelling approach, which is able to predict the complex nonlinear behaviour resulting from the different materials and their interaction. Each brick is modeled individually and connected taking in-to account nonlinearity of a brick mortar interface. The calibration of the model is based on small specimen tests and experimental results for one bay one storey frame are used for the validation. The validated model is further used for parametric studies on two storey and two bay infilled frames. The response and change of the structural stiffness are analysed and compared to the traditionally infilled frame. The results confirm the effec-tiveness of the INODIS system with less damage and relatively low contribution of the infill at high drift lev-els. In contrast to the uncoupled system configurations, traditionally infilled frames experienced brittle failure at rather low drift levels.
C3  - Brick and Block Masonry-From Historical to Sustainable Masonry: Proceedings of the 17th International Brick/Block Masonry Conference (17th IB2MaC 2020)
T1  - Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays
SP  - 187
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2189
ER  - 
@conference{
author = "Marinković, Marko and Butenweg, Christoph",
year = "2020",
abstract = "Reinforced concrete (RC) structures with masonry infills are widely used for several types of buildings all over the world. However, it is well known that traditional masonry infills constructed with rigid contact to the surrounding RC frame performed rather poor in past earthquakes. Masonry infills showed se-vere in-plane damages and failed in many cases under out-of-plane seismic loading. As the undesired interac-tions between frames and infills changes the load transfer on building level, complete collapses of buildings were observed. A possible solution is uncoupling of masonry infills to the frame to reduce the infill contribu-tion activated by the frame deformation under horizontal loading. The paper presents numerical simulations on RC frames equipped with the innovative decoupling system INODIS. The system was developed within the European project INSYSME and allows an effective uncoupling of frame and infill. The simulations are car-ried out with a micro-modelling approach, which is able to predict the complex nonlinear behaviour resulting from the different materials and their interaction. Each brick is modeled individually and connected taking in-to account nonlinearity of a brick mortar interface. The calibration of the model is based on small specimen tests and experimental results for one bay one storey frame are used for the validation. The validated model is further used for parametric studies on two storey and two bay infilled frames. The response and change of the structural stiffness are analysed and compared to the traditionally infilled frame. The results confirm the effec-tiveness of the INODIS system with less damage and relatively low contribution of the infill at high drift lev-els. In contrast to the uncoupled system configurations, traditionally infilled frames experienced brittle failure at rather low drift levels.",
journal = "Brick and Block Masonry-From Historical to Sustainable Masonry: Proceedings of the 17th International Brick/Block Masonry Conference (17th IB2MaC 2020)",
title = "Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays",
pages = "187",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2189"
}
Marinković, M.,& Butenweg, C.. (2020). Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays. in Brick and Block Masonry-From Historical to Sustainable Masonry: Proceedings of the 17th International Brick/Block Masonry Conference (17th IB2MaC 2020), 187.
https://hdl.handle.net/21.15107/rcub_grafar_2189
Marinković M, Butenweg C. Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays. in Brick and Block Masonry-From Historical to Sustainable Masonry: Proceedings of the 17th International Brick/Block Masonry Conference (17th IB2MaC 2020). 2020;:187.
https://hdl.handle.net/21.15107/rcub_grafar_2189 .
Marinković, Marko, Butenweg, Christoph, "Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays" in Brick and Block Masonry-From Historical to Sustainable Masonry: Proceedings of the 17th International Brick/Block Masonry Conference (17th IB2MaC 2020) (2020):187,
https://hdl.handle.net/21.15107/rcub_grafar_2189 .

Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests

Marinković, Marko; Butenweg, Christoph; Pavese, Alberto; Lanese, Igor; Hoffmeister, Benno; Pikawa, Marius; Vulcu, Christian; Bursi, Oreste; Nardin, Chiara; Paolacci, Fabrizio; Quinci, Gianluca; Fragiadakis, Michalis; Weber, Felix; Huber, Peter; Renault, Philippe; Gundel, Max; Dyke, Shirley; Ciucci, M.; Marino, A.

(2020)

TY  - CONF
AU  - Marinković, Marko
AU  - Butenweg, Christoph
AU  - Pavese, Alberto
AU  - Lanese, Igor
AU  - Hoffmeister, Benno
AU  - Pikawa, Marius
AU  - Vulcu, Christian
AU  - Bursi, Oreste
AU  - Nardin, Chiara
AU  - Paolacci, Fabrizio
AU  - Quinci, Gianluca
AU  - Fragiadakis, Michalis
AU  - Weber, Felix
AU  - Huber, Peter
AU  - Renault, Philippe
AU  - Gundel, Max
AU  - Dyke, Shirley
AU  - Ciucci, M.
AU  - Marino, A.
PY  - 2020
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2191
AB  - Industrial facilities consist of the primary load-carrying structure and various process engineering components (secondary structures), which under seismic loading, may exhibit significant damage that may threaten their structural integrity with severe consequences on the population, the environment and the economy. Structures in industrial facilities vary widely from flexible piping to rigid machining tools, and from small precision equipment to large cranes. Most machine installations have specific functions, including manufacturing precision, number of revolutions, production efficiency, and supply capacity, thus the functional failure is as important as structural failure. The paper presents the shaking table tests in the framework of the SPIF (Seismic Performance of multi-component systems in special risk Industrial Facilities) project. Special attention has been paid to the interactions between the primary structure and components as well as between the components among themselves. The steel structure of three stories has been designed, with the vessels on the first and second storey connected with the pipes. The structure has been planned for testing in two configurations: as fully fixed and with base isolation at the bottom. The focus is placed on the behaviour of the vessels and seismic performance of the pipes and connections has for the purpose of derivation of the design recommendations. Measuring accelerations, relative displacements of the components and pipe sections for different levels of peak ground acceleration is planned. The results will be used to increase the knowledge on definition of damage levels, limit states and performance for industrial facilities.
C3  - SEDIF 2020 – 2nd International Conference on Seismic Design of Industrial Facilities
T1  - Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2191
ER  - 
@conference{
author = "Marinković, Marko and Butenweg, Christoph and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pikawa, Marius and Vulcu, Christian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and Gundel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.",
year = "2020",
abstract = "Industrial facilities consist of the primary load-carrying structure and various process engineering components (secondary structures), which under seismic loading, may exhibit significant damage that may threaten their structural integrity with severe consequences on the population, the environment and the economy. Structures in industrial facilities vary widely from flexible piping to rigid machining tools, and from small precision equipment to large cranes. Most machine installations have specific functions, including manufacturing precision, number of revolutions, production efficiency, and supply capacity, thus the functional failure is as important as structural failure. The paper presents the shaking table tests in the framework of the SPIF (Seismic Performance of multi-component systems in special risk Industrial Facilities) project. Special attention has been paid to the interactions between the primary structure and components as well as between the components among themselves. The steel structure of three stories has been designed, with the vessels on the first and second storey connected with the pipes. The structure has been planned for testing in two configurations: as fully fixed and with base isolation at the bottom. The focus is placed on the behaviour of the vessels and seismic performance of the pipes and connections has for the purpose of derivation of the design recommendations. Measuring accelerations, relative displacements of the components and pipe sections for different levels of peak ground acceleration is planned. The results will be used to increase the knowledge on definition of damage levels, limit states and performance for industrial facilities.",
journal = "SEDIF 2020 – 2nd International Conference on Seismic Design of Industrial Facilities",
title = "Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2191"
}
Marinković, M., Butenweg, C., Pavese, A., Lanese, I., Hoffmeister, B., Pikawa, M., Vulcu, C., Bursi, O., Nardin, C., Paolacci, F., Quinci, G., Fragiadakis, M., Weber, F., Huber, P., Renault, P., Gundel, M., Dyke, S., Ciucci, M.,& Marino, A.. (2020). Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests. in SEDIF 2020 – 2nd International Conference on Seismic Design of Industrial Facilities.
https://hdl.handle.net/21.15107/rcub_grafar_2191
Marinković M, Butenweg C, Pavese A, Lanese I, Hoffmeister B, Pikawa M, Vulcu C, Bursi O, Nardin C, Paolacci F, Quinci G, Fragiadakis M, Weber F, Huber P, Renault P, Gundel M, Dyke S, Ciucci M, Marino A. Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests. in SEDIF 2020 – 2nd International Conference on Seismic Design of Industrial Facilities. 2020;.
https://hdl.handle.net/21.15107/rcub_grafar_2191 .
Marinković, Marko, Butenweg, Christoph, Pavese, Alberto, Lanese, Igor, Hoffmeister, Benno, Pikawa, Marius, Vulcu, Christian, Bursi, Oreste, Nardin, Chiara, Paolacci, Fabrizio, Quinci, Gianluca, Fragiadakis, Michalis, Weber, Felix, Huber, Peter, Renault, Philippe, Gundel, Max, Dyke, Shirley, Ciucci, M., Marino, A., "Investigation of the seismic behaviour of structural and non-structural components in industrial facilities by means of shaking table tests" in SEDIF 2020 – 2nd International Conference on Seismic Design of Industrial Facilities (2020),
https://hdl.handle.net/21.15107/rcub_grafar_2191 .

Seismic performance of multiple-component systems in special risk industrial facilities

Butenweg, Christoph; Marinković, Marko; Pavese, Alberto; Lanese, Igor; ; Rizzo Parisi, E.; Hoffmeister, Benno; Pikawa, Marius; Vulcu, Christian; Bursi, Oreste; Nardin, Chiara; Paolacci, Fabrizio; Quinci, Gianluca; Fragiadakis, Michalis; Weber, Felix; Huber, Peter; Renault, Philippe; Gundel, Max; Dyke, Shirley; Ciucci, M.; Marino, A.

(2020)

TY  - CONF
AU  - Butenweg, Christoph
AU  - Marinković, Marko
AU  - Pavese, Alberto
AU  - Lanese, Igor
AU  - 
AU  - Rizzo Parisi, E.
AU  - Hoffmeister, Benno
AU  - Pikawa, Marius
AU  - Vulcu, Christian
AU  - Bursi, Oreste
AU  - Nardin, Chiara
AU  - Paolacci, Fabrizio
AU  - Quinci, Gianluca
AU  - Fragiadakis, Michalis
AU  - Weber, Felix
AU  - Huber, Peter
AU  - Renault, Philippe
AU  - Gundel, Max
AU  - Dyke, Shirley
AU  - Ciucci, M.
AU  - Marino, A.
PY  - 2020
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2190
AB  - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.
C3  - 17th World Conference on Earthquake Engineering
T1  - Seismic performance of multiple-component systems in special risk industrial facilities
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2190
ER  - 
@conference{
author = "Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and  and Rizzo Parisi, E. and Hoffmeister, Benno and Pikawa, Marius and Vulcu, Christian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and Gundel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.",
year = "2020",
abstract = "Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.",
journal = "17th World Conference on Earthquake Engineering",
title = "Seismic performance of multiple-component systems in special risk industrial facilities",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2190"
}
Butenweg, C., Marinković, M., Pavese, A., Lanese, I., , Rizzo Parisi, E., Hoffmeister, B., Pikawa, M., Vulcu, C., Bursi, O., Nardin, C., Paolacci, F., Quinci, G., Fragiadakis, M., Weber, F., Huber, P., Renault, P., Gundel, M., Dyke, S., Ciucci, M.,& Marino, A.. (2020). Seismic performance of multiple-component systems in special risk industrial facilities. in 17th World Conference on Earthquake Engineering.
https://hdl.handle.net/21.15107/rcub_grafar_2190
Butenweg C, Marinković M, Pavese A, Lanese I, , Rizzo Parisi E, Hoffmeister B, Pikawa M, Vulcu C, Bursi O, Nardin C, Paolacci F, Quinci G, Fragiadakis M, Weber F, Huber P, Renault P, Gundel M, Dyke S, Ciucci M, Marino A. Seismic performance of multiple-component systems in special risk industrial facilities. in 17th World Conference on Earthquake Engineering. 2020;.
https://hdl.handle.net/21.15107/rcub_grafar_2190 .
Butenweg, Christoph, Marinković, Marko, Pavese, Alberto, Lanese, Igor, , Rizzo Parisi, E., Hoffmeister, Benno, Pikawa, Marius, Vulcu, Christian, Bursi, Oreste, Nardin, Chiara, Paolacci, Fabrizio, Quinci, Gianluca, Fragiadakis, Michalis, Weber, Felix, Huber, Peter, Renault, Philippe, Gundel, Max, Dyke, Shirley, Ciucci, M., Marino, A., "Seismic performance of multiple-component systems in special risk industrial facilities" in 17th World Conference on Earthquake Engineering (2020),
https://hdl.handle.net/21.15107/rcub_grafar_2190 .

Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung

Marinković, Marko; Butenweg, Christoph

(2020)

TY  - JOUR
AU  - Marinković, Marko
AU  - Butenweg, Christoph
PY  - 2020
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2200
AB  - Stahlbetonrahmentragwerke mit Ausfachungen aus Mauerwerk weisen nach Erdbeben häufig schwere Schäden auf. Gründe hierfür sind die Beanspruchungen der Ausfachungswände durch die aufgezwungenen Rahmenverformungen in Wandebene und die gleichzeitig auftretenden Trägheitskräfte senkrecht zur Wandebene in Kombination mit der konstruktiven Ausführung des Ausfachungsmauerwerks. Die Ausfachung wird in der Regel knirsch gegen die Rahmenstützen gemauert, wobei der Verschluss der oberen Fuge mit Mörtel oder Montageschaum erfolgt. Dadurch kommt es im Erdbebenfall zu lokalen Interaktionen zwischen Ausfachung und Rahmen, die in der Folge zu einem Versagen einzelner Ausfachungswände oder zu einem sukzessiven Versagen des Gesamtgebäudes führen können. Die beobachteten Schäden waren die Motivation dafür, in dem europäischen Forschungsprojekt INSYSME für Stahlbetonrahmentragwerke mit Ausfachungen aus hochwärmedämmenden Ziegelmauerwerk innovative Lösungen zur Verbesserung des seismischen Verhaltens zu entwickeln. Der vorliegende Beitrag stellt die im Rahmen des Projekts von den deutschen Projektpartnern (Universität Kassel, SDA-engineering GmbH) entwickelten Lösungen vor und vergleicht deren seismisches Verhalten mit der traditionellen Ausführung der Ausfachungswände. Grundlage für den Vergleich sind statischzyklische Wandversuche und Simulationen auf Wandebene. Aus den Ergebnissen werden Empfehlungen für die erdbebensichere Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk abgeleitet.
T2  - Mauerwerk
T1  - Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung
DO  - https://doi.org/10.1002/dama.202000011
ER  - 
@article{
author = "Marinković, Marko and Butenweg, Christoph",
year = "2020",
abstract = "Stahlbetonrahmentragwerke mit Ausfachungen aus Mauerwerk weisen nach Erdbeben häufig schwere Schäden auf. Gründe hierfür sind die Beanspruchungen der Ausfachungswände durch die aufgezwungenen Rahmenverformungen in Wandebene und die gleichzeitig auftretenden Trägheitskräfte senkrecht zur Wandebene in Kombination mit der konstruktiven Ausführung des Ausfachungsmauerwerks. Die Ausfachung wird in der Regel knirsch gegen die Rahmenstützen gemauert, wobei der Verschluss der oberen Fuge mit Mörtel oder Montageschaum erfolgt. Dadurch kommt es im Erdbebenfall zu lokalen Interaktionen zwischen Ausfachung und Rahmen, die in der Folge zu einem Versagen einzelner Ausfachungswände oder zu einem sukzessiven Versagen des Gesamtgebäudes führen können. Die beobachteten Schäden waren die Motivation dafür, in dem europäischen Forschungsprojekt INSYSME für Stahlbetonrahmentragwerke mit Ausfachungen aus hochwärmedämmenden Ziegelmauerwerk innovative Lösungen zur Verbesserung des seismischen Verhaltens zu entwickeln. Der vorliegende Beitrag stellt die im Rahmen des Projekts von den deutschen Projektpartnern (Universität Kassel, SDA-engineering GmbH) entwickelten Lösungen vor und vergleicht deren seismisches Verhalten mit der traditionellen Ausführung der Ausfachungswände. Grundlage für den Vergleich sind statischzyklische Wandversuche und Simulationen auf Wandebene. Aus den Ergebnissen werden Empfehlungen für die erdbebensichere Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk abgeleitet.",
journal = "Mauerwerk",
title = "Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung",
doi = "https://doi.org/10.1002/dama.202000011"
}
Marinković, M.,& Butenweg, C.. (2020). Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung. in Mauerwerk.
https://doi.org/https://doi.org/10.1002/dama.202000011
Marinković M, Butenweg C. Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung. in Mauerwerk. 2020;.
doi:https://doi.org/10.1002/dama.202000011 .
Marinković, Marko, Butenweg, Christoph, "Ausfachungen aus Ziegelmauerwerk in Stahlbetonrahmentragwerken unter Erdbebenbeanspruchung" in Mauerwerk (2020),
https://doi.org/https://doi.org/10.1002/dama.202000011 . .

Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading

Butenweg, Christoph; Marinković, Marko; Salatić, Ratko

(Springer, 2019)

TY  - JOUR
AU  - Butenweg, Christoph
AU  - Marinković, Marko
AU  - Salatić, Ratko
PY  - 2019
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/1749
AB  - It is generally known that reinforced concrete frame structures with unreinforced masonry infills frequently suffer severe damage when subjected to earthquake loading. Recent earthquakes show that the damage occurs to both older buildings and new seismically designed buildings. This is somehow surprising as this construction type has been the subject of intensive research projects for decades and simplified verification concepts are available in standards. However, these concepts are based on the separate verification of in-plane and out-of-plane loading although the importance of the design for combined loading conditions is already known. This situation was the reason to perform comprehensive investigations of the seismic behaviour of this traditional construction type for separate and combined in-plane and out-of-plane loading within the framework of the collaborative European research project INSYSME (Innovative systems for earthquake resistant masonry buildings in reinforced concrete buildings). These investigations are helpful to develop innovative approaches to improve the seismic behaviour of infilled frames. This article presents the fundamental project results for experimental investigations on reinforced concrete frames filled with high thermal insulating clay bricks under separate, sequential and combined in- and out-of-plane loading. The test results clearly illustrates that the load-bearing capacity severely depends on the boundary conditions in the connection area between the infill and the frame.
PB  - Springer
T2  - Bulletin of Earthquake Engineering
T1  - Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading
EP  - 3422
SP  - 3397
SP  - 109435
VL  - 17
VL  - 197
DO  - 10.1007/s10518-019-00602-7
ER  - 
@article{
author = "Butenweg, Christoph and Marinković, Marko and Salatić, Ratko",
year = "2019",
abstract = "It is generally known that reinforced concrete frame structures with unreinforced masonry infills frequently suffer severe damage when subjected to earthquake loading. Recent earthquakes show that the damage occurs to both older buildings and new seismically designed buildings. This is somehow surprising as this construction type has been the subject of intensive research projects for decades and simplified verification concepts are available in standards. However, these concepts are based on the separate verification of in-plane and out-of-plane loading although the importance of the design for combined loading conditions is already known. This situation was the reason to perform comprehensive investigations of the seismic behaviour of this traditional construction type for separate and combined in-plane and out-of-plane loading within the framework of the collaborative European research project INSYSME (Innovative systems for earthquake resistant masonry buildings in reinforced concrete buildings). These investigations are helpful to develop innovative approaches to improve the seismic behaviour of infilled frames. This article presents the fundamental project results for experimental investigations on reinforced concrete frames filled with high thermal insulating clay bricks under separate, sequential and combined in- and out-of-plane loading. The test results clearly illustrates that the load-bearing capacity severely depends on the boundary conditions in the connection area between the infill and the frame.",
publisher = "Springer",
journal = "Bulletin of Earthquake Engineering",
title = "Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading",
pages = "3422-3397-109435",
volume = "17, 197",
doi = "10.1007/s10518-019-00602-7"
}
Butenweg, C., Marinković, M.,& Salatić, R.. (2019). Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading. in Bulletin of Earthquake Engineering
Springer., 17, 3397-3422.
https://doi.org/10.1007/s10518-019-00602-7
Butenweg C, Marinković M, Salatić R. Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading. in Bulletin of Earthquake Engineering. 2019;17:3397-3422.
doi:10.1007/s10518-019-00602-7 .
Butenweg, Christoph, Marinković, Marko, Salatić, Ratko, "Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading" in Bulletin of Earthquake Engineering, 17 (2019):3397-3422,
https://doi.org/10.1007/s10518-019-00602-7 . .
42
22
41

Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames

Marinković, Marko; Butenweg, Christoph

(Elsevier, 2019)

TY  - JOUR
AU  - Marinković, Marko
AU  - Butenweg, Christoph
PY  - 2019
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/1748
AB  - Reinforced concrete frame structures with masonry infills often exhibit serious damage after earthquake events, as the infills are generally installed without additional constructive measures in contact to the reinforced concrete frame. The masonry infills constructed in this way experience an unplanned interaction with the surrounding RC frame and thus become part of the horizontal load-bearing system with in-plane loading. This interaction combined with seismically induced loads perpendicular to the infill panel often leads to total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation to develop an innovative system for decoupling the RC frame and the masonry infill with a special profile made of elastomeric cellular material within the collaborative European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). The profile allows relative displacements between the RC frame and the masonry infill and serves at the same time as a support for out-of-plane loads. The article first explains the design and installation of the system and provides an overview of the load bearing capacities determined through small specimen tests on the system components. Subsequently, fundamental experimental investigations on traditional and decoupled RC frames infilled with high thermal insulating clay bricks for separate and combined in-plane ‬and out-of-plane loading are presented. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.
PB  - Elsevier
T2  - Engineering Structures
T1  - Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames
SP  - 109435
VL  - 197
DO  - 10.1016/j.engstruct.2019.109435
ER  - 
@article{
author = "Marinković, Marko and Butenweg, Christoph",
year = "2019",
abstract = "Reinforced concrete frame structures with masonry infills often exhibit serious damage after earthquake events, as the infills are generally installed without additional constructive measures in contact to the reinforced concrete frame. The masonry infills constructed in this way experience an unplanned interaction with the surrounding RC frame and thus become part of the horizontal load-bearing system with in-plane loading. This interaction combined with seismically induced loads perpendicular to the infill panel often leads to total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation to develop an innovative system for decoupling the RC frame and the masonry infill with a special profile made of elastomeric cellular material within the collaborative European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). The profile allows relative displacements between the RC frame and the masonry infill and serves at the same time as a support for out-of-plane loads. The article first explains the design and installation of the system and provides an overview of the load bearing capacities determined through small specimen tests on the system components. Subsequently, fundamental experimental investigations on traditional and decoupled RC frames infilled with high thermal insulating clay bricks for separate and combined in-plane ‬and out-of-plane loading are presented. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.",
publisher = "Elsevier",
journal = "Engineering Structures",
title = "Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames",
pages = "109435",
volume = "197",
doi = "10.1016/j.engstruct.2019.109435"
}
Marinković, M.,& Butenweg, C.. (2019). Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames. in Engineering Structures
Elsevier., 197, 109435.
https://doi.org/10.1016/j.engstruct.2019.109435
Marinković M, Butenweg C. Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames. in Engineering Structures. 2019;197:109435.
doi:10.1016/j.engstruct.2019.109435 .
Marinković, Marko, Butenweg, Christoph, "Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames" in Engineering Structures, 197 (2019):109435,
https://doi.org/10.1016/j.engstruct.2019.109435 . .
3
46
16
47

Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen

Butenweg, Christoph; Marinković, Marko

(2018)

TY  - JOUR
AU  - Butenweg, Christoph
AU  - Marinković, Marko
PY  - 2018
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2375
AB  - Stahlbetonrahmentragwerke mit Mauerwerksausfachungen weisen nach Erdbebenereignissen häufig schwere Schäden auf, da die Ausfachungen ohne weitere konstruktive Maßnahmen mit vollem Kontakt zum Stahlbetonrahmen eingemauert werden. Durch die unplanmäßige Beteiligung am horizontalen Lastabtrag erfahren die Ausfachungen Belastungen in Wandebene und beeinflussen das globale Schwingungsverhalten der Rahmentragwerke. In Kombination mit den gleichzeitig auftretenden seismischen Trägheitskräften senkrecht zur Wand führt dies in vielen Fällen zu einem Versagen der mit niedrigen Festigkeiten ausgeführten Ausfachungen. Dies war der Anlass in dem europäischen Forschungsprojekt INSYSME ein Entkopplungssystem zu entwickeln, mit dem Rahmen und Ausfachung durch ein spezielles Profil aus Elastomeren entkoppelt werden. Das Profil ermöglicht Relativverschiebungen zwischen Rahmen und Ausfachung und stellt gleichzeitig die Aufnahme von Belastungen senkrecht zur Wand sicher. Der Beitrag erläutert zunächst den Aufbau des Systems und gibt einen Überblick über die in Kleinbauteilversuchen ermittelten Tragfähigkeiten. Zudem werden experimentelle Untersuchungen an mit hochwärmedämmenden Mauerziegeln ausgefachten Stahlbetonrahmen mit und ohne Entkopplungssystems für getrennte und kombinierte Belastungen in und senkrecht zur Wandebene vorgestellt. Auf Grundlage einer Versuchsauswertung und eines Ergebnisvergleichs werden Wirkungsweise und Effektivität des entwickelten Entkopplungssystems demonstriert.
T2  - Bauingenieur
T1  - Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen
VL  - 93
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2375
ER  - 
@article{
author = "Butenweg, Christoph and Marinković, Marko",
year = "2018",
abstract = "Stahlbetonrahmentragwerke mit Mauerwerksausfachungen weisen nach Erdbebenereignissen häufig schwere Schäden auf, da die Ausfachungen ohne weitere konstruktive Maßnahmen mit vollem Kontakt zum Stahlbetonrahmen eingemauert werden. Durch die unplanmäßige Beteiligung am horizontalen Lastabtrag erfahren die Ausfachungen Belastungen in Wandebene und beeinflussen das globale Schwingungsverhalten der Rahmentragwerke. In Kombination mit den gleichzeitig auftretenden seismischen Trägheitskräften senkrecht zur Wand führt dies in vielen Fällen zu einem Versagen der mit niedrigen Festigkeiten ausgeführten Ausfachungen. Dies war der Anlass in dem europäischen Forschungsprojekt INSYSME ein Entkopplungssystem zu entwickeln, mit dem Rahmen und Ausfachung durch ein spezielles Profil aus Elastomeren entkoppelt werden. Das Profil ermöglicht Relativverschiebungen zwischen Rahmen und Ausfachung und stellt gleichzeitig die Aufnahme von Belastungen senkrecht zur Wand sicher. Der Beitrag erläutert zunächst den Aufbau des Systems und gibt einen Überblick über die in Kleinbauteilversuchen ermittelten Tragfähigkeiten. Zudem werden experimentelle Untersuchungen an mit hochwärmedämmenden Mauerziegeln ausgefachten Stahlbetonrahmen mit und ohne Entkopplungssystems für getrennte und kombinierte Belastungen in und senkrecht zur Wandebene vorgestellt. Auf Grundlage einer Versuchsauswertung und eines Ergebnisvergleichs werden Wirkungsweise und Effektivität des entwickelten Entkopplungssystems demonstriert.",
journal = "Bauingenieur",
title = "Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen",
volume = "93",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2375"
}
Butenweg, C.,& Marinković, M.. (2018). Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen. in Bauingenieur, 93.
https://hdl.handle.net/21.15107/rcub_grafar_2375
Butenweg C, Marinković M. Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen. in Bauingenieur. 2018;93.
https://hdl.handle.net/21.15107/rcub_grafar_2375 .
Butenweg, Christoph, Marinković, Marko, "Erdbebensicherer Anschluss von Ausfachungsmauerwerk in Stahlbetonrahmentragwerken mit Entkopplungselementen" in Bauingenieur, 93 (2018),
https://hdl.handle.net/21.15107/rcub_grafar_2375 .

Earthquake-proof connection of a bracing structure to a frame structure

Butenweg, Christoph; Marinković, Marko

(2018)

TY  - PAT
AU  - Butenweg, Christoph
AU  - Marinković, Marko
PY  - 2018
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2197
AB  - Die Erfindung betrifft ein Verfahren zum erdbebensicheren Anschluss eines Mauersteine umfassenden Ausfachungsmauerwerks an eine Rahmenstruktur, wobei die Rahmenstruktur einen Kopfbalken, einen Fußbalken sowie zwei sich zwischen dem Kopfbalken und dem Fußbalken erstreckende Stützen umfasst und wobei durch die Rahmenstruktur ein Aufnahmeraum für das Ausfachungsmauerwerk gebildet wird, wobei weiterhin das Ausfachungsmauerwerk Anschlussmauersteine umfasst, welche jeweils mit mindestens einer Anschlussseite an die Rahmenstruktur angrenzen. Die Erfindung betrifft weiterhin einen Verbund aus einer derartigen Rahmenstruktur und einem Ausfachungsmauerwerk.
T2  - European Patent Office
T1  - Earthquake-proof connection of a bracing structure to a frame structure
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2197
ER  - 
@misc{
author = "Butenweg, Christoph and Marinković, Marko",
year = "2018",
abstract = "Die Erfindung betrifft ein Verfahren zum erdbebensicheren Anschluss eines Mauersteine umfassenden Ausfachungsmauerwerks an eine Rahmenstruktur, wobei die Rahmenstruktur einen Kopfbalken, einen Fußbalken sowie zwei sich zwischen dem Kopfbalken und dem Fußbalken erstreckende Stützen umfasst und wobei durch die Rahmenstruktur ein Aufnahmeraum für das Ausfachungsmauerwerk gebildet wird, wobei weiterhin das Ausfachungsmauerwerk Anschlussmauersteine umfasst, welche jeweils mit mindestens einer Anschlussseite an die Rahmenstruktur angrenzen. Die Erfindung betrifft weiterhin einen Verbund aus einer derartigen Rahmenstruktur und einem Ausfachungsmauerwerk.",
journal = "European Patent Office",
title = "Earthquake-proof connection of a bracing structure to a frame structure",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2197"
}
Butenweg, C.,& Marinković, M.. (2018). Earthquake-proof connection of a bracing structure to a frame structure. in European Patent Office.
https://hdl.handle.net/21.15107/rcub_grafar_2197
Butenweg C, Marinković M. Earthquake-proof connection of a bracing structure to a frame structure. in European Patent Office. 2018;.
https://hdl.handle.net/21.15107/rcub_grafar_2197 .
Butenweg, Christoph, Marinković, Marko, "Earthquake-proof connection of a bracing structure to a frame structure" in European Patent Office (2018),
https://hdl.handle.net/21.15107/rcub_grafar_2197 .

Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk

Butenweg, Christoph; Marinković, Marko; Kubalski, Thomas; Fehling, Ekkehard; Pfetzing, Thomas; Meyer, Udo

(2017)

TY  - CONF
AU  - Butenweg, Christoph
AU  - Marinković, Marko
AU  - Kubalski, Thomas
AU  - Fehling, Ekkehard
AU  - Pfetzing, Thomas
AU  - Meyer, Udo
PY  - 2017
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2196
AB  - Im Dezember 2016 wurde das EU-Forschungsprojekt INSYSME – Innovative Systems for Earthquake Resistant Design Masonry Enclosures in Reinforced Concrete Buildings – erfolgreich abgeschlosssen. Unter der Koordination der Universität Padua beteiligen sich 16 Partner aus sechs europäischen Ländern (Deutschland, Griechenland, Italien, Portugal, Rumänien, Türkei). Weitere Informationen des im 7. Rahmenprogramm der EU-Kommission geförderten Projekts finden sich auf der Projektwebsite www.insysme.eu. Projektpartner aus Deutschland waren die Arbeitsgemeinschaft Mauerziegel aus Bonn, die Universität Kassel sowie das Ingenieurbüro SDA-engineering GmbH aus Herzogenrath. Die deutschen Partner entwickelten innovative Ausfachungssysteme aus monolithischem wärmedämmenden Ziegelmauerwerk, mit denen nicht nur eine erhöhte Erdbebensicherheit, sondern auch die Erfüllung der steigenden Anforderungen aus Windbeanspruchungen sichergestellt werden. Es wurden umfangreiche experimentelle und rechnerische Untersuchungen an Ausfachungswänden durchgeführt, auf deren Grundlage ein Berechnungs- und Bemessungskonzept sowie praxisgerechte konstruktive Lösungen für Ausfachungen aus Ziegelmauerwerk in Erdbebengebieten abgeleitet wurden. In dem vorliegenden Beitrag werden erste Projektergebnisse der deutschen Partner vorgestellt und im Hinblick auf eine Umsetzung in der Baupraxis diskutiert.
C3  - Erdbebeningenieurwesen und Baudynamik, 15. D-A-C-H Tagung
T1  - Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2196
ER  - 
@conference{
author = "Butenweg, Christoph and Marinković, Marko and Kubalski, Thomas and Fehling, Ekkehard and Pfetzing, Thomas and Meyer, Udo",
year = "2017",
abstract = "Im Dezember 2016 wurde das EU-Forschungsprojekt INSYSME – Innovative Systems for Earthquake Resistant Design Masonry Enclosures in Reinforced Concrete Buildings – erfolgreich abgeschlosssen. Unter der Koordination der Universität Padua beteiligen sich 16 Partner aus sechs europäischen Ländern (Deutschland, Griechenland, Italien, Portugal, Rumänien, Türkei). Weitere Informationen des im 7. Rahmenprogramm der EU-Kommission geförderten Projekts finden sich auf der Projektwebsite www.insysme.eu. Projektpartner aus Deutschland waren die Arbeitsgemeinschaft Mauerziegel aus Bonn, die Universität Kassel sowie das Ingenieurbüro SDA-engineering GmbH aus Herzogenrath. Die deutschen Partner entwickelten innovative Ausfachungssysteme aus monolithischem wärmedämmenden Ziegelmauerwerk, mit denen nicht nur eine erhöhte Erdbebensicherheit, sondern auch die Erfüllung der steigenden Anforderungen aus Windbeanspruchungen sichergestellt werden. Es wurden umfangreiche experimentelle und rechnerische Untersuchungen an Ausfachungswänden durchgeführt, auf deren Grundlage ein Berechnungs- und Bemessungskonzept sowie praxisgerechte konstruktive Lösungen für Ausfachungen aus Ziegelmauerwerk in Erdbebengebieten abgeleitet wurden. In dem vorliegenden Beitrag werden erste Projektergebnisse der deutschen Partner vorgestellt und im Hinblick auf eine Umsetzung in der Baupraxis diskutiert.",
journal = "Erdbebeningenieurwesen und Baudynamik, 15. D-A-C-H Tagung",
title = "Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2196"
}
Butenweg, C., Marinković, M., Kubalski, T., Fehling, E., Pfetzing, T.,& Meyer, U.. (2017). Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk. in Erdbebeningenieurwesen und Baudynamik, 15. D-A-C-H Tagung.
https://hdl.handle.net/21.15107/rcub_grafar_2196
Butenweg C, Marinković M, Kubalski T, Fehling E, Pfetzing T, Meyer U. Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk. in Erdbebeningenieurwesen und Baudynamik, 15. D-A-C-H Tagung. 2017;.
https://hdl.handle.net/21.15107/rcub_grafar_2196 .
Butenweg, Christoph, Marinković, Marko, Kubalski, Thomas, Fehling, Ekkehard, Pfetzing, Thomas, Meyer, Udo, "Innovative Ansätze für die Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk" in Erdbebeningenieurwesen und Baudynamik, 15. D-A-C-H Tagung (2017),
https://hdl.handle.net/21.15107/rcub_grafar_2196 .