Ignjatović, Lazar

Link to this page

Authority KeyName Variants
a7687074-ec8c-411e-8aed-16456c482083
  • Ignjatović, Lazar (3)
Projects

Author's Bibliography

Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System

Ignjatović, Lazar; Stojković, Milan; Ivetić, Damjan; Milašinović, Miloš; Milivojević, Nikola

(MDPI, 2021)

TY  - JOUR
AU  - Ignjatović, Lazar
AU  - Stojković, Milan
AU  - Ivetić, Damjan
AU  - Milašinović, Miloš
AU  - Milivojević, Nikola
PY  - 2021
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2454
AB  - The objective of this research is to introduce a novel framework to quantify the risk of
the reservoir system outside the design envelope, taking into account the risks related to floodprotection and hydro-energy generation under unfavourable reservoir element conditions (system
element failures) and hazardous situations within the environment (flood event). To analyze water
system behavior in adverse conditions, a system analysis approach is used, which is founded
upon the system dynamics model with a causal loop. The capability of the system in performing
the intended functionality can be quantified using the traditional static measures like reliability,
resilience and vulnerability, or dynamic resilience. In this paper, a novel method for the assessment
of a multi-parameter dynamic resilience is introduced. The multi-parameter dynamic resilience
envelops the hydropower and flood-protection resilience, as two opposing demands in the reservoir
operation regime. A case study of a Pirot reservoir, in the Republic of Serbia, is used. To estimate
the multi -parameter dynamic resilience of the Pirot reservoir system, a hydrological model, and a
system dynamic simulation model with an inner control loop, is developed. The inner control loop
provides the relation between the hydropower generation and flood-protection. The hydrological
model is calibrated and generated climate inputs are used to simulate the long-term flow sequences.
The most severe flood event period is extracted to be used as the input for the system dynamics
simulations. The system performance for five different scenarios with various multi failure events
(e.g., generator failure, segment gate failure on the spillway, leakage from reservoir and water supply
tunnel failure due to earthquake) are presented using the novel concept of the explicit modeling of the
component failures through element functionality indicators. Based on the outputs from the system
dynamics model, system performance is determined and, later, hydropower and flood protection
resilience. Then, multi-parameter dynamic resilience of the Pirot reservoir system is estimated and
compared with the traditional static measures (reliability). Discrepancy between the drop between
multi-parameter resilience (from 0.851 to 0.935) and reliability (from 0.993 to 1) shows that static
measure underestimates the risk to the water system. Thus, the results from this research show that
multi-parameter dynamic resilience, as an indicator, can provide additional insight compared to the
traditional static measures, leading to identification of the vulnerable elements of a complex reservoir system. Additionally, it is shown that the proposed explicit modeling of system components failure
can be used to reflect the drop of the overall system functionality
PB  - MDPI
T2  - Water
T1  - Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System
IS  - 22
VL  - 13
DO  - 10.3390/w13223157
ER  - 
@article{
author = "Ignjatović, Lazar and Stojković, Milan and Ivetić, Damjan and Milašinović, Miloš and Milivojević, Nikola",
year = "2021",
abstract = "The objective of this research is to introduce a novel framework to quantify the risk of
the reservoir system outside the design envelope, taking into account the risks related to floodprotection and hydro-energy generation under unfavourable reservoir element conditions (system
element failures) and hazardous situations within the environment (flood event). To analyze water
system behavior in adverse conditions, a system analysis approach is used, which is founded
upon the system dynamics model with a causal loop. The capability of the system in performing
the intended functionality can be quantified using the traditional static measures like reliability,
resilience and vulnerability, or dynamic resilience. In this paper, a novel method for the assessment
of a multi-parameter dynamic resilience is introduced. The multi-parameter dynamic resilience
envelops the hydropower and flood-protection resilience, as two opposing demands in the reservoir
operation regime. A case study of a Pirot reservoir, in the Republic of Serbia, is used. To estimate
the multi -parameter dynamic resilience of the Pirot reservoir system, a hydrological model, and a
system dynamic simulation model with an inner control loop, is developed. The inner control loop
provides the relation between the hydropower generation and flood-protection. The hydrological
model is calibrated and generated climate inputs are used to simulate the long-term flow sequences.
The most severe flood event period is extracted to be used as the input for the system dynamics
simulations. The system performance for five different scenarios with various multi failure events
(e.g., generator failure, segment gate failure on the spillway, leakage from reservoir and water supply
tunnel failure due to earthquake) are presented using the novel concept of the explicit modeling of the
component failures through element functionality indicators. Based on the outputs from the system
dynamics model, system performance is determined and, later, hydropower and flood protection
resilience. Then, multi-parameter dynamic resilience of the Pirot reservoir system is estimated and
compared with the traditional static measures (reliability). Discrepancy between the drop between
multi-parameter resilience (from 0.851 to 0.935) and reliability (from 0.993 to 1) shows that static
measure underestimates the risk to the water system. Thus, the results from this research show that
multi-parameter dynamic resilience, as an indicator, can provide additional insight compared to the
traditional static measures, leading to identification of the vulnerable elements of a complex reservoir system. Additionally, it is shown that the proposed explicit modeling of system components failure
can be used to reflect the drop of the overall system functionality",
publisher = "MDPI",
journal = "Water",
title = "Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System",
number = "22",
volume = "13",
doi = "10.3390/w13223157"
}
Ignjatović, L., Stojković, M., Ivetić, D., Milašinović, M.,& Milivojević, N.. (2021). Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System. in Water
MDPI., 13(22).
https://doi.org/10.3390/w13223157
Ignjatović L, Stojković M, Ivetić D, Milašinović M, Milivojević N. Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System. in Water. 2021;13(22).
doi:10.3390/w13223157 .
Ignjatović, Lazar, Stojković, Milan, Ivetić, Damjan, Milašinović, Miloš, Milivojević, Nikola, "Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System" in Water, 13, no. 22 (2021),
https://doi.org/10.3390/w13223157 . .
11

Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model

Stojadinović, Luka; Ivetić, Damjan; Milašinović, Miloš; Ignjatović, Lazar; Stojković, Milan

(2021)

TY  - CONF
AU  - Stojadinović, Luka
AU  - Ivetić, Damjan
AU  - Milašinović, Miloš
AU  - Ignjatović, Lazar
AU  - Stojković, Milan
PY  - 2021
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2459
AB  - Održivo upravljanje složenim vodoprivrednim sistemima, u neizvesnim i promenljivim klimatskim uslovima, kao i pod rastućim socio-ekonomskim zahtevima i ograničenjima, predstavlja kompleksan izazov. Samo u poslednjih par decenija, zabeležene su katastrofalne prirodne nepogode (poplave, suše, zemlotresi itd) koje su po intezitetu prevazilazile dosad zabeležene vrednosti. Vodoprivredni sistemi, kao što su višenamenske akumulacije, predstavljaju jedan primer vitalnih sistema čije je pouzdano funkcionisanje dodatno ugroženo u svetlu novih okolnosti. Kvantifikovanje „spremnosti“ sistema na navedene događaje, se uobičajeno sprovodi kroz analizu rizika primenom tradicionalnih statičkih veličina. Kako statičke mere imaju izvesna ograničenja, u poslednje vreme, sve više se koristi koncept dinamičke rezilijentnosti (izdržljivosti). Kako bi se obezbedila minimizacija štetnog uticaja navedenih događaja na funkcionalnost vodoprivrednih sistema, neophodno je povećati tzv. „rezilijentnost“ sistema, odnosno sposobnost sistema da izdrži i prihvati neki poremećaj i povrati pređašnju funkcionalnost. Kako bi se ispitala „spremnost“ sistema na razne nepovoljne scenarije, koji podrazumevaju smanjenje funkcionalnosti različitih komponenata sistema, neophodno je koristiti adekvatan simulacioni model vodoprivrednog sistema i model otkaza. Na osnovu ovih modela moguće je proceniti ponašanje sistema nakon širokog spektra mogućih nepovoljnih događaja. Takođe, moguće je detektovati komponente koje bi uz pravovremeno ulaganje i poboljšanje stanja ublažile pad funkcionalnosti sistema pri različitim poremećajima i povećale rezilijentnost celog sistema. U ovom istraživanju predstavljen je pristup za modeliranje otkaza i implementaciju istih u vodoprivredni model. Kao primer korišćen je vodoprivredni sistem Pirot.
C3  - 19. Savetovanje SDHI i SDH, Beograd, Srbija
T1  - Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2459
ER  - 
@conference{
author = "Stojadinović, Luka and Ivetić, Damjan and Milašinović, Miloš and Ignjatović, Lazar and Stojković, Milan",
year = "2021",
abstract = "Održivo upravljanje složenim vodoprivrednim sistemima, u neizvesnim i promenljivim klimatskim uslovima, kao i pod rastućim socio-ekonomskim zahtevima i ograničenjima, predstavlja kompleksan izazov. Samo u poslednjih par decenija, zabeležene su katastrofalne prirodne nepogode (poplave, suše, zemlotresi itd) koje su po intezitetu prevazilazile dosad zabeležene vrednosti. Vodoprivredni sistemi, kao što su višenamenske akumulacije, predstavljaju jedan primer vitalnih sistema čije je pouzdano funkcionisanje dodatno ugroženo u svetlu novih okolnosti. Kvantifikovanje „spremnosti“ sistema na navedene događaje, se uobičajeno sprovodi kroz analizu rizika primenom tradicionalnih statičkih veličina. Kako statičke mere imaju izvesna ograničenja, u poslednje vreme, sve više se koristi koncept dinamičke rezilijentnosti (izdržljivosti). Kako bi se obezbedila minimizacija štetnog uticaja navedenih događaja na funkcionalnost vodoprivrednih sistema, neophodno je povećati tzv. „rezilijentnost“ sistema, odnosno sposobnost sistema da izdrži i prihvati neki poremećaj i povrati pređašnju funkcionalnost. Kako bi se ispitala „spremnost“ sistema na razne nepovoljne scenarije, koji podrazumevaju smanjenje funkcionalnosti različitih komponenata sistema, neophodno je koristiti adekvatan simulacioni model vodoprivrednog sistema i model otkaza. Na osnovu ovih modela moguće je proceniti ponašanje sistema nakon širokog spektra mogućih nepovoljnih događaja. Takođe, moguće je detektovati komponente koje bi uz pravovremeno ulaganje i poboljšanje stanja ublažile pad funkcionalnosti sistema pri različitim poremećajima i povećale rezilijentnost celog sistema. U ovom istraživanju predstavljen je pristup za modeliranje otkaza i implementaciju istih u vodoprivredni model. Kao primer korišćen je vodoprivredni sistem Pirot.",
journal = "19. Savetovanje SDHI i SDH, Beograd, Srbija",
title = "Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2459"
}
Stojadinović, L., Ivetić, D., Milašinović, M., Ignjatović, L.,& Stojković, M.. (2021). Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model. in 19. Savetovanje SDHI i SDH, Beograd, Srbija.
https://hdl.handle.net/21.15107/rcub_grafar_2459
Stojadinović L, Ivetić D, Milašinović M, Ignjatović L, Stojković M. Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model. in 19. Savetovanje SDHI i SDH, Beograd, Srbija. 2021;.
https://hdl.handle.net/21.15107/rcub_grafar_2459 .
Stojadinović, Luka, Ivetić, Damjan, Milašinović, Miloš, Ignjatović, Lazar, Stojković, Milan, "Dinamička rezilijentnost kao mera za upravljanje rizikom kod složenih vodoprivrednih sistema: Implementacija modela otkaza u vodoprivredni model" in 19. Savetovanje SDHI i SDH, Beograd, Srbija (2021),
https://hdl.handle.net/21.15107/rcub_grafar_2459 .

Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System

Ignjatović, Lazar; Stojković, Milan; Ivetić, Damjan; Milašinović, Miloš; Milivojević, Nikola

(MDPI, 2021)

TY  - JOUR
AU  - Ignjatović, Lazar
AU  - Stojković, Milan
AU  - Ivetić, Damjan
AU  - Milašinović, Miloš
AU  - Milivojević, Nikola
PY  - 2021
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2671
AB  - The objective of this research is to introduce a novel framework to quantify the risk of the reservoir system outside the design envelope, taking into account the risks related to flood-protection and hydro-energy generation under unfavourable reservoir element conditions (system element failures) and hazardous situations within the environment (flood event). To analyze water system behavior in adverse conditions, a system analysis approach is used, which is founded upon the system dynamics model with a causal loop. The capability of the system in performing the intended functionality can be quantified using the traditional static measures like reliability, resilience and vulnerability, or dynamic resilience. In this paper, a novel method for the assessment of a multi-parameter dynamic resilience is introduced. The multi-parameter dynamic resilience envelops the hydropower and flood-protection resilience, as two opposing demands in the reservoir operation regime. A case study of a Pirot reservoir, in the Republic of Serbia, is used. To estimate the multi -parameter dynamic resilience of the Pirot reservoir system, a hydrological model, and a system dynamic simulation model with an inner control loop, is developed. The inner control loop provides the relation between the hydropower generation and flood-protection. The hydrological model is calibrated and generated climate inputs are used to simulate the long-term flow sequences. The most severe flood event period is extracted to be used as the input for the system dynamics simulations. The system performance for five different scenarios with various multi failure events (e.g., generator failure, segment gate failure on the spillway, leakage from reservoir and water supply tunnel failure due to earthquake) are presented using the novel concept of the explicit modeling of the component failures through element functionality indicators. Based on the outputs from the system dynamics model, system performance is determined and, later, hydropower and flood protection resilience. Then, multi-parameter dynamic resilience of the Pirot reservoir system is estimated and compared with the traditional static measures (reliability). Discrepancy between the drop between multi-parameter resilience (from 0.851 to 0.935) and reliability (from 0.993 to 1) shows that static measure underestimates the risk to the water system. Thus, the results from this research show that multi-parameter dynamic resilience, as an indicator, can provide additional insight compared to the traditional static measures, leading to identification of the vulnerable elements of a complex reservoir system. Additionally, it is shown that the proposed explicit modeling of system components failure can be used to reflect the drop of the overall system functionality.
PB  - MDPI
T2  - Water MDPI
T1  - Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System
VL  - 13(22)
DO  - 10.3390/w13223157
ER  - 
@article{
author = "Ignjatović, Lazar and Stojković, Milan and Ivetić, Damjan and Milašinović, Miloš and Milivojević, Nikola",
year = "2021",
abstract = "The objective of this research is to introduce a novel framework to quantify the risk of the reservoir system outside the design envelope, taking into account the risks related to flood-protection and hydro-energy generation under unfavourable reservoir element conditions (system element failures) and hazardous situations within the environment (flood event). To analyze water system behavior in adverse conditions, a system analysis approach is used, which is founded upon the system dynamics model with a causal loop. The capability of the system in performing the intended functionality can be quantified using the traditional static measures like reliability, resilience and vulnerability, or dynamic resilience. In this paper, a novel method for the assessment of a multi-parameter dynamic resilience is introduced. The multi-parameter dynamic resilience envelops the hydropower and flood-protection resilience, as two opposing demands in the reservoir operation regime. A case study of a Pirot reservoir, in the Republic of Serbia, is used. To estimate the multi -parameter dynamic resilience of the Pirot reservoir system, a hydrological model, and a system dynamic simulation model with an inner control loop, is developed. The inner control loop provides the relation between the hydropower generation and flood-protection. The hydrological model is calibrated and generated climate inputs are used to simulate the long-term flow sequences. The most severe flood event period is extracted to be used as the input for the system dynamics simulations. The system performance for five different scenarios with various multi failure events (e.g., generator failure, segment gate failure on the spillway, leakage from reservoir and water supply tunnel failure due to earthquake) are presented using the novel concept of the explicit modeling of the component failures through element functionality indicators. Based on the outputs from the system dynamics model, system performance is determined and, later, hydropower and flood protection resilience. Then, multi-parameter dynamic resilience of the Pirot reservoir system is estimated and compared with the traditional static measures (reliability). Discrepancy between the drop between multi-parameter resilience (from 0.851 to 0.935) and reliability (from 0.993 to 1) shows that static measure underestimates the risk to the water system. Thus, the results from this research show that multi-parameter dynamic resilience, as an indicator, can provide additional insight compared to the traditional static measures, leading to identification of the vulnerable elements of a complex reservoir system. Additionally, it is shown that the proposed explicit modeling of system components failure can be used to reflect the drop of the overall system functionality.",
publisher = "MDPI",
journal = "Water MDPI",
title = "Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System",
volume = "13(22)",
doi = "10.3390/w13223157"
}
Ignjatović, L., Stojković, M., Ivetić, D., Milašinović, M.,& Milivojević, N.. (2021). Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System. in Water MDPI
MDPI., 13(22).
https://doi.org/10.3390/w13223157
Ignjatović L, Stojković M, Ivetić D, Milašinović M, Milivojević N. Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System. in Water MDPI. 2021;13(22).
doi:10.3390/w13223157 .
Ignjatović, Lazar, Stojković, Milan, Ivetić, Damjan, Milašinović, Miloš, Milivojević, Nikola, "Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System" in Water MDPI, 13(22) (2021),
https://doi.org/10.3390/w13223157 . .
11