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A framework for free vibration analysis of plate-like structures is presented in the paper. Based on the previously formulated
dynamic stiffness elements, FREEVIB object-oriented software in Python environment has been created. Software design and
structure as well as a wide range of possible structural problems that could be analyzed using the FREEVIB are presented.*rough
several illustrative examples including free vibration analysis of stepped, stiffened and folded plate structures, implying isotropic
or orthotropic material formulations, the efficiency and accuracy of the FREEVIB is demonstrated. *e possibilities of further
extensions and improvements of the software are discussed.

1. Introduction

Composite laminates have attracted great attention over past
decades in a wide range of engineering fields where they are
applied as structural components of aircrafts, space struc-
tures, highway and pedestrian bridges and platforms
amongst others, due to its high stiffness-to-weight ratio and
high fatigue and environmental resistance. Consequently,
vibration and buckling analysis of such structures has be-
come a great concern for researchers.

Analytical solutions of the free vibration problem of
rectangular composite laminated plate having special types of
boundary conditions have been derived based on both classical
and shear deformation theories [1, 2]. Since composite lami-
nated plates are usually assembled in a structure consisting of
plates connected at different angles, with or without stiffeners
and arbitrarily assigned boundary conditions, it becomes
difficult or even impossible to find closed-form solutions of the
free vibration equations of such structures.*erefore, the finite
element method (FEM) [3, 4] is most frequently used to solve
the corresponding free vibration problems. However, in mid-
and high-frequency ranges, the computation of the free vi-
bration response using conventional FEM requires very fine
mesh of finite elements, leading to the large number of

governing equations to be solved and increasing the compu-
tational cost. Consequently, the results may become inaccurate
and unreliable. To overcome these issues, the dynamic stiffness
method (DSM) has been applied to solve a wide range of
vibration problems [5, 6].

*e core of the DSM is the frequency domain-based
strong-form solution of the governing equations of motion
derived for the corresponding elastodynamic problem.
*erefore, the number of dynamic stiffness elements nec-
essary for structural discretization is frequency independent
and influenced only by the change in the geometrical and/or
material properties of the structure. At the same time, using
simple assembly procedure as in the FEMmakes the DSM an
efficient and highly accurate method capable of solving a
broad variety of vibration problems.

Wittrick [7] was the first who derived two-dimensional
dynamic stiffness elements and corresponding dynamic
stiffness matrices for the free vibration and buckling analysis
of rectangular isotropic long plate assemblies with vibration
and buckling modes varying sinusoidally in the longitudinal
direction. His research has been extended to anisotropic
plates based on which the computer program VIPASA [8]
has been developed for calculating natural frequencies and
critical factors of stiffened plate assemblies. Later on, based
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on the VIPASA, the VICON software [9] has been de-
veloped, which enabled constraints and supporting structure
to be accounted for in the free vibration and buckling
analysis of plate assemblies. Finally, in the VICONOPT
computer code [10], the dynamic stiffness elements based on
both classical plate theory (CPT) and first-order shear de-
formation theory (FSDT) have been implemented and ap-
plied in the design-optimization process of stiffened plate
structures. Boscolo and Banerjee [11–14] developed dy-
namic stiffness elements for rectangular Levy-type isotropic
and laminated composite plates undergoing both in-plane
and transverse vibration and demonstrated high accuracy
and reliability of the DSM implemented in a computer code
DySAP to compute free vibration characteristics of com-
posite stiffened plate assemblies [15, 16].

Problems arising from finding the closed-form solution
for the most general case, regardless of the boundary con-
ditions, have been overcome in the works of Casimir et al.
[17] and Banerjee et al. [18, 19] who formulated the dynamic
stiffness matrix of rectangular isotropic plate element un-
dergoing transverse vibration based on CPT. Based on the
classical laminated plate theory (CLPT), the dynamic stiff-
ness matrix for an orthotropic plate element has been for-
mulated recently by Ghorbel et al. [20, 21], Liu and Banerjee
[22, 23], Liu et al. [24], and Papkov and Banerjee [25]. *e
spectral dynamic stiffness formulation for in-plane modal
analysis of composite plates and prismatic solids was de-
veloped by Liu [26]. In a series of contributions, dynamic
stiffness matrices for a completely free rectangular plate
element based on the FSDT [27] and higher-order shear
deformation theory (HSDT) [28], as well as for the plate
element ongoing in-plane vibrations [29], have been de-
veloped by the authors. Recently, the above formulations
have been broadened to the free transverse vibration analysis
of sandwich [30], symmetric cross-ply laminated composite
plates [31, 32], and composite stiffened plate assemblies and
GFRP beams with or without straight through cracks [33].

*e dynamic stiffness elements presented in previous
authors’ work served as a basis for the development of
computational framework for free vibration analysis of
laminated composite plate-like structures, within which the
object-oriented software FREEVIB has been created.*emain
objective of the paper is to present the structure, capabilities,
possible improvements, further extensions, and application of
the FREEVIB in the vibration analysis of plate-like structures.

*e paper is organized as follows. Brief overview of the
basic equations describing the kinematics and constitutive
law of laminated composite plates are given in Sections 2.1
and 2.2. Afterwards, the key components of the dynamic
stiffness method regarding the dynamic stiffness matrix
development, rotation and assembly procedure, and mode
shape computation are briefly explained in Section 2.3. A
wide range of structural problems that could be analyzed
using the FREEVIB is depicted in Section 2.4. Structure,
design, and possible extensions and improvements of the
FREEVIB software are explained in detail in Section 3.
*rough several illustrative examples, the efficiency and
accuracy of the FREEVIB is presented in Section 4. Finally,
concluding remarks are given in Section 5.

2. Theoretical Basis of the Dynamic
Stiffness Method

*e current capability of the presented computational
framework implies the formulation of several dynamic
stiffness elements, based on different plate theories. *e
overview of the dynamic stiffness method is presented in this
section. For more details, the reader is referred to authors’
previous work [27–33].

2.1. Displacement Field. We consider an assembly of rect-
angular laminated composite plates, each having the di-
mensions 2a× 2b. Each plate is composed of n orthotropic
layers, as shown in Figure 1(a). *e overall plate thickness of
the ith plate in the assembly is denoted as hi, while the
thickness of the kth layer of the ith plate is denoted as hki,
where k� 1, 2, . . ., n denotes the layer number starting from
the bottom of the laminated plate. *e global coordinate
system (X, Y, Z) is the Cartesian coordinate system, while the
local coordinate system of each plate is located in the mid-
plane of the laminated plate, with the z axis pointing upwards.

It is worth mentioning that the plates are connected
along the boundary lines instead at nodes (like in FEM).
*erefore, the plate assembly shown in Figure 1(a) is
modeled in the dynamic stiffness method by using 7 dy-
namic stiffness elements (Figure 1(b)).

For each plate in the assembly, depending on the element
type, the displacement field is defined in the local coordinate
system, in an arbitrary point (x, y, z), at an arbitrary time
point t, according to either CLPT, FSDT, or HSDT [1].

First, we define the displacement field of the HSDT:
assuming that there is no deformation in the midplane of the
laminate, the displacement field of an arbitrary point (x,y,z)
at an arbitrary time point t is given as [2]:

u(x, y, z, t) � zϕy(x, y, t)

− c1 · z
3 ϕy(x, y, t) +

zw(x, y, t)

zx
􏼠 􏼡,

v(x, y, z, t) � −zϕx(x, y, t)

− c1 · z
3 −ϕx(x, y, t) +

zw(x, y, t)

zy
􏼠 􏼡,

w(x, y, z, t) � w(x, y, t),

(1)

where ϕx(x, y, t) and ϕy(x, y, t) are the rotations about the x
and y axes, respectively, zw(x, y, t)/zx and zw(x, y, t)/zy are
the slopes and c1� 4/(3h2).

*eHSDTis based on the assumption that the transverse
normal is inextensible and is not perpendicular to the
midplane after deformation. In the FSDT, the transverse
normal remains straight after deformation (but rotated with
respect to the midplane (Figure 2(b))), while in the HSDT
this criterion is relaxed by expanding the in-plane dis-
placements u and v as cubic functions with respect to the
thickness coordinate (Figure 2(c)). *is eliminates the
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application of the shear correction factor in the HSDT, while
the shear correction factor k is required in the FSDT to
satisfy the compatibility conditions of shear stresses.

*e displacement fields of both FSDT and CLPT
(Figure 2(a)) can be easily derived from the HSDT. Finally,
the presented formulation can be easily reduced for the
analysis of single-layer isotropic and orthotropic plates, as
well as for the analysis of multilayer plates with transversely
isotropic layers (i.e., sandwich panels).

*e linear strain fields of HSDT, FSDT, and CLPT,
associated with the assumed displacement field, can be
derived in the usual manner [1]. Note that HSDTand FSDT
are referred as shear-deformable plate theories.

2.2. Constitutive Equations. *e constitutive equations for
the kth orthotropic layer within the ith laminate in the
assembly, assuming linear elastic material behavior, in the
local (material) coordinate system of a single layer which
coincides with the fiber direction can be written as [1]

σk
� Qkεk

, (2)

where Qk is the matrix of the reduced stiffness components
of the kth layer for the plane stress case [1], while σk and εk

denote the stress and strain vectors of the kth layer in the
local coordinate system of a single layer. Since each laminate
in the assembly is made of several orthotropic layers, having
the material axes oriented arbitrarily with respect to the xyz
coordinates of the laminate (Figure 1(a)), the constitutive
relations must be transformed from the layer coordinate
system to the laminate coordinate system using the trans-
formation matrix Tk:

Qk
� Tk

􏼐 􏼑
−1
QkTk

, (3)

where Qk is the constitutive matrix for the kth layer in the
xyz coordinate system of the considered laminate in the
assembly. *e stress-strain relations for the kth orthotropic
layer in the xyz coordinates can now be computed as

σk
�

σx

σy

τxy

τxz

τyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

k

�

Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q55 Q45

0 0 0 Q45 Q44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k εx

εy

cxy

cxz

cyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

k

� Qkεk
.

(4)

For the symmetric cross-ply laminates considered within
the proposed framework, Q16 � Q26 � Q45 � 0.

2.3. Dynamic Stiffness Formulation. Assuming there is no
external loading acting on the plate, the Euler-Lagrange
equations of motion for the HSDT, FSDT, and CLPT can
be derived using Hamilton’s principle in terms of the dis-
placement components [1].*e dynamic stiffness matrix of a
laminated composite plate is obtained from the governing
equations of motion through the following steps.

2.3.1. Transformation of the Governing Equations of Motion
to Frequency Domain. *e governing equations of motion
are transformed into the frequency domain by assuming a
harmonic representation of the displacement/rotation field:
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Figure 1: Assembly of (a) three arbitrarily oriented multilayer plates and (b) seven dynamic stiffness elements.
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Figure 2: Deformed line element in the CLPT (a), FSDT (b), and HSDT (c).
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u(x, y, t) � 􏽢u(x, y,ω)e
iωt

, (5)

where 􏽢u(x, y,ω) are the amplitudes of the displacement/
rotation u(x, y, t) in the frequency domain. Having in mind
that equation (5) is valid for all angular frequencies ω in the
considered frequency range, the argument ω will be omitted
in further representations. After the substitution of the
above transformation into the governing equations of
motion, the equations of motion are transformed into the
following set of partial differential equations:

L􏽢u(x, y) � 0, (6)

where L is the matrix of the differential operators defined in
terms of the plate stiffness coefficients, the mass moments of
inertia, and the angular frequency ω [27–29].

2.3.2. Superposition of Symmetry Contributions.
Displacement/rotation amplitudes of a rectangular plate
element 􏽢u(x, y) can be presented as a superposition of four
symmetry contributions: symmetric-symmetric (SS),
symmetric-antisymmetric (SA), antisymmetric-symmetric
(AS), and antisymmetric-antisymmetric (AA), according
to [17–19]. By the superposition of the symmetry contri-
butions, it is possible to analyze only one quarter of a
rectangular laminated plate, which significantly reduces the
size of the corresponding dynamic stiffness matrices. By
using the method of separation of variables, the general
solution for each symmetry contribution can be represented
in the Fourier series form as

􏽢u
ij

(x, y) � 􏽘
∞

m

1
U

ij
m(x)

1
f

ij
m(y) + 􏽘

∞

m

2
U

ij
m(y)

2
f

ij
m(x)

(i, j � S orA),

(7)

where 􏽢uij(x, y) is the corresponding displacement/rotation
function, 1Uij

m(x) and 2Uij
m(y) are the unknown

displacement/rotation functions, while 1fij
m(y) and 2fij

m(x)

are the Fourier base functions, defined depending on the
symmetric or antisymmetric contribution [27–29]. In addi-
tion, it should be pointed out that Fourier base functions
differ, depending upon the corresponding elastodynamic
problem (in-plane or transverse vibration) and applied plate
theory (CLPT, FSDT, or HSDT). More details about the base
functions are given in the Appendix. In practical calculations,
the infinite Fourier series must be truncated. Consequently,
the solution of equation (7) is approximate, and its accuracy
depends on the number of terms in the general solution. *e
solutions for all symmetry contributions are given in [27–29].

2.3.3. Projection Method. *e vector of displacement
components 􏽢uij along plate boundaries x � a and y � b is
called the displacement vector 􏽢qij. *e corresponding force
vector consists of force components along plate boundaries
x � a and y � b, and it is denoted as 􏽢Qij. *ese vectors are
functions of spatial variables x and y, and consequently,
they cannot be related explicitly as in the case of one-
dimensional elements. *is issue can be overcome with the

aid of the projection method [17]. *erefore, instead of
using the vectors 􏽢qij and 􏽢Qij, new projection vectors 􏽥qij and
􏽥Qij are introduced:

􏽥qij
�
2
L

􏽚
s
Hij

􏽢qij
ds,

􏽥Qij
�
2
L

􏽚
s
Hij, 􏽢Qij

ds,

(8)

where L denotes the length of the corresponding boundary
line (2a or 2b), s is related to x or y coordinate, while Hij is
the projection matrix composed of the Fourier base func-
tions. Now, the components of the projection vectors are the
Fourier coefficients in the series expansion (see [27–33] for
details). *e relation between the projection vectors 􏽥qij and
􏽥Qij and the vector of integration constants Cij is obtained as

􏽥qij
� 􏽥Dij

DC
ij

,

􏽥Qij
� 􏽥Fij

DC
ij

.
(9)

In order to preserve the squared form of matrices 􏽥Dij

D

and 􏽥Fij

D, the number of terms in the Fourier series expansion
in equation (9) should be the same as the number of terms in
the general solutions given in equation (7). Since integrals
given in equation (8) are computed analytically, elements of
matrices 􏽥Dij

D and 􏽥Fij

D are derived in explicit form ([27–33]).
Consequently, the code execution is significantly accelera-
ted. Finally, by eliminating the vector Cij from equation (9),
the following relation between the projection vectors 􏽥Qij and
􏽥qij is obtained:

􏽥Qij
� 􏽥Fij

D
􏽥Dij

D􏼒 􏼓
−1

􏽥qij
� 􏽥Kij

Dt􏽥q
ij

, (10)

where 􏽥Kij

Dt is the dynamic stiffness matrix for the ij con-
tribution (where ij� SS, SA, AS, or AA), for the transverse
vibrations.

*e dynamic stiffness matrix for a completely free dy-
namic stiffness element based on CLPT, FSDT, or HSDT,
which relates the projections of the forces and displacements
on the four boundary lines of the plate, is obtained by using
the following expression (for details see [27–33]):

􏽥KDt �
1
2
TT

􏽥KSS
Dt 0 0 0

0 􏽥KSA
Dt 0 0

0 0 􏽥KAS
Dt 0

0 0 0 􏽥KAA
Dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T, (11)

where T is the transformation matrix [27–29].*e size of the
dynamic stiffness matrix 􏽥KDt depends on the number of
terms in the general solution M and is equal to 32M+ 12
(HSDT), 24M+8 (FSDT) and 16M+8 (CLPT).

Finally, considering that transverse and in-plane vi-
brations of a single plate represent two independent states
(for single layer plates, symmetric sandwich panels, or
symmetric cross-ply laminated composite plates), the dy-
namic stiffness matrix of the single plate can be written as
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􏽥KD �
􏽥KDt 0

0 􏽥KDi

⎡⎣ ⎤⎦, (12)

where 􏽥KDt denotes the dynamic stiffness matrix of plate el-
ement for transverse vibration, while 􏽥KDi is the dynamic
stiffness matrix of plate element undergoing in-plane vibra-
tion which can be determined in the same way as the 􏽥KDt.

2.3.4. Rotation of Dynamic Stiffness Matrices to Global
Coordinates. For stiffened plate assemblies where the plates
(i.e., plate 1 and plate 2) are connected to each other with an
arbitrary angle between them, vibrations of plate 1 cause the
vibrations of the corresponding plate 2, and vice versa.
Consequently, it is necessary to relate the displacement and
force projection vectors 􏽥q and 􏽥Q in the local coordinate
system xyz of the single plate (Figure 1) and the corre-
sponding projection vectors 􏽥q∗ and 􏽥Q∗ in the global co-
ordinate system XYZ of the plate assembly. *is is
accomplished by using the rotation matrix TR:

􏽥q � TR · 􏽥q∗. (13)

*e rotation matrix TR depends on the number of terms
in the general solution, the angle between the local (xyz) and
global coordinate system (XYZ), and the selected dynamic
stiffness element (Figure 1).*e rotation matrices are given in
the Appendix for the CLPT, FSDT, and HSDT. According to
the established relations between the projection vectors in the
local and global coordinate systems, dynamic stiffness matrix
of the single plate in global coordinate system is derived as

􏽥K∗D � TT
R

􏽥KDTR. (14)

2.3.5. Assembly Procedure and Assignment of Boundary
Conditions. Dynamic stiffness matrices of single plates 􏽥K

∗
D

are assembled in the global dynamic stiffness matrix 􏽥K
G

D of
plate assembly, using similar assembly procedure as in the
conventional FEM. *e procedure was demonstrated in
authors’ previous works [27–33]. In the analysis, arbitrary
boundary conditions can be applied by removing the rows
and columns of the global dynamic stiffness matrix that
correspond to the components of the constrained displace-
ment projections. *e following combinations of boundary
conditions are usually used along the plate edges (Table 1).

2.3.6. Computation of Natural Frequencies and Mode Shapes.
*edynamic stiffness matrix is square, frequency-dependent
matrix whose size depends on the number of termsM in the
general solution. *e natural frequencies can be computed
from the following equation:

det 􏽥KG

D,nn(ω)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0, (15)

where 􏽥KG

D,nn is the global dynamic stiffness submatrix of the
plate assembly related to the unknown generalized displace-
ment projections 􏽥qG

n of the plate assembly. Since the elements
of the dynamic stiffness matrix 􏽥KG

D,nn contain transcendental
functions, the solutions can be obtained by applying some of
the search methods. To avoid numerical difficulties when

calculating the zeros of equation (15), the natural frequencies
can be determined as maxima of the following expression:

g(ω) � log
1

det 􏽥KG

D,nn(ω)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (16)

*e above expression is computed for all frequencies in
the frequency range of interest with a frequency increment
Δω. Consequently, the accuracy of the computed natural
frequencies is affected only by the frequency increment. A
drawback of this method is that the coincident natural
frequencies arising in the case of symmetric geometry and
boundary conditions can be omitted. In this case, the
Wittrick–Williams algorithm [7, 8] can be applied to obtain
the number of natural frequencies that are less than a trial
frequency ω∗. After the natural frequencies have been
computed, the ith mode shape that corresponds to the
natural frequency ωi is obtained in the usual manner.

2.4. Analyzed Problems. Using the procedure described in
the previous sections, a variety of structural problems can be
analyzed (Figure 3): (a) individual plates, (b) plate assembly
of arbitrary shape, (c) stepped plates, (d) stiffened plates, and
(e) cracked plates. In addition, different material properties
of single- and multilayer plates can be considered: (f ) single
layer isotropic or orthotropic plates, (g) symmetric sandwich
panels, or (h) symmetric cross-ply laminated composite
plates. Note that arbitrary combinations of boundary con-
ditions can be assigned along plate edges, as shown in
Section 2.3.5. Finally, no frequency limitations have been
detected, allowing the same mesh to be utilized for the
calculation of any frequency (in contrary to FEM).

3. Software Design

FREEVIB software is completely written in Python. It is an
interpreted, interactive, object-oriented programming lan-
guage, which incorporates modules, exceptions, dynamic
typing, very high level dynamic data types, and classes. Python
combines remarkable power with very clear syntax [34]. *e
language comes with a large standard library that covers areas
such as string processing, software engineering, and operating
system interfaces. *e multiprocessing module in Python’s
Standard Library enables the parallel execution of the code to
notably speed up the computation with a few modifications.

3.1. Program Design. Procedure-oriented programming
(POP) and object-oriented programming (OOP) are two
possible approaches in the design of engineering software.
OOP has been widely utilized in engineering software de-
velopment based on the finite element method ([35–43]).
However, the dynamic stiffness method has been used so far
mainly in the form of the POP. In the paper, object-oriented
design is introduced to enable code encapsulation, class in-
heritance, and further code reusability. *e class relationships
of the presented software are shown in Figure 4. For the sake of
simplicity, the arguments and return value types of a method
and the constructor of a class are omitted. Properties and
methods inherited from a super class are not listed, as well.
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Table 1: Assignment of boundary conditions.

Edge type Simply-supported edge Clamped edge
Edge parallel to the X-axis u� v� w � 0, ϕy �ϕz � 0, w,x � w,z � 0

u� v � w � 0, ϕx � ϕy �ϕz � 0, w,x � w,y � w,z � 0Edge parallel to the Y-axis u� v � w � 0, ϕx �ϕz � 0, w,y � w,z � 0
Edge parallel to the Z-axis u� v � w � 0, ϕx �ϕy � 0, w,x � w,y � 0

(b)(a) (c) (d)

(f)(e) (g) (h)

Figure 3: Structural problems which can be analyzed using the proposed computational framework.
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Figure 4: Relationships of classes in FREEVIB.
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*e input parameters are inserted as properties of
InputData class. For the input, simple text file may be
created in the designated format or generated using the
existing graphical preprocessors such as “GiD—the personal
pre- and postprocessor,” developed in CIMNE, Barcelona
[44] or “FreeCAD: Your Own 3D Parametric Modeler” [45].
*e input parameters related to the geometry, material, and
number of terms in trigonometric series (M) are transferred
to the basic classes: Point, DOF, Line,Material, Lamina, and
Section, as well as to the DynStiffElement class, which is the
super class which implements almost all methods related to
the creation of the element dynamic stiffness matrix.

*rough theObjectConstructormodule, the instances of all
basic classes are created based on the input parameters. Line
class is created by the composition from Point and DOF class
instances, while Section class is created by the composition
from Lamina class instances. For all Material class instances,
constitutive matrixQk is calculated by using the calcMatrixQ()
method (equation (2)). Transformation matrix Tk and the
global constitutive matrix of the lamina Qk(equation (3)) are
calculated by using the calcMatrixT() and calcMatrixQGlobal()
methods of the Lamina class. Finally, all stiffness and inertia
coefficients based on different plate theories and related to the
instances of the Section class (equation (6)) are calculated by
using the calcCoefficients() method of the Section class.

DynStiffElement class is the super class which implements
almost all methods related to the creation of the dynamic
stiffness matrix. In addition, CLPTElement, FSDTElement,
and HSDTElement classes are inherited from this class. *eir
class structures are identical, but the implemented methods
calcMatrixSSb(ω,M), calcMatrixSAb(ω,M), calcMatrixASb
(ω,M), calcMatrixAAb(ω,M), calcMatrixTb(M), and calc-
MatrixTRb(M) are related to the calculation of different
dynamic stiffness, transformation and rotation matrices for
transverse vibration, explained in the Section 2.3.3, equations
(10) and (11). *e dynamic stiffness matrices 􏽥K∗D of all dy-
namic stiffness elements are calculated according to equation
(14) in global coordinates, by using the calcMatrixKD()
method of the DynStiffElement class. *ey are stored as the
properties of the DynStiffElement class instances, for all el-
ements in the assembly.

In the FreeVibrationAnalysis class, which has only one
instance which stores the data related to the performed
analysis, the calculation of the dynamic stiffness matrices is
performed for all elements in the assembly using the above
procedure. *is is performed in the for-loop which loops
through every frequency of interest, in the range Fstart : Fstep :
Fend (input data). *e global dynamic stiffness matrix as-
sociated with the unknown displacement components
􏽥KG

D,nn(ω) is created through the deriveMatrixKnn() method
of the FreeVibrationAnalysis class.

As soon as the 􏽥KG

D,nn(ω) is created for every frequency of
interest, the algorithm for calculation of natural frequencies
is called through the deriveFrequencies() method of the
FreeVibrationAnalysis class (see equations (15) and (16)).
*e obtained natural frequencies are listed and plotted in the
output file.

*e mathematical calculations are performed using
numpy [46] and scipy [47] packages for scientific computing.

3.2. Possibilities for Software Improvement

3.2.1. Element Formulation. *e presented code could be
extended by adding new dynamic stiffness element formu-
lations. *e example is open cylindrical shell element derived
by Kolarević [48]. *e developed element is compatible with
the already implemented element formulations bymeans of the
degrees of freedom along element edges. In addition, the
formulation of the dynamic stiffness element based on a so-
phisticated layerwise theory of Reddy [1] could improve the
accuracy of the analysis of thick laminated composite plates.
*is formulation is presented by Boscolo and Banerjee [14].

3.2.2. Analysis Types. *e family of implemented algorithms
could be extended by adding new analysis types, such as
response analysis or buckling analysis. For example, the
response analysis of plate assembly using the dynamic
stiffness method (see [29] for details) could be implemented
by using the class relations shown in Figure 5, which implies
implementation of the deriveResponse() method in the
ResponseAnalysis subclass inherited from the Analysis class,
followed with the additional set of input parameters
(InputData class) related to the transient loading (intensity,
duration, etc.).

3.2.3. Parallelization. Multicore computers and cluster
computers are the common two kinds of hardware that
support parallel computing [49]. With the rapid development
of multicore CPU technique, developing the program on a
multicore desktop computer using the multiprocessing
module in Python’s Standard Library enables the parallel
execution of the code. *e possibility for the development of
the algorithm for the parallel execution is motivated by the
fact that, after the global dynamic stiffnessmatrix is assembled
􏽥KG

D,nn(ω), the evaluation of equation (16) should be per-
formed for every frequency of interest, in the range Fstart :
Fstep : Fend. Having in mind that the results for every fre-
quency are mutually independent, the parallelization of the
code using the parallel for-loops would increase the speed of
the sequential execution by the factor∼nCPU (where nCPU is
the number of the CPUs in the multicore desktop computer).

4. Numerical Examples

To demonstrate the efficiency and accuracy of the FREEVIB,
several examples have been presented in this section. For the
FSDT-based dynamic stiffness element, shear correction
factor k� 5/6 has been used in all calculations.

Example 1. *e first example deals with the free vibration
analysis of thick stepped concrete isotropic CSFS plate (Fig-
ure 6). Plate geometry is defined as h1/a� 0.05, h2/a� 0.03.*e
following boundary conditions have been assigned: C-clam-
ped edge; S-simply-supported edge; F-free edge.

*e present solution based on the CLPT, FSDT, and
HSDT using M� 5 terms in the series expansion has been
validated against the results of the eigenvalue analysis from
the commercial software Abaqus, using 2500 S8R elements
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(eight-node doubly curved thick shell element with reduced
integration and homogeneous shell section). *e di-
mensionless natural frequencies are calculated for the first 6
modes. *e results are elaborated in Table 2.

Obviously, FREEVIB is capable of accurately predicting
natural frequencies of the thick stepped isotropic plate, when
shear-deformable dynamic stiffness elements are applied.
*e numerical solution in Abaqus is closer to the obtained
results when refined theory is applied. As expected, the
average relative difference is 12.17% for the CLPT, 0.064%
for the FSDT, and 0.059% for the HSDT.

Finally, first 6 mode shapes along with their corre-
sponding frequencies are calculated and plotted for the
HSDT element and compared with the Abaqus solution in
Figure 7. Excellent agreement is obtained.

Example 2. *e second example deals with the free vibration
analysis of square laminated composite plate with a single
stiffener (Figure 8).*e plate consists of 4 orthotropic layers in
cross-ply symmetric stacking sequence (0/90/90/0). Boundary
conditions: C-clamped edge; S-simply-supported edge; F-free
edge. *ree different h/a ratios have been considered (h/
a� 0.02, h/a� 0.05, and h/a� 0.10), where h is the overall plate
thickness and a is the side length of the plate.

Each layer is made of orthotropic material having the
following properties: E2/E1 � 40, G12/E2 �G13/E2 � 0.6, G23/
E2 � 0.5, and ]12 � 0.25.

*e present solution based both on FSDTand HSDTwith
M� 5 terms in the series expansion has been applied and
validated against the results of the eigenvalue analysis from
the commercial software Abaqus, using 3000 S8R elements
with composite shell section. *e dimensionless natural
frequencies are calculated for the first 6 modes and presented
in Table 3. *e average relative differences when compared
with the FEM solution in Abaqus are presented, as well.

When applied to the free vibration analysis of laminated
composite plates with a single stiffener, FREEVIB more ac-
curately predicts natural frequencies in comparison to the
Abaqus software. *e Abaqus solution is in better agreement
with the obtained results when thin laminate is considered,
while for the thick laminates (and therefore for higher frequency
range), the differences are higher varying from 4.80%–11.30%
in comparison with the exact solution from FREEVIB.

Example 3. *e final example deals with the free vibration
analysis of isotropic cantilever one-fold plate clamped along
the edgeX� 0, with h/a� 0.02 and a1/a� a2/a� 0.5.*e plate
geometry is shown in Figure 9. *e study has been made for
a crank angle of α� 120°C. *e material properties for both
plates are E� 10.92GPa, ]� 0.3.

*e convergence study of the present model is per-
formed usingM� 1, 3, or 5 terms in the series expansion and
dynamic stiffness elements based both on FSDT and HSDT.
*e converged solution (M� 5) for both plate bending
theories is validated against the results of the eigenvalue
analysis from the commercial software Abaqus, using 2500
S8R elements. *e dimensionless natural frequencies are
calculated for the first 4 modes. An additional comparison is
made with the results obtained by Liu and Huang [50] using
finite element-transfer matrix method (FETM) based on the
CPT. *e results are elaborated in Table 4.

Obviously, FREEVIB demonstrates high accuracy in the
calculation of natural frequencies of folded plate structures.
*e converged solution is achieved even for a very small
number of terms in series solution (M� 5).

*e computational aspect of FREEVIB is very important.
In the presented example, the FE mesh of 2500 S8R elements
in Abaqus implies 2652 nodes with 6 DOFs per node in the
global stiffness and mass matrices. On the other hand, in the
FREEVIB, the assembly of 2 dynamic stiffness elements
implies only 7 edges with 9 + 18MDOFs per edge. *is leads
to the following equation:

NDOFFEM � 2500 × 6 � 15000,

NDOFDSM � 7 ×(9 + 18 × 5) � 693.
(17)

*is confirms the computational advantage of the proposed
method in comparison with the conventional FEM.

5. Conclusions

Based on the authors’ previous research, within a compu-
tational framework for free vibration analysis of laminated
composite plate assemblies using the dynamic stiffness
method, FREEVIB object-oriented software has been

FreeVibrationAnalysis

deriveFrequencies ()

Analysis
Elements: [DynStiffElement]
DOFs: [DOF]
Fstart, Fend, Fstep,
deriveMatrixKnn ()

ResponseAnalysis

deriveResponse ()
DynamicLoading

Figure 5: Example of possible software extension.

S S

S S

F C a

a a/2

h2h1

Figure 6: Geometry and boundary conditions of the isotropic
stepped plate.

Table 2: Dimensionless frequencies ω∗ �ωa (ρ(1− ]2)/E)1/2 of
stepped concrete isotropic CSFS plates (h1/a� 0.05, h2/a� 0.03).

Mode CLPT FSDT HSDT Abaqus
1 0.1287 0.1498 0.1498 0.1499
2 0.2319 0.2525 0.2525 0.2526
3 0.3320 0.4679 0.4680 0.4684
4 0.5518 0.5453 0.5453 0.5454
5 0.6122 0.6277 0.6277 0.6281
6 0.6373 0.7749 0.7750 0.7756
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0.46840.25260.1499

0.46800.25250.1498

0.77560.62810.5454

0.77500.62770.5453

Figure 7: First 6 mode shapes and corresponding natural frequencies of the isotropic stepped plate, plotted using Abaqus (rows 1 and 3) and
FREEVIB (rows 2 and 4).
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Figure 8: Geometry and boundary conditions of laminated composite plate with a single stiffener.

Table 3: Dimensionless frequencies ω∗ �ωa (ρ(1− ]122)/E2)1/2 of laminated composite plate with a single stiffener (E2/E1 � 40,G12/E2 �G13/
E2 � 0.6, G23/E2 � 0.5, and ]12 � 0.25).

Mode
h/a� 0.02 h/a� 0.05 h/a� 0.1

FSDT HSDT Abaqus FSDT HSDT Abaqus FSDT HSDT Abaqus
1 0.3197 0.3189 0.3179 0.7548 0.7448 0.7293 1.2855 1.2428 1.1705
2 0.5312 0.5297 0.5287 1.0053 0.9997 0.9870 1.4084 1.3762 1.3223
3 1.0066 0.8389 0.8346 1.9700 1.8417 1.7739 2.1554 2.1546 2.1401
4 1.0838 0.9529 0.9486 2.0863 1.9666 1.9554 2.8721 2.7650 2.5407
5 1.3453 1.3457 1.3407 2.1882 2.0333 1.9702 3.1976 2.8675 2.7107
6 1.5578 1.5583 1.5574 2.3647 2.0889 2.0832 3.3807 2.9119 2.8235
Average difference (%) 6.04 0.32 7.95 1.88 11.30 4.80
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developed in Python. Key features of the FREEVIB including
the structure, design, application, possible extensions, and
improvements have been presented in the paper. *e effi-
ciency and accuracy of the FREEVIB has been demonstrated
through several illustrative numerical examples.

*e combination of simple assembly procedure as in the
FEMwith the advantages of the analytical methods, makes the
FREEVIB an efficient numerical tool for free vibration
analysis of a wide range of structural problems including
individual plates, plate assemblies of arbitrary shape, and
stepped and stiffened plates connected at arbitrary angles,
with or without cracks. In addition, different material
properties of single- and multilayer plates can be considered:
single-layer isotropic or orthotropic plates, sandwich panels,
or laminated composite plates, without any restrictions re-
garding the boundary conditions or the frequency limitations.
In most applications, only 3–5 terms in the series expansions
were sufficient to achieve high accuracy and reliability of the
computed natural frequencies and mode shapes in com-
parison with the conventional FEM solutions. Moreover, the
structural discretization is influenced only by the change in
geometrical/material properties of plate assemblies.

Owing to its design and structure, FREEVIB could be
easily extended to include new dynamic stiffness element
formulations and analysis types allowing dynamic response
and buckling analysis of plate assemblies.

Appendix

Submatrix of direction cosines between the global co-
ordinate system (XYZ) and local coordinate system (xyz) of
the single plate in the assembly can be written as

tα �

λXx λYx λZx

λXy λYy λZy

λXz λYz λZz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.1)

where λij is the cosine of the angle between the ith axis in the
XYZ and jth axis in the xyz system.

Transformation matrix TR for the dynamic stiffness
element can be written as

TR �
TRb

TRi

􏼢 􏼣. (A.2)

*e submatrix TRb is the rotation matrix related to the
out-of-plane displacement components, while TRi is the
rotation matrix related to the in-plane displacement com-
ponents. *e submatrix TRi is the same for all element types
and can be written as

TRi �

ti0
ti1
⋱

tim
⋱

tiM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4+16M)×(36+72M)

, (A.3)

where ti0 is the 4 × 36 matrix with the following nonzero
terms: ti0[1,1]� λXx, ti0 [1,2]� λXy, ti0 [1,3]� λXz, ti0 [2,10]�

λYx, ti0 [2,11]� λYy, ti0 [2,12]� λYz. ti0 [3,19]� λXx, ti0
[3,20]� λXy, ti0 [3,21]� λXz, ti0 [4,28]� λYx, ti0 [4,29]� λYy,
and ti0 [4,30]� λYz, while

tim �

tim
tim

tim
tim

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

16×72

,

tim �

λXx 0 λXy 0 λXz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXx 0 λXy 0 λXz 0 0 0 0 0 0 0 0 0 0 0 0

λYx 0 λYy 0 λYz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λYx 0 λYy 0 λYz 0 0 0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×18

.

(A.4)

Table 4: Dimensionless frequencies ω∗ �ωa (ρ(1-]2)/E)1/2 of isotropic cantilever folded plate clamped along the edge X� 0 for crank angle
α� 120° (h� 0.02a, a1 � a2 � 0.5a).

Mode
FSDT HSDT

Abaqus FETM [50]
M� 1 M� 3 M� 5 M� 1 M� 3 M� 5

1 0.0481 0.0484 0.0484 0.0479 0.0482 0.0482 0.0487 0.0491
2 0.0969 0.0967 0.0970 0.0976 0.0976 0.0977 0.0938 0.0943
3 0.1727 0.1756 0.1759 0.1723 0.1743 0.1756 0.1770 0.1787
4 0.2060 0.2068 0.2070 0.2066 0.2075 0.2075 0.2049 0.2065

Z
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C C
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F
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Fa

a
2

a 1

α hh

Figure 9: Geometry and boundary conditions of isotropic folded plate.
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Submatrix TRb for the CLPT dynamic stiffness element
can be written as follows:

TRb �

tb0

tb1

⋱

tbm

⋱

tbM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8+16M)×(36+72M)

, (A.5)

where tb0 is the following 8 × 36 matrix:

tb0 �

tb0

tb0

tb0

tb0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8×36

,

tb0 �
λXz λYz λZz

λYy λXy λZy

⎡⎣ ⎤⎦

2×9

,

tb0 �
λXz λYz λZz

λYx λXx λZx

􏼢 􏼣
2×9

,

(A.6)

while:

tbm �

tbm

tbm

tbm

tbm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

16×72

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λXy 0 λYy 0 λZy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×18

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λYx 0 λXx 0 λZx 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λYx 0 λXx 0 λZx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×18

.

(A.7)

Submatrix TRb for the FSDT dynamic stiffness element
can be written as follows:

TRb �

tb0

tb1

⋱

tbm

⋱

tbM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8+24M)×(36+72M)

, (A.8)

where tb0 is the following 8 × 36 matrix:

tb0 �

tb0

tb0

tb0

tb0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8×36

,

tb0 �
λXz λYz λZz

λXy λYy λZy

⎡⎣ ⎤⎦

2×9

,

tb0 �
λXz λYz λZz

λXx λYx λZx

􏼢 􏼣
2×9

,

(A.9)

while:
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tbm �

tbm

tbm

tbm

tbm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

24×72

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0

0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×18

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0

0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×18

.

(A.10)

Submatrix TRb for the HSDT dynamic stiffness element
can be written as

TRb �

tb0
tb1
⋱

tbm

⋱

tbM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12+32M)×(36+72M)

,

(A.11)

where tb0 is the following 12 × 36 matrix:

tb0 �

tb0
tb0

tb0
tb0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12×36

,

tb0 �

λXz λYz λZz

λXy λYy λZy

λYy λXy λZy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3×9

,

tb0 �

λXz λYz λZz

λXx λYx λZx

λYx λXx λZx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3×9

,

(A.12)

while:
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tbm �

tbm

tbm

tbm

tbm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

32×72

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0

0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λXy 0 λYy 0 λZy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8×18

,

tbm �

λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λXz 0 λYz 0 λZz 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXx 0 λYx 0 λZx 0 0 0 0 0 0

0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λXy 0 λYy 0 λZy 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λYx 0 λXx 0 λZx 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λYx 0 λXx 0 λZx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8×18

.

(A.13)

General solution for in-plane displacements (u, v) and
rotations (Φx and Φy):

􏽢u(x, y) � 􏽘
∞

m

1
Um(x)f

1
m(y) + 􏽘

∞

m

2
Um(y)f

2
m(x). (A.14)

General solution for transverse displacement w:

􏽢w(x, y) � 􏽘
∞

m

1
Wm(x)f

1
m(y) + 􏽘

∞

m

2
Wm(y)f

1
m(x).

(A.15)

Fourier base functions:

f1
m(s) �

sin
(2m− 1)s

L
, m � 1, 2, . . . ,

cos
2ms

L
, m � 0, 1, 2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f2
m(s) �

cos
(2m− 1)s

L
, m � 1, 2, . . . ,

sin
2ms

L
, m � 1, 2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s � x or y, L � 2a or 2b. (A.16)
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oriented finite element programming: I. Governing princi-
ples,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 98, no. 2, pp. 291–303, 1992.

[38] R. M. V. Pidaparti and A. V. Hudli, “Dynamic analysis of
structures using object-oriented techniques,” Computers and
Structures, vol. 49, no. 1, pp. 149–156, 1993.

[39] G. R. Miller, S. Banerjee, and K. Sribalaskandarajah, “A
framework for interactive computational analysis in geo-
mechanics,” Computers and Geotechnics, vol. 17, no. 1,
pp. 17–37, 1995.

[40] G. C. Archer, Object-oriented finite element analysis, Ph.D.
thesis, University of California at Berkeley, Berkeley, CA,
USA, 1996.

[41] F. T. McKenna, Object-oriented finite element programming:
frameworks for analysis, algorithms and parallel computing,
Ph.D. thesis, University of California at Berkeley, Berkeley,
CA, USA, 1997.

[42] P. Dadvand, Framework for developing finite element code for
multi-disciplinary applications, Ph.D. thesis, CIMNE-
International Centre for Numerical Methods in Engineer-
ing, Barcelona, Spain, 2007.

[43] H. Qin, Z. Liu, Y. Liu, and H. Zhong, “An object-oriented
MATLAB toolbox for automotive body conceptual design
using distributed parallel optimization,” Advances in Engi-
neering Software, vol. 106, pp. 19–32, 2017.
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