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Abstract: 
  

Stability of vertical cuts is analyzed using kinematic theorem. It is assumed that there is no 
internal friction in the soil (φ=0) and Coulomb’s yield criterion is used for determining the failure 
of the soil mass. Limit analysis theorem is briefly explained and a short review of existing upper 
and lower bound solutions is given. In this paper, new upper bound solutions are obtained by 
calculating the stability number Ns for assumed failure patterns. First, a failure pattern consisting 
of a circular arc and a straight line is analyzed. Then, a method for calculating the stability 
number of a failure pattern defined by a function is presented. Failure patterns defined with a 
sinus function, second degree polynomial and exponential function are considered in this paper. 
For each of the assumed failure patterns, stability number is calculated using the method 
presented here. The lowest value of the stability number ( 3.84sN  ) is obtained when failure 

pattern is defined using exponential function.  
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1. Introduction  
 

Determining the stability of a vertical cut is a problem of great importance in civil 
engineering, since it is commonly present in every day practice. Loss of stability of an 
unsupported vertical cut can have large consequences, from endangering objects functionality and 
stability to loss of human life. In order to define the point at which vertical cut reaches instability 
due to the weight of the soil, it is necessary to know the critical height of the vertical cut. Many 
attempts were made in order to find the solution for critical height of a vertical cut, but still no 
accurate solutions has been found [1]. The solution to this problem can be divided into two parts, 
solving the problem using upper bound (kinematic theorem) solution and lower bound (static 
theorem) solution [2]. The accurate solution lies between two values obtained by this two 
theorems.  In this paper a short overview of solutions proposed so far will be given. Also, new 
upper bound solutions will be presented and compared with already existing upper bound 
solutions. The theory behind this approach will also be explained.  
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2. Statement of the problem 
 
       In order to apply limit analysis theorem, mechanical behavior of soil must be assumed by 
defining stress-strain relationships for the materials as well as yield criterion. In this paper, soil is 
assumed to be perfectly plastic, while Coulomb’s yield criterion is used for determining failure of 

the soil. It is assumed that there is no internal friction in the soil (φ=0), so yield criterion is the 
same as Tresca’s failure criterion. Cohesion of the soil is c. 
 
       Equation that defines critical height is usually given as: 

 cr s

c
H N


    (1) 

Where Ns is the stability number and γ is the soil self-weight and c is cohesion as stated 
before. 

 
Statically admissible solution presents a lower bound solution for any stability problem. If an 

equilibrium distribution of stress can be found which balances applied load and nowhere violates 
the yield criterion, the soil mass will not fail or will be just at the point of failure [3].  

 
Kinematic theorem states that the soil mass will collapse if there is any compatible pattern of 

plastic deformation (failure) of the soil mass for which virtual work of the external forces exceeds 
the virtual work done by internal forces in the soil [3]. Solving this problem analytically consists 
of calculating critical height for assumed failure patterns.  

 
3. Lower bound solutions review 
 

The stability problem of the vertical cut using static theorem was first examined by Drucker 
and Prager [4]. Soil mass was divided into three zones. Stress state was assumed for each of the 
zones and using Tresca’s yield criterion it was calculated that the stability number is 2sN  . 

Heyman [5] improved the lower bound solution by dividing the soil mass into seven zones, 
assuming stress state in each of the zones and solving the equilibrium equation using polar 
coordinates obtaining a closed-form solution where 2.83sN  . Lower bound solution was 

further improved by Jong [6]  3.39sN  , Pastor [7]  3.635sN  and Lyamin [8], being 

currently the highest lower bound solution  3.772sN   obtained using linear finite elements 

and non-linear programming. 
 
4. Upper bound solutions review 
 

Drucker and Prager also calculated the upper bound solution using limit analysis [4]. They 
assumed that the failure occurs along a straight line (plane), forming and angle of 45 with the 

horizontal axis and calculated that the stability number is 4sN  . A better solution was obtained 

by Fellenius [9], by assuming a curved surface instead of plane  3.85sN  . Assuming a 

rotational mechanism and using polar coordinates Chen [2] calculated the stability number to be 
3.831sN  . Bekaert [10] used a multi – rotation failure mechanism, obtaining the upper bound 
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stability number 3.793sN  . At the moment, lowest upper bound solution is presented by Pastor 

[11] using finite element method  3.786sN  . 

 
5. Upper bound solutions obtained in this paper 
 

 At the moment, upper and lower bound solutions are usually obtained numerically, using 
finite element method. In this paper, upper bound solutions were calculated analytically by 
assuming different failure patterns and defining critical height for each of the assumed failure 
patterns, by calculating the stability number. Critical height is calculated for soil mass in plane, 
assuming that the width of the observed soil mass is one meter.  
 

Weight of the soil above the failure pattern represents external forces, while cohesion along 
the failure pattern represents internal force. Self-weight of the soil is γ  and v is the virtual 
displacement along the failure pattern. HCR is the critical height of the vertical cut, and χ is the 
coefficient that, when multiplied by HCR, gives the value of the function for y=0, representing the 
horizontal length of the vertical cut at the soil surface (Figure 1).  

 
Figure 1: Failure pattern of a vertical cut  

5.1 Failure pattern consisting of a circular arc and a straight line 
 

As stated before, calculating the critical height of a vertical cut using kinematic theorem 
begins by assuming the failure pattern (failure mechanism). Here, it was assumed that failure 
pattern consists of a circular arc and a straight line. In order to calculate the work of internal and 
external forces, a two-dimensional coordinate system is introduced, whose orientation and 
position is shown in Figure 2. Position of points 1 2 3, ,X X X along the X-axis is defined using 

equation (2) and shown in Figure 2.  

 1 2 30; sin( ); sin( )
cr

cr
HX X H X       (2) 

The works of external forces and internal forces acting on the linear part of the failure 
pattern are marked as 1W  and 1D  respectively (Figure 3), and are defined in equations (3) and (4) 
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 2
1 3 1( ) 0.5 sin( )

tan( )

X
W X X v 


         (3) 

 3 2
1

( )

cos( )

X X
D c v




     (4) 

In order to define the work of the forces acting on the circular part of the failure pattern it 
is necessary to calculate the distance from the center of the circular arc to the rotation point (pole) 
of the soil above the circular arc 1X . Equations (5) and (6) define this distance - rx  . 

 
sin( )2 2

3
2

t crr H


     (5) 

 sin( )2r tx r     (6) 

 
Figure 2: X-Y coordinate system   

The works of external forces and internal forces acting on the circular part of the failure 
pattern are marked as 2W  and 2D respectively (Figure 3), and are defined in equations (7) and (8). 

 2
2 2cr r

cr

v
W H x

H

 


     


  (7) 

 2 2
2

D Hcr c v



     


  (8) 

 
Total work of the external and internal forces is defined in equations (9),(10),(11) and (12). 
 
 1 2W W W    (9) 

 1 2D D D    (10) 

 

2

2 1 2
cos( ) sin

2 3 2crW H v
 

                
  (11) 
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21 (sin( ))

sin( ) cos( )crD c v H
 

 
 

      
  (12) 

 
Figure 3: External and internal forces acting on the failure pattern 

It was calculated that the lowest value of the stability number is obtained when 53.85   : 
 
 2 2(0.2949 0.1367) 0.43163cr crW H v H v            (13) 

 (0.73 0.94) 1.67cr crD c v H c v H           (14) 

 3.87cr

c
D W H


      (15) 

5.2 Failure pattern defined with a function 
 
    Here, a new attempt for calculating the virtual work of external and internal forces is presented. 
When failure pattern is defined using a single function, work of external and internal forces is 
defined as: 

 
0

( )
( ) sin

crH df x
W f x arctg v dx

dx




           
   (16) 

 
2

0

( )
1

crH df x
D c v dx

dx


       (17) 

 
Where W defines the work of external forces (16), while D defines the work of internal forces 
(17).  Stability number was obtained by solving equation (18): 
 
 

 D W   (18) 
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Figure 4: Failure pattern defined with a single function –differential part  

Angle φ is defined as: 

 
( )df x

arctg
dx

    
 

  (19) 

 
Function f(x) is the function that defines the shape of the failure pattern. 
 

Work of the external and internal forces was calculated using integrals defined in equations 
(16) and (17). Program “Wolfram Alpha” was used to solve above-mentioned integrals. Then, a 
function was written in program “Matlab” that calculated stability numbers by solving the 
equation (18) for different values of constants defining the function and boundary coefficient χ. 
Every function had three constants. Using boundary conditions, a link between constants was 
defined. So, for each function there was always one unknown constant and the boundary 
coefficient χ.  
 
5.2.1 Failure pattern defined with a sinus function 
 
Firstly, a sinus function was used to define the failure pattern (20): 
 
 ( ) sin( )f x a b x c      (20) 

 
Constants a and b were expressed using constant c and boundary conditions (21)(22): 

 0,
sin( )

cr
cr

H
x y H a

c
        (21) 

 0, cr
cr

c
y x H b

H



     


  (22) 
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Figure 5: Failure pattern defined with a sinus function  

The lowest value of the stability number obtained for the sinus function is 3.884sN  , when 

1.088c    and 0.95  . Sinus function for 1.088c    and 0.95  is defined by equation 

(23) and shown in Figure 5. 

 
1.145

( ) sin 1.088
0.8857

cr

cr

H
y x x

H

 
    

 
  (23) 

 
5.2.2 Failure pattern defined with a second degree polynomial  
 
Second degree polynomial function defining the failure pattern is shown in the equation (24): 
 
 2( )f x a x b x c       (24) 

 
Constants a and c were expressed using constant b and boundary conditions (25)(26): 
 0, cr crx y H c H      (25) 

 
2

1
0, cr

cr

b
y x H a

H



  

    


  (26) 
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Figure 6: Failure pattern defined with a second degree polynomial 

The lowest value of the stability number obtained for the second degree polynomial is 
3.856sN   when 0.6b    and 0.95  . For these values of constants b and χ  second degree 

polynomial is defined by equation (27) and shown in Figure 6. 
 

   20.4765
0.6 cr

cr

y x x x H
H


       (27) 

 
5.2.3 Failure pattern defined with an exponential function 
 
Finally, it was assumed that the failure pattern is defined using an exponential function (28): 
 

  ( ) b xf x a e c      (28) 

 
Constants b and c were expressed using constant a and boundary conditions (29)(30): 
 
 0, cr crx y H c H a       (29) 

 
1

0, ln cr
cr

cr

a H
y x H b

a H



          

  (30) 

For the exponential function equation (16) is slightly different. Instead of  f x ,  crH f x   is 

integrated. The lowest value of the stability number obtained for the exponential function is 
3.84sN  , where 6.1a   and 0.92  . Equation (31) defines the exponential function for 

6.1a   and 0.92  . Figure 7 shows the exponential function defined in equation (31). 
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    6.1 1
6.1 exp ln 6.1

6.1 0.92
cr

cr
cr

H
y x x H

H

             
  (31) 

 
Figure 7: Failure pattern defined with an exponential function       

 
6. Conclusion 
 
In the present paper, the stability of a vertical cut was analyzed by calculating the critical height 
at which the cut becomes unstable under its self-weight. It was assumed that there is no internal 
friction in the soil (φ=0) and Coulomb’s yield criterion was used for determining the failure of the 
soil mass. The theory behind plastic limit analysis theorems was briefly explained and a short 
review of existing upper bound and lower bound solutions was presented. Failure pattern 
consisting of a circular arc (curved surface) and straight line (plane) was assumed. Lowest value 
of the stability number for this type of failure pattern was calculated to be 3.87sN  . Then, a 

new method for analytically calculating the virtual work of internal and external forces was 
presented. Integrals defined in equations (16) and (17) were used for calculating the stability 
number by solving the equation (18). Using programs “Matlab” and “Wolfram Alpha” stability 
number was calculated for three types of failure patterns defined by a function. First, stability 
number for a failure pattern defined using sinus function was calculated. The lowest value of the 
stability number for a failure pattern defined with a sinus function was 3.884sN  . Then, a 

second degree polynomial function was used to define the failure pattern. Here, the lowest value 
of the stability number was 3.856sN  . Finally, exponential function was used for defining the 

failure pattern. It was calculated that the lowest value of the stability number for a failure pattern 
defined by an exponential function was 3.84sN  . Unfortunately, best upper bound solution 

obtained in this paper is still higher than the already existing upper bound solutions. But the 
method presented in this paper offers a relatively simple way of analytically calculating the 
stability number for various types of failure patterns defined by a function, which is very 
important for everyday engineering practice.  
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