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Abstract
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Automated Mapping of Climatic Variables Using Spatio-Temporal Geostatistical
Methods

Publicly available global meteorological data sets, from ground stations and remote sens-
ing, are used for spatio-temporal interpolation of air temperature data for global land ar-
eas. Publicly available data sets were assessed for representation and usability for global
spatio-temporal analysis. Three aspects of data quality were considered: (a) represen-
tation in the geographical and temporal domains, (b) representation in the feature space
(based on the MaxEnt method), and (c) usability i.e. tness of use for spatio-temporal in-
terpolation (based on cross-validation of spatio-temporal regression-kriging models). The
results show that clustering of meteorological stations in the combined data set (GSOD
and ECA&D) is signi cant in both geographical and feature space. Despite the geograph-
ical and feature space clustering, preliminary tested global spatio-temporal model using
station observations and remote sensing images, shows this method can be used for ac-
curate mapping of daily temperature. Around 9000 stations from merged GSOD and
ECA&D daily meteorological data sets were used to build spatio-temporal geostatisti-
cal models and predict daily air temperature at ground resolution of 1 km for the global
land mass. Predictions were made for the mean, maximum and minimum temperature
using spatio-temporal regression-kriging with a time series of MODIS 8 day images, to-
pographic layers (DEM and TWI) and a geometrical temperature trend as covariates. The
model and predictions were built for the year 2011 only, but the same methodology can be
extended for the whole range of the MODIS LST images (2001-today). The results show
that the average accuracy for predicting mean, maximum and minimum daily tempera-
tures is RMSE=  2°C for areas densely covered with stations, and betwe&C and

4°C for areas with lower station density. The lowest prediction accuracy was observed
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in highlands ¥ 1000 m) and in Antarctica with a RMSE around 6°C. Automated map-
ping framework is developed and implementedrgsackagametea Likewise, package
plotGoogleMapg$or automated visualisation on the Web, base on Google Maps API is
developed.

Key words: spatio-temporal interpolation, spatio-temporal kriging, space-time variogram,
linear regression, MaxEnt, daily air temperature, MODIS LST, global model
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Automatsko kartiranje klimatskih varijabli primenom prostorno-vremenskih
geostatistcih metoda

Javno dostupni meteoroloSki podaci, kako sa stanica tako i iz daljinske detekcijégkoris

su za prostorno vremensku interpolaciju temperature vazduha iznad povrSine Zemlje.
Zastupljenost i pogodnost javno dostupnih podataka je ocenjena, kroz tri aspekta kont-
role kvaliteta: (a) zastupljenost u geografskom i prostornom domenu, (b) zastupljenost
u karaktesttnom prostorufeature spacegbazirano na MaxEnt metodi), kao i (c) pogod-
nost kori€enja podataka za prostorno-vremensku predikciju (na osnovu kros-validacije
prostorno-vremnskog regresionog kriginga). Rezultati pokazuju da je kombinovani set
podataka (GSOD i ECA&D) zrajno klasteriran i u geografskom i u karaktedathm
prostoru. Uprkos klasteriranju, preliminarni rezultati globalne interpolacije primenom
prostorno-vremenskog regresionog kriginga kotisteerenja sa stanica i snimke daljinske
detekcije su pokazali da se tako mogu dobiti precizne globalne karte dnevne tempera-
ture. Oko 9000 stanica kombinovanog seta podataka (GSOD i ECA&D) jeCkoigs

za prostorno-vremensko geostatistmodeliranje i predikciju dnevnih temperatura u re-
zoluciji 1 km, iznad povrSine Zemlje. Za predikciju srednjih, minimalnih i maksimalnih
temperatura koren je regresioni kriging uz poraoe prediktore: MODIS LST 8-dnevni
snimci, topografski lejeri (DEM i TWI) i geometrijski temperaturni trend. Model i predik-
cija se odnose na 2011 godinu, ali ista metodologija bi se mogla primeniti od 2001 godine
do danas (od kada su dostupni MODIS snimci). Rezultati pokazuju da jeqmet®nost
predikcije za srednju, minimalnu i maksimalnu temperaturu vazduha @RQ za oblasti

gusto pokrivene stanicamaiizohe 2°Ci 4°C za oblasti koje su slabo pokrivene stani-
cama. Najni a tanost predikcije je dobijena u planinskim predelima i na Antartiku, oko



6°C. R softverski paketmeteq je razvijen kao resenje za automatsko kartiranje. Razvijen

je i paketplotGoogleMapga automatsku vizuelizaciju na Web-u, kor&t&oogle Maps
API.

Klju cne reci: prostorno-vremenska interpolacija, prostorno-vremenski kriging, prostorno-

vremenski variogram, linearna regresija, MaxEnt, dnevne temperature vazduha, MODIS
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Chapter 1
Introduction

One of the main applications of using data from meteorological stations is to produce
maps showing spatio-temporal patterns of climatic variables, also referred as mapping
climatic variables. The termnapping, in this thesis, is considered as an interpolation on
regular grids that are also called raster grids, climatic images or surfaces. Chapter 2 de-
scribes interpolation methods used in meteorology and climatology; they range from near-
est neighbour methods, splines, regression and kriging, to neural networks and machine
learning techniques. The most of used methods, and related works of global mapping at
daily temporal resolution (see Chapter 2 for literature review on interpolation of climatic
variables) uses only spatial interpolation. The reason for this purely spatial modelling of
spatio-temporal phenomenons might be that the areas of spatial statistics (and spatial GIS
modelling) have been much more developed in contrary to spatio-temporal statistics, able
to model processes, essential dynamics. Similar, time series analysis have been developed
and used mostly without considering spatial component of time series of observations.

Spatio-temporal geostatisticshas made a breakthrough in the past decade with theo-
retical concepts(ressie and Wikle2011) and various examples of applications have
been providedGething et al.2007 Heuvelink and Grif th, 201Q Heuvelink et al,2012

Graler et al, 2011 Hengl et al, 2012. An extension from purely spatial statistical mod-

els to spatio-temporal models is a logical evolution of the eld, especially since we know
that most meteorological parameters vary both in space and time and that observations
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are correlated in space and time. The tting of spatio-temporal models and making pre-
dictions using spatio-temporal covariates (regression-kriging) implies more than just:the
smoothing of station data. The insights obtained from the process are much richersand
allow one to distinguish sources of variability and to isolate purely temporal, spatial and
spatio-temporal components of variability. Moreover, we can predict values using spatio-
temporal observations in individual domains such as the spatial domain (e.g. as daily map,
pure spatial data),the temporal domain (predict missing values at a certain meteorological
station in the form of a time series) and in the spatio-temporal domain as spatio-temporal
full grid data as is demonstrated in the spatio-temporal class (data model) developed by
Pebesm&2012. 10

A literature review shows that no group has previously attempted to interpolate daily
values of meteorological variables using spatio-temporal regression-kriging with a time-
series of remote sensing based covariates, especially at a ne resolution ofHdagl 13

et al.(2012 describe a framework for space-time regression kriging interpolation of daily
temperatures that makes use of a time-series of MODIS images, which are presented as
a Croatian case studuestions that remain include: 1) Can this methodology now ke
extended and improved? 2) How can daily maps of climatic elements at ground resolution
of 1 km for the global land mass be produced? 3) Can this method be implemented using
publicly available global data sets? 4) What remote sensing images and environmental
layers can be used to model the trend? 5) Can we make an automated mapping procedure
that can be applied to create an archive of global weather patterns at very high resolution
for serving daily maps at 1 km and are similar\iéorldClim. org ? (WorldClim.org as 2

a climatic repositoryHijmans et al(2005. ) 2

Chapter 3 provides a review of publicly available meteorological data sets form grawnd
stations and remote sensing. In addition, the chapter discusses the results of analysis,
points to the possible problems with using this data for climatological mapping and sug-
gests new directions of development in creating daily spatial grids for global land areas
using the spatio-temporal regression kriging. International datasets from ground stations
used in this thesis include the Global Surface Summary of Day (GSOD) disseminated
by the National Climatic Data Center (NCDC) and the data set from the Europeansli-
mate Assessment and Data sets (ECA&D). This data is intended to be used for free and is
unrestricted when used in research, education, and other non-commercial activities.s
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WorldClim.org
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Chapter lintroduction

Predictions of the daily mean, the minimum and maximum air temperatures using spatio-
temporal regression-kriging with a time series of MODIS 8 day images, the topographic
layers (DEM and TWI) and a geometrical temperature trend as covariates is described in
detail within Chapter 4. The methodology, accuracy assessment and prediction is made
for year 2011, but the same methodology can be extended for the whole range of the
MODIS LST images (2001-today).

Automated mappingis a data driven approach to mapping with little or no human inter-
action.In this thesis, geostatistical mapping is assumed and used, which mostly requires
expert involvement in the mapping procedure. An automated mapping framework for the
mapping daily meteorological observations using spatio-temporal regression kriging is
developed and implemented in tReenvironment R Development Core Tear2012 as

a package calletheteo The implemented framework, which also includes some special
adaptations for climatic mapping, is described in the Chapter 5. The package source code
is available orhttps://r-forge.r-project.org/projects/meteo/

Chapter 6 presents the spatio-temporal visualisation of meteorological dataplsing
GoogleMapgKilibarda and Bajat 2012, which is a part of the automated mapping
framework, and also highlights isolated solutions for scienti c cartographic communi-
cation in climatic mapping researchukovic et al, 2013. Interactive web maps related

to the results of this thesis were produced ugihgfGoogleMapsnd are available on
http://dailymeteo.org/


https://r-forge.r-project.org/projects/meteo/
http://dailymeteo.org/

Chapter 2 1

Methods for the interpolation of :
climatic variables :

In this chapter the basic principles of the spatial interpolation methods mostly used in
climatology and meteorology are presented. 5

2.1 Introduction 6

An interpolation method is the process of estimating (assessing) the values of a targetwari-
able at any spatial or temporal location where the target variable has not been measured.
The mapping of climatic variable is one of the most important tasks for many applicatians.
The term mapping in this study is considered as an interpolation on regular grids that are
also called raster grids, climatic images or surfaces. 11

The interpolation methods used in meteorology and climatology are quite diverse; they
range from nearest neighbour methods, splines, regression and kriging, to neural networks
and machine learning techniquebvéito et al, 200§. Hartkamp et al(1999; Tveito 1

et al. (2006 gives a review of the interpolation methods used in climatic/meteorological
mapping (interpolation). There are also various studies reported in literature that desgribe
comparisons of the most commonly used interpolation methods and are givenchby 1+

et al.(2000, Jarvis and Stuaf2007), Stahl et al(2006 andHofstra et al(2008. 18

4
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Chapter 2Methods for the interpolation of climatic variables

One of the main applications of using data from meteorological stations is to produce
maps showing spatio-temporal patterns of climatic variables. This is not only interesting
for predicting approaching events, but also to create an archive of weather patterns (so
called“climate normals”). Images of weather conditions are commonly produced for
different spatial and temporal supports, e.g. ranging from single day to 50 or 100-year
time periods at the local, national and global scale. At the global scale, the rst monthly
images of land surface temperature at 0.5° decimal degrees resolution was produced by
Legates and Willmot{1990. They used a collection of data consisting of 24,635 inde-
pendent terrestrial station records, 2223 oceanic grid-point records and a series of inter-
polations made using a spherically based interpolation procetiesamans and Cramer
(1997 generated grids at the same resolution for mean monthly temperature, precipita-
tion and cloudiness using a triangulation network followed by smooth surface tieg:

et al. (1999 2000 mapped terrestrial climatic variables at 0.5° decimal degrees resolu-
tion showing the monthly space-time variability of global land areas excluding Antarctica
for the period 1901-2000Mitchell and Jone$2005 further re ned interpolation tech-
niques to produce climatic grids for nine climate variables (temperature, diurnal tempera-
ture range, daily minimum and maximum temperatures, precipitation, wet-day frequency,
frost-day frequency, vapor pressure, and cloud cover) for the period between 1901-2002,
on a monthly temporal scale. Further éfijmans et al(2005 used a thin-plate smooth-

ing spline on a collection of public meteorological data-sets of monthly records to produce
global (land mass) climatic images at 1 km resolution for the period from 1960 to 1990.
Becker et al(2012 recently mapped monthly precipitation for the whole world using

an empirical interpolation method based on angular distance weighting at resolutions of
0.25°, 0.5°, 1.0° and 2.5° using data from the Global Precipitation Climatology Centre
(GPCCQ).

Examples of the most recent applications of interpolation methods on daily observation
at regional or global scales are worth listed below. The rst global terrestrial gridded data
set of daily temperature averages and ranges, and daily precipitation has been developed
by Piper and StewaxtL996 for use in terrestrial biospheric modelling. Daily station ob-
servations, commencing from the year 1987, have been interpolated to a 1 by 1 degree
grid (longitude, latitude) using a nearest neighbours interpolation technigres.and
Schaer(1998 used an advanced distance weighting scheme commonly adopted for the
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analysis of precipitation on a global scale to create a daily precipitation grid at 25 km res-
olution. The produced maps covering the European Alps were based on a station network
with more than 6000 stations within countries of the Alpine region. Global daily predic-
tions of meteorological variables were produceditev et al.(2003; Alexander et al.
(2006, who used an angular distance weighting technique to interpolate extreme daily
precipitation and temperature indices onto a 2.5° latitude by 3.75° longitudeGaekar

et al.(2006 mapped daily maximum and minimum temperature anomalies using the same
method and the same output resolutiong\@sander et al(2006. There are now numer- s
ous approaches to produce daily weather images with ne resolutions at regional or lecal
scalesHaylock et al (2008 produced European-coverage maps of daily mean, minimum
and maximum temperature and precipitation at 0.25° and 0.5° resolution using tha:Eu-
ropean Climate Assessment and Dataset ProfgCA&D ). These maps were generateg

by rst estimating monthly averages, whereby daily anomalies from those averages were
interpolated using kriging and added back to monthly estimateylock et al, 2008. 1
Van den Besselaar et §2011) mapped sea level pressure for Europe using the same data
source and global krigingDi Luzio et al. (2009 presented a method for mapping dailys
precipitation and temperature across conterminous USA at 2.5 arc-minutes (around 4 km)
for the period of 1960-2001. Their method also combines interpolation (inverse distance
weighting) of daily anomalies from respective gridded monthly estimates. In their case,
interpolations were generated from the Parameter Elevation Regressions on Independent
Slopes Model (PRISM). 21

The different interpolation methods listed above can be divided into several categeries
according to the fundamental mathematics they are based on. Classi cation given by

Tveito et al.(2006 is given here: 24
1. Deterministic methods, 25
2. Probabilistic methods, 2
3. Arti cial neural networks, 27
4. Physical methods, 28
5. Hybrid methods. 29
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Chapter 2Methods for the interpolation of climatic variables

In this chapter the basic principles of the methods mostly used in climatology and me-
teorology are presented. The presentation of the methods will be structured in sections:
“Deterministic methods”, “Probabilistic methods” and “Arti cial neural networks”. The
described interpolation techniques, in this chapter, have been widely applied in spatial
modelling and not just in meteorology/climatology. Two presented methods specially
developed for meteorology and climatology are presented in a separate section entitled
“Methods specially developed for meteorology and climatology”, and hybrid methods are
described in the section “Probabilistic methods”. Physical methods are not included in
the scope of this study.

2.2 Deterministic methods

Deterministic interpolation techniques create surfaces from measured points that are based
on either the extent of similarity (inverse distance weighted) or the degree of smoothing
(polynomial characteristics). Similar to other interpolation groups, deterministic interpo-
lation techniques can be global or local. Global techniques calculate predictions using
the entire set of observations in the domain of interpolation. Local techniques calculate
predictions from the measured points within neighbourhoods smaller then the study area.
These methods are exact interpolators (splines can be exact but not necessary) and the
resulting surface is made to pass through the data values.

The most used deterministic methods in meteorology and climatology are:

1. Nearest neighbours,

2. Triangulation,

3. Inverse distance weighting,

4. Splines and local trend surfaces,

5. Thin plate splines.
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2.2.1 Nearest neighbours 1

Assuming that the area of interpolation is divided into polygons, the nearest neighbour
method predicts the value of a variable at a target point that depends on the accompanied
polygon. Due to the fact that the area of interpolation can be divided into polygons in
an in nite number of ways, the Thiessen (or Dirichlet/Voronoi are also the same metheds
but with different names) method is used for dividing a domain of interpolation. Speci -
cally, it divides a test area into polygons using lines that are equidistant between pairs of
observation stations. 8

The Thiessen method also has two other requirements when forming polygons. They rst
requirement is that each polygon contains only one observation point. The second re-
qguirement is that any unobserved location from the polygon is closer to its enclosed.ob-
servation than to any other observation or observations contained within other polygons.
So, the area of the one polygon is considered as the area of a unique value of targetsvari-
able, where by the value is the same as the observation enclosed within the polygon: (see
Figure 2.1). The predicted image (surface) is similar to a mosaic, depending only on geo-
metrical distribution of observation. For more details about the nearest neighbours method
seeRipley (1981)); Isaaks and Srivastaya989; Burrough and Mcdonne({lL998; Liand 1
Heap(2008. 18

The nearest neighbours method has rarely been used in meteorology and climatelogy
in recent times. However, the method is widely used in hydrology for estimating aseal
precipitation, but gives poor accuracy in comparison to novel methods. 21

2.2.2 Triangulation 2

The triangular irregular network (also known as Triangulation) was developed for digital
elevation modelling and is also a geometrical method. The area of interpolation is divided
into a network of non-overlapping triangles between observation points (similar to theset-
work of polygons in the nearest neighbours method) but the triangles are empty. Unlike
the nearest neighbors method, observation points are vertices of the triangles, see Fig-
ure 2.2. Triangle network creation follows Delaunay triangulation principals (for details
and variants se€sai(1993). Simplistically, the method tends to avoid skinny triangles.

8
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FIGURE 2.1: Sample of meteorological stations and accopanied Thiessen's polygons.
Projected in the Robinson projection system.

An added bonus is that each triangle will become part of a 3D surface (e.g. similar as in
terrain modelling) if we consider observation values as third coordinates of the triangle
vertices. As such, the constructed triangulated surface provides a surface representation
of the target variable (estimated values at any location in study area).

The triangulation method is ef cient for estimation purposes but, as of late, is rarely used
in meteorology and climatology. The main reason for this is that the method is very sen-
sitive to the sampling design. The sampling design should cover all characteristic points
of the target phenomenon, e.g.all the points where the phenomenon has local minimum
or maximum. The approach is commonly used in geodesy and land surveying where to-
pographic points are well designed and sample sizes are relatively large compared when
compared to other disciplines. In contrast, sample sizes for meteorology and climatology
are considerably smaller.

2.2.3 Inverse distance weighting method

The inverse distance weighting or inverse distance weighted (IDW) method estimates the
values of a variable at an unobserved location using a linear combination of values at

9
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FIGURE 2.2: Sample of meteorological stations and accopanied triangulation polygons.
Projected in the Robinson projection system.

sampled points. The weights of this linear combination are proportional to the inverse
of the distance between the interpolated and measured points. These weights are then
normalised so the sum for all stations is equal to 1 (within the search neighbourhood for
local IDW) (Tveito et al, 2006§. The formula for the IDW estimation at an unmeasured
locations is: 5

3

& 2(s)

As0) = —m— (2.1)

11 Qo
[any

wherez(s) the measured value at locatign mis number of observations used for pre-
diction (if m= nwherenis total number of observation it is global IDW, but ofterx n, -
local IDW, the searching criteria is based on the maximum distance to used observations
for estimation or maximum numbers of neighbouring observatigns)a power param- o
eter,d; is distance from estimated locationitth observation. 10

Formula 2.1 shows that if the power parameter is higher, the nearby observation has a
heavier weight and has more in uence on the estimation. This means that higher pawer

10
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Chapter 2Methods for the interpolation of climatic variables

parameters hardly decreases the in uence of the observations that are far apart from the
prediction location, because weight is de ned as powered inverse distance. Therefore,
the high power parameter gives the high local in uence of closer observations (almost
local interpolation) even if global IDW is used, because in uence of distant observations
is small. IDW is referred to as a “moving average” wheis zero, “linear interpolation”
whenpis 1, “weighted moving average” whamis not equal to 1 and “inverse distance
squared method” whep is two (Li and Heap 2008. The choice of the parameteris

often arbitrary and gives a biased solution for the result of interpolaBemr¢ugh and
Mcdonnell 1998. However. thep can be chosen on the basis of error measurement, e.g.
root mean square error or minimum mean absolute (MAE) error, to optimize the IDW. The
calculation of the optimal power parameter that is based on MAE is provideddyap

R software packagePebesma et al2010).

IDW is frequently applied in climatology and meteorologivéito et al, 200§. The
weakness of this very fast method is that the direct measurement of uncertainty can not be
obtained and that the spatial dependency is only modelled by the inverse distance weights.

2.2.4 Splines and local trend surfaces

Mitas and Mitasovd1999 describes splines as part of variational interpolation methods:

“The variational approach to interpolation and approximation is based on the assumption
that the interpolation function should pass through (or close to) the data points and, at the
same time, should be as smooth as possible. These two requirements are combined into
a single condition of minimising the sum of the deviations from the measured points and
the smoothness.”

The interpolation function consists of a series of polynomials with each polynomial of
degreep. For degregis 1, 2, or 3, a spline is called linear, quadratic or cubic respectively.

The local trend surface ts a polynomial surface for each predicted point when using
only nearby observations. The local in uence is ensured by using weighted least squares,
whereby the local point is the most in uentialénables et a].1994).

11
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2.2.5 Thin plate splines 1

Thin plate splines (TPS), previously known as “laplacian smoothing splines”, is a very
popular interpolation method in climatic mappingartkamp et a].1999 Li and Heap s
2008. “The TPS function minimises the surface curvature and imitates a steel sheet
forced to pass through the data points: the equilibrium shape of the sheet minimises
the bending energy that is closely related to the surface curvatMiedy and Mitasova
1999. In simpler words, the TPS function minimises observation deviations from surface
and smoothing. In climatological applications, the smoothing parameter is calculated by
minimising the generalised cross validation functibngnd Heap 2008. 9

2.3 Probabilistic methods 0

This group of methods is based on a probabilistic framework in which expected values
are of primary importancedgaaks and Srivastaya988. This means that the measured
observations represent one of the possible realisations of reality when considering the
randomness of observed values. The resulting interpolation produces the expectedwalue
along with its associated uncertainty and con dence intervals for the prediction. Ehe
following section brie y describes linear regression and geostatistics. 16

2.3.1 Linear regression 17

Linear regression explores a possible linear relation (this is stochastic not functionat re-
lationship) between the primary variable (interpolated variable, e.g. temperature) and the
explanatory variables (e.g. geographical coordinates, elevation, distance to coast:line),
which are easy to measure (or already known) over the domain of interpolBtioro(igh 2
and Mcdonnell1998. These explanatory variables are usually referred to as secondary
variables, predictors, auxiliary variables, ancillary variables or covariates. Spatial inter-
polation is often interpolation on a regular grid, so the explanatory variables should also
be regular grids that cover the domain of interpolation. In further text below, the explana-
tory variable is referred to as covariate. Linear regression is often used in geostatistical

12
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applications for de-trending, where the part of variation estimated by regression is called
the deterministic part of a target variable phenomenon

The linear regression model is given by:

m(s) = ép_ bi fi(9); (2.2)
i=0
where theb; are unknown regression coef cientsany location in domain of interpola-
tion, the f; covariates that must be exhaustively known over the spatial domairp &nd
the number of covariates. Covariatgis taken as unity, resulting ibg representing the
intercept.

2.3.2 Geostatistics

Webster and Olive(2007) gives a very interesting history of geostatistics. It is is usually
believed that origin of geostatistics were in mining (Krige, 1951), but the rst origin was
actually in agronomy (Mercer and Hall, 1911, in their article shows yields crop plots and
ideas about spatial dependence, correlation range ect.) and the second was in meteorology
(Kolmogorov, 1931).

Kolmogorov tried to describe and predict turbulence of the air and weather in his stud-
ies. He recognized a spatial correlation phenomenon and modelled it using a “structure
function'. He also tried to apply this function for an optimal and unbiased interpola-
tion method with minimum variance. Kolmogorov's study is published with the name
“Interpolated and extrapolated stationary random sequences”, in 1942. Inspired by Kol-
mogorov, Gandin (1963) developed a method for use in synoptic meteorology called opti-
mal interpolation (His research was entitled “Objective analysis of meteorological elds”)
and the method is very similar to kriging, which was developed at same time by Matheron
(1963) in France and is based on Krige's practical studies. Geostatistics includes several
methods that use kriging algorithms for estimating continuous variables in space (2D and
3D) and the space-time domain (2D + time).

13
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This section provides a short description of methods published in books writteadks 1
and Srivastavq1989; Cressie(1993; Burrough and Mcdonnel{1998; Webster and -
Oliver (2007; Hengl(2007); Bivand et al.(2008; Li and Heap(2008. 3

In geostatistics, the spatial correlation is usually modelled by a variogram. A variogram
plots semi-variance as a function of distance. The term semivariogram and variogram are
mostly considered as synonymous in geostatistical practices. 6

For processes modelled using geostatistics, the stationary assumption is considered. The
intrinsic stationary assumes that the observafi@an be decomposed into a mean and a
residual partBurrough 1998 Hengl 2009: 9

Z(s) = m+ eYs)+ e° (2.3)

wherem s constant mean aref(s) is the spatially correlated stochastic part of variation

ancePuncorrelated stochastic component (pure noise) and: 1
E(Z(9)= m (2.4)
and spatial dependency is de ned by the variogram as: 12
_1 2
g(h) = EE(Z(s) Z(s+ h)) (2.5)

wherénis Euclidean distangéj, E denotes mathematical expectation arglany location 13
in the domain of interpolation. 14

The variogram model can be understood as measure of the average dissimilarity between
data separated in the spatial domain of an interpolation. Typically, we assume thatqro-
cesses occurring spatially close to each other are stronger related than processes oceurring
farther apart (Tobler 's law). 18

The sample (experimental) semivariogragi) can be estimated from a set of obsets
vations by calculating the semivariance from observation g% andz(s + h), here
referred to as separation groups wherean be interpreted as distance intervals (e.g. all

14
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pairs separated from 50-70 km are taken as one group), and every separation group con-
tainsn(h) number of pairs.

. 1 1 "M
gh=> —<a@s+h z«s))? (2.6)

2 n(h) .2,
The sample variogram is used for the tting of a variogram model. The most used vari-
ogram models aréNugget Exponential Spherical GaussianLinear, andPower.

When a variogram model is known (modelled),a spatial covariance function is also implic-
itly known and kriging interpolation can be performed. An ordinary kriging interpolator
(base for many kriging variants) is a linear combination of measured values with weights
depending on the spatial correlation between the observations. Itis an unbiased interpola-
tor since it aims at minimizing the variance of the errors and the mathematical expectation
of the errors is zero.

Kriging covers a range of least-squares methods of spatial predidtaord Heap(2009
shortly desribes 22 geostatistical interpolators in their application3 egitb et al.(2006
remarks several interpolators as important for meteorological/climatic mapping:

H

. Ordinary kriging,

2. Universal kriging,

3. Kriging with external drift,

4. Residual kriging,

5. Indicator kriging,

6. Cokriging.
Hengl(2007) shows that both universal kriging, kriging with external drift and regression
kriging (residual kriging) are basically the same techniddigand et al.(2008 explaine
ordinary, universal and kriging with external drift as a special case of universal kriging

that depends on trend computation over a domain of interpolation. In the text below,
ordinary, regression, indicator and cokriging are brie y presented.

15
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2.3.2.1 Ordinary kriging 1

Ordinary kriging is by far the most common type of kriging in practigéepster and -
Oliver, 2007). An ordinary kriging interpolator is a linear combination of observations
that are a weighted sum of nearby observation. The weights depend on the variogram
model and the sum of weights is one. These weights are estimated under the condition
that kriging variance is minimal. 6

The ordinary kriging estimator for variabEeat the locatiorsy is (Isaaks and Srivastaya 7
1989 Webster and Oliver2007): 8

a ~T h iT
Z(s0)=1lo Z(s1) Z(sn) (2.7)

WhereIAo is the estimated vector of weights for the locatsgnn is the number of obser- o
vation of the variabl&. 10

The kriging variances and their square roots, the kriging errors, can be mapped similarly
and give an idea of the reliability of the maps of estimates. The reliability of ordinary
kriging or any kriging interpolator depends on how accurately the variation is represented
by the chosen spatial model. 14

The varinace formula for variablg at the locationsy is (Isaaks and Srivastayd989 s

Webster and Oliver2007): 16
, .t h iT
s(s0)=lo 9(s1;%) 9(si;50) 1 (2.8)
The formula for thdAo is (Isaaks and SrivastayA989 Webster and Oliver2007): 17
2 3 42
g(sl,sl) g(ln,sn) 1 g(sn 80)
L § R o
g(sn s1) Q(Sn s) 1 g(sn %)

16
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the additional parametenis a Lagrange multiplier, see detailslsaaks and Srivastava
(1989.

Ordinary kriging has become very popular in climatology and meteorology and is often
applied as the stochastic component in residual interpolafiegito et al, 2009.

2.3.2.2 Regression kriging

Regression kriging uses a spatial multiple regression for de-trending so that the observed
phenomenon is decomposed into two parts that are namely 1) the deterministic part (trend)
and 2) the residual (regression residuals) stochastic part. Regression kriging assumes that
deterministic and stochastic components of spatial variation can be modelled separately.
It is mathematically equivalent to the interpolation method variously called “universal

11

12

13

14

15

16
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kriging” and “kriging with external drift”, where auxiliary predictors are used to directly
solve the kriging weightsHengl 2007).

The regression kriging model for a spatial variabBlat any of the locatiorsss:

Z(s) = m(s) + e%s)+ e (2.10)

wherem(s) is the linear regression trend de ned by Eq. 29s) is the regression resid-
ual, stochastic component spatially correlated effthe pure noise component of the
observed variable. The sample variogram needs to be calculated from residuals.

The regression kriging estimator for varialdlet the locatiorg is:

p n n
2s0) = M(so)+ &s0) = A bk fu(s)+ A li &s) (2.11)
k=0 i=1

where theBi are estimated regression coef cients, theovariates that must be exhaus-
tively known over the spatial domain, aqdis the number of covariates. Covaridig

Is taken as unity, resulting ibg representing the intercept. Tlhe are kriging weights
determined by the spatial dependence structureefmylis the regression residual from
an observed locatios.
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The regression coef cients can be estimated using ordinary least squares or Generalized
Least Squares (GLS)C(essie1993: 2

. 1
beis= q' C1q gt ctz (2.12)

whereBGLsis the vector of estimated regression coef cients using GL$; the covari- s
ance matrix of the residualg, is a matrix of covariate values at the sampling locations
andz is the vector of measured values of the target variable. 5

The Eq. 2.11 can be rewritten in matrix form and the kriging estimator at the locgtion
is (Christensen2001, Hengl, 2009: 7

2(s0)= a8 bost 1§ (z g bod (2.13)

whereIAo is the estimated vector of weights for the locatsn Prediction variance is s
de ned (Christensen2001; Hengl 2009: 9

$%(s0)=(Co+C1) ¢ C' o
T 1 T T 1 1 T 1 (2.14)
+ o 9 C "¢ qg C-q do 9 C ¢

whereCp + C; is the sill variation andy is the vector of covariances of residuals at the
unvisited locationC is the covariance matrix of the residuatsjs a matrix of covari-
ate values at the sampling locatiofigg is a matrix of covariate values at the unvisiteg
location. 13

2.3.2.3 Indicator kriging 14

Typically, indicator kriging is used for mapping binary variables, whereby such variahles
denote the presence or absence of a phenomenon, e.g. precipitation occurrence.The cre-
ation of binary data may be through the use of a threshold for continuous data, e.g. map-
ping the precipitation higher than the de ned threshold. Another example of binary data
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Chapter 2Methods for the interpolation of climatic variables

creation is the mapping of radiation higher than the allowed limit of radioactivity from
the continuous radioactivity observations. Conversion of continuous to binary variable is
given:

1 if ) <
w(s) = 28 < z (2.15)
0 otherwise

The indicator variable isv(s) and is derived from a continuous variabks), which is
achieved quite simply by scoring binary values depending on speci ed threzhold

Converting a continuous variable into an indicator clearly loses much of the information
in the original data and it might seem prodigal to transform quantitative data in this way
(Webster and Oliver2007). This is often the case when many zero data points are in
observational data sets and the data distribution is far from a normal distribution; as a
result, indicator kriging can then be used for delineation of zero and non-zeros areas.
For example, the indicator kriging technique is used rst to delineate the raining areas
from rain gauge observations and then ordinary kriging or regression kriging is used to
determine the rainfall estimates in raining areas.

The results of the indicator kriging are values lying between 0 and 1. Such values are
effectively the probability levels given to the data. Zero probabifg) < z: is de ned
with 0 and 100% probability with 1.

2.3.2.4 Cokriging

Cokriging estimator beside primary variable uses additional variable(s) that exhibit some
correlation with the primary variable. An additional (secondary)variable is known at sam-
pled locations and often on the more discrete point in the domain of interpolation, but
limited number of points,not over all domain of interpolation like covariates in regression
kriging. Cokriging covariance matrix depends on the variogram and the cross-variogram
model. The cross-variogram model shows a correlation of the spatial variability of a target
variable with the secondary variable, see Eq 2.16. Cross-correlated information contained
in the secondary variable should help reduce the variance of the estimation errors and

19



Chapter 2Methods for the interpolation of climatic variables

the result should not be worse than univariate kriging, which does not account for cress-
correlation. 2

The sample cross-semivariance (or cross-variogapih) for two variables can be esti- s
mated from the observations by calculating the semivariance from the observation pairs
of z7 andz , n(h) (as described previously in the methods section), which is the number

of point pairs separated with distance in Euclidian space. 6
. 1 "
tiz(h)= 5 5 a(als+h) za(s)(z(s+h) z(s)) (2.16)
2 n(h) 2%

It was shown that cokriging gives better results in comparison to the univariate kriging
approach particularly when spatial correlation between secondary variables (covariables)
and the variable of interest is high and when the covariables are oversampled with respect
to the target variableliveito et al, 2006. 10

2.4 Methods specially developed for meteorology and cli-
matology 12

24.1 PRISM 13

PRISM is an acronym (Parameter Regression on Independent Slopes Model) for a method
developed byaly et al.(1997. PRISM is a knowledge based method that uses point ab-
servations, digital elevation models and other spatial datasets to produce climatic maps
based on climate-elevation regressions. A detailed description of the PRISM knowledge
based method is given liyaly et al.(2002. PRISM is based on a linear regression funes
tion accounting the dominant in uence of elevation on the climatic maps. The methodsin-
terpolates the target variable using a weighted combination of stations data, where weights
for a speci c location depend on many distinct types of spatial information, e.g. distance
(from station to grid point), elevation, cluster, vertical layer (includes a two-layer of atmo-
sphere representation), topographic facet (e.g. rain shadows, windward sides ect.), ceastal
proximity, and effective terrain weights (expert based). 24
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Chapter 2Methods for the interpolation of climatic variables

Tveito et al.(2006 summarise the PRISM advantage in comparison with traditional meth-
ods:

“In a comparison with kriging and detrended interpolation PRISM was shown to be the

preferable method in regions with sparse station networks and relatively low precipitation

gradients, and very powerful in areas where the station network is unrepresentative for
the variation in topography. The more traditional methods showed better results in the
areas with a very dense network, where the variability due to the terrain is represented by
the stations.

2.4.2 AURELHY

AURELHY stands for “Analyse Utilisant le RElief pour I'Hydrométéorologie” (Topography-

based analysis for hydrometeorology). In this method, the local topography is used to
explain variables by multiple linear regression and regression residuals are interpolated
by ordinary kriging. This can be considered as a typical regression kriging method.The

AURELHY method was introduced by Meteo Fran&efiichou and Le Bretqri987).

There are many similar examples of regression kriging like methods that are named dif-
ferently, e.g. MISH (Meteorological Interpolation based on Surface Homogenized Data

Basis) recently developed at the Hungarian Meteorological Service.

2.5 Arti cial neural networks

Arti cial Neural Networks (ANN) is machine learning technique used for data analysis
and modelling in many elds and have been recently applied in spatial prediction. The
machine learning algorithms model speci ¢ phenomena using an empirical approach for
nding the relation of the input and output parameters via a computer program. ANN
computing techniques are adaptive and “learning by example" replaces traditional “pro-
gramming" in solving problems. In traditional programming, the modelling process is
coded into the computer program based on the physical or statistical model (stochastic or
functional relationship is de ned). In contrast, themodel is unknown to the user in the
“learning by example" approach. Instead, software that uses a mathematical/statistical
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layer 1 (Input layer) layer 2 (hidden layer)

layer 3 (output layer)

FIGURE 2.3: Simple model of arti cial neural networks

model of optimisation synthesizes the relationship between input and output parameters
for the user. 2

The application of machine learning in spatial prediction and analysis is giv€asgvski s
et al.(2009 in the book “Learning for Spatial Environmental Data: theory, applications:
and softwarg where many applications in climatic mapping and a short description of
ANN are supplied . There are many applications of the ANNs in meteorological/climatic
mapping and some of the rst studies cited &t®u et al(1997); Demyanov et al(1999; -
Antonic et al.(2001). 8

ANN are inspired by the structure of the biological neural network that are composed of
a set of numerous interconnected elements that process information (impulses, signals).
ANN uses a set of non-linear functions as the so called processing elements (neurons,
cells or nodes). The input information (signal, set of known parameters, e.g. longitude,
latitude, elevation) are passed to nodes (non-linear functions) and the target variables(e.g.
temperature) is modelled as a linear combination of the nodes (non-linear functions)..fig-
ure 2.3 shows a simple model of the ANN. 15

The blue circles from Figure 2.3 represent the input parameters in a similar fashion as
regression known over the domain of interpolation (e.g. elevation, longitude, latitude),
the red circles represent the nodes (neurons). The nodes are functions de ned generally
by formula: 19
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f(x;w) = f(éK wiX + b) (2.17)
i=1

wherex are some elements (some predictors) of the input vecter; are weights and b
Is bias passed to the functidn so called transfer function. Example of transfer function
is hyperbolic tangent:

tanhx = sinhx _ e e X
"~ coshx e+ e X

(2.18)

Therefore, the resulting circle (the green one depicted in Figure 2.3) is the prediction
representing the linear combination of processing components (nodes). Thus, the weights
from the Eq. 2.17 are essential parts of the ANN technique since they are tted (tuned) by
the ANN algorithm to match certain criteria that is based on reducing error from predicted
and observed values.

The most frequently used neural networks consist of multi-layers, which contain several
hidden layers of neurons that are fully connected. The step by step procedure for using a
multilayer neural network in spatial interpolation is givenKgnevski et al(2009, who
strongly recommend using a combination of geostatistical and ANN approaches.
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Chapter 3 1

Publicly available global meteorological .
data sets and preliminary :
spatio-temporal analyses 4

The chapter reviews publicly available global meteorological data sets from ground-based
stations and/or remote sensing systems, prepared and maintained by national and interna-
tional organizations: the National Aeronautics and Space Administration (NASA), Global
Precipitation Climatology Centre (GPCC), European Organisation for the Exploitatiors of
Meteorological Satellites (EUMETSAT), and United States National Oceanic and Atrao-
spheric Administration (NOAA) with focus on available data. A merge of the Glohal
Surface Summary of Day (GSOD) and the European Climate Assessment & Dataset
(ECA&D) consisting of 10,695 stations for the year 2011 were assessed for reprasen-
tation and usability for global spatio-temporal analysis. Three aspects of data quality
were considered: (a) representation in the geographical and temporal domains, (byrep-
resentation in the feature space (based on the MaxEnt method), and (c) usability i.e. t-
ness of use for spatio-temporal interpolation (based on cross-validation of spatio-temporal
regression-kriging models). The results show that clustering of meteorological statiofs in
the combined data set is signi cant in both geographical and feature space. Most ofthe

!Based on article: Kilibarda M, Peec Tade M, Hengl T, Lukovt , Branislav B (2013?) Publicly
available global meteorological data sets: sources, representation, and usability for spatio-temporal analysis.
Under review ininternational Journal of Climatology
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Chapter Fublicly available global meteorological data sets

distribution of the stations (84%) can be explained by population density and accessi-
bility maps, also with elevation, showing that higher elevations areas are less covered
with stations, as spared populated and inaccessible areas. Although a spatio-temporal
regression-kriging model of mean daily temperature on 8-day MODIS LST images pro-
duced average global accuracy of 2—3°C, prediction for polar areas and mountain chains
was 2 times worse than for areas densely covered with meteorological stations. Despite
the geographical and feature space clustering, the presented global spatio-temporal model
using station observations and remote sensing images can be used for production of global
mean daily air temperature images at very high resolution.

3.1 Introduction

Publicly available meteorological and/or climate data are also one of the foundations of
democracy. Combine open access data with the open source software tools and everyone
can build his/her opinion about global change. The same way anyone is now able to zoom
into the Ikonos and QuickBird images available via the Google En@n#dr, 2006, and

witness deforestation or massive land degradation (possibly not reported anywhere yet!),
anyone should also be able to plot meteorological variables per station, per region, for
any given selection, and identify possible changes and trends. Fortufiapsg-access
climate science is becoming easier than evffleiner, 2011). There are now multiple

data portals where anyone can download original meteorological data in a variety of for-
mats. Some of the major U.S. and global open meteorological data sources have been
reviewed byYang et al.(2010. The most popular sources of freely available satellite
data for agro-climatic application have been describeddaylios and Stancali€2011).

Becker et al(2012 provide a review of global precipitation data sets and their limitations

for global change analysis. Recently, several data portals have been launched to support
free exchange of climatic and meteorological data sets. The University Corporation for
Atmospheric Research (UCAR) Climate Data Géider example, is a repository for the
climate community supporting a wide range of observational data sets and their appropri-
ate use in analyzes and climate model evaluation. The data comprises ground and satellite
observations and re-analyzes and model simulations with links to sources of data. Royal

2https://climatedataguide.ucar.edu
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Netherlands Meteorological Institute (KNMI) Climate Explorer pctialanother source :

of data and tools for climate research. In the framework of the Berkley Earth Project
monthly temperature observations from 16 sources, including the National Climatic Data
Center NCDC) data, were used to produce average, minimum and maximum temperature
anomaly grids. 5

It is for example well know that meteorological stations are often allocated to represent
provide higher density information for areas of high population density. Consequently,
mountains and uninhabited areas are often miss-represented in the national observation
networks. See for example maps of station location usedogg et al(1992); Peterson o
and Vosg(1997); Klein Tank et al. (2002 and/orLawrimore et al(2011). In addition to 1o

the problem of station clustering, most spatial prediction methods do not consider varying
uncertainty in input data and its effects on the nal outputs. Most of the climate grigls
that can be nd on the data portals listed above have no uncertainty measures attaeched,
or the uncertainty is not spatially assessed. This is obviously a problem because the
data quality is an important aspect for decision making. The scale of global or regienal
temperature change is often very ne (e.g. 0.2-0.5°C) and high uncertainty can lead to
misinterpretation of produced patteri&ohde et al.2012). 17

The national budgets for weather monitoring in the developing countries are of coursewery
limited. Consequently, the representation of stations globally does not necessarily re ect
complexity of climate. This is a well know paradox in ecology that we probably knaw
the least about the areas of the highest ecological and climatic complé&tigpan =
2005. Thus, consistent and harmonized (unbiased) grids are needed for global analysis
and climatic planning. But can we produce such harmonized grids using the groundsand
remote sensing data we have at the moment at all? 24

In this paper we look at the general usability of global meteorological data sets cem-
ing from ground-based stations and/or remote sensing systems which are of interest for
spatio-temporal analysis. The rst part of the paper provides a review of the availableame-
teorological data sets. The second part shows the results of analysis, points the passible

Shttp://climexp.knmi.nl
“hitp://www.berkeleyearth.org
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Chapter Fublicly available global meteorological data sets

problems with using this data for climatological mapping and suggests direction of de-
velopment of daily spatial grids for global land areas using the spatio-temporal regression
kriging.

We focus on three important aspects of publicly available datacdadent (b) repre-
sentation and (c)suitability for spatio-temporal interpolationFor this purpose we have
merged GSOD and ECA&D station observation, as clean and consistent meteorological
(point), and then run a number of standard spatial analysis operations to determine what
could be possible problems with using the global data sets for spatio-temporal interpola-
tion and time-series analysis. The spatio-temporal regression kriging model on MODIS
LST 8 day images is made just for mean daily temperature records for a year 2011.

3.2 Measurements at ground stations

Climate research relies heavily on the records from instruments at these near-surface
weather stationsReterson and Vosd997), as the most accurate and reliable measures

of weather. Although, ground station measurements are the most accurate and the most
reliable records of the weather at near surface, they are the only one available records
of spatial and temporal variability of climatic variables to 1960, when the rst weather
remote sensing mission had been lunched by NASA.

Flowing sections describes publicly available data sets at global or near global coverage.

3.2.1 NCDC's Global Surface Summary of Day (GSOD)

The Global Surface Summary of Dagg8OD) data set is produced and archived at the
NOAA's National Climatic Data Center (NCDC) under the cdd€DC DSI-9618The

input data used in building GSOD are the Integrated Surface DMTDC DSI-3505
which includes global hourly data obtained from the US Federal Climate Complex (FCC)
consisting of about 27,000 stations.

GSOD (Fig. 3.1) is certainly the most consistent and probably still the largest publicly
available international station data sets. It contains daily measurements for a list of 11
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meteorological parameters of several climatic variables (since 1929): temperature; hu-

midity, pressure, wind, precipitation (liquid and solid) and phenomena: 2
1. mean, minimum and maximum temperature (precision of 0.1°F), 3
2. mean dew point (0.1°F), 4

3. mean atmospheric pressure and mean sea level pressure (0.1 mb),

o

4. mean visibility (0.1 miles), 6
5. mean wind speed, maximum sustained wind speed and maximum wind gust (0.% knots),
6. precipitation amount (0.01 in), 8
7. snow depth (0.1 in), 9

8. and an indicator (class) for occurrence of fog, rain or drizzle, snow or ice pellgts,
hail, thunder, and tornado/funnel cloud. 1

This data set is continuously being updated so that the latest daily summary data are
normally available 1-2 days after the date-time of the observations used in the daily sum-
maries. The data summaries provided in the GSOD are based on data exchanged under the
World Meteorological Organization{MO ) World Weather Watch Program, following:s

the WMO Resolution 40/MO-No. 837 1996. This allows WMO member countries toss
place restrictions on the use or re-export of data for commercial purposes outside af the
receiving country. The GSOD data is intended for free and unrestricted use in research,
education, and other non-commercial activities. 19

3.2.2 NCDC's Global Historical Climate Network Dataset 20

The previously mentioned GSOD together with more than 20 other sources are part of the
world's largest collection of daily climatological data that is BeICN (Global Histori- 2

cal Climatology Network)-Daily database (GHCN-D). It contains historical data on daily
temperature, precipitation and snow over the global land areas and it is updated daily
where possible. One or more of the 40 meteorological elements (maximum/miniraum
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temperature, precipitation, snowfall, snow depth, snow water equivalent, wind maximum,
cloudiness, etc.) are collected on more than 80,000 stations in 180 countries and tefrito-
ries Menne et al.2012. GHCN-D is especially useful for monitoring the frequency and
magnitude of extremes due to high temporal resolution. 4

The GHCN-Monthly (GHCN-M) temperature data set was rst developed in the easly
1990s (ose et al. 1992. A second version was released in 1997 following extensive
efforts to increase the number of stations and length of the data reeetdrg¢on and -
Voseg 1997). GHCN-M version 3 released in 2011 focused on four aréasv(imore s

etal, 201)): 9
(8) consolidating duplicate station records 10
(b) improving station coverage, especially during the 1990s and 2000s 1
(c) enhancing quality control, and 12

(d) applying a new bias correction methodology that does not require use of a compos-
ite reference series 14

The version 3 currently contains monthly mean temperature, monthly maximum temper-
ature and monthly minimum temperature. The station network for the time being, is¢he
same as GHCN-M version 2 (NCDS, 2012). GHCN-M version 2 has data for precipitation
(20,590 stations, at precision of 0.1 mm), mean temperature (7280 stations, at preeision
of 0.01°C; Fig. 3.2), and minimum and maximum temperature (4966 stations, at precision
of 0.01°C). 20

The GHCN-M has geographical station information such as latitude, longitude, elevation,
station name, etc., and also extended metadata information, such as surrounding vegeta-
tion and simila?. 2

3.2.3 European Climate Assessment & Dataset 2

The largest European publicly available meteorological data set is the European Climate
Assessment and Dataset ProjdeCA&D ). The idea of ECA&D project was to providez

Sftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/README
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uniform analysis methodology to daily observational series from 62 European countries
and 6596 European and Mediterranean meteorological statideis (Tank et al, 2002. -

Fig. 3.3 shows the geographical distribution of stations with daily time series, through-
out Europe and the Mediterranean (around 2700 stations). The number of observed daily
climatic elements varies in geographic and time domain. This data set contains measure-

ments for the following meteorological variables and their parameters: 6
1. minimum, mean and maximum temperature (resolution of 0.1°C), 7
2. humidity (1 %), 8
3. mean sea level pressure (0.1 hPa), 9

4. mean wind speed (0.1 m/s), wind direction (degrees), maximum wind gust (0.1 m/s),

5. precipitation amount (0.1 mm), 1
6. snow depth (1 cm), 12
7. cloud cover (oktas), 13
8. sunshine duration (0.1 hours). 14

Only a portion of this data can be downloaded and used freely for non-commercialre-
search. On the other hand, licensed daily data are used together with the publicly available
daily data to calculate derived value-added products, such as indices of extremes ondaily
maps of gridded data (E-OBS) available from the ECA&D project web Hage 18

3.2.4 Aviation Routine Weather Report (METAR) 19

Another station data set of interest for global analysis is distributed as the international
standard code format for hourly surface weather observatioM=FAR . METAR roughly 2
translates from French @wiation Routine Weather Repahd is predominantly used by:.
pilots in ful liment of a part of a pre ight weather brie ng, and by meteorologists. Typz
ical METAR report contains data for temperature, dew point, wind speed and direction,

Shttp://eca.knmi.nl/documents/ECAD_datapolicy v5.pdf
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precipitation, cloud cover and heights, visibility, and barometric pressure. Current data,
original and decoded, for individual stations are available from the US National Weather
Service NWS) FTP sité€. s

Historical data of METAR reports are not available from of cial FTP site. Current oh-
servations in KML format are available from the NWS web site showing also the largest
density of observations in US and Europe. 6

3.2.5 Climatic Research Unit (CRU) land station temperature database

In addition to the meteorological data at point support, a number of data sets is available
also at block supports. For example the Climatic Research @ft)), University of o
East Anglia, UK derived several gridded monthly temperature products covering the {and
land/or sea regions on the 5° by 5° grid. These are referred to as the CRU-TEM data:sets:
CRUTEMS3 and the new CRUTEM4 (from March 2012) land air temperature anomalies
on a 5° by 5° grid Jones et al2012, and their (variance) adjusted versions CRUTEM3v
and CRUTEM4v. CRU and UK Met Of ce Hadley Centre have also produced combined
land and marine (sea surface) temperature anomalies on a 5° by 5° grid (HADCRWT3)
and associated variance adjusted versions of HadCRUT3, HadCRUTV3. 16

The station data used to generate those gridded elds are available from the CRU Website
For example, CRUTEM4 underlying data set contains 5583 monthly station temperature
time series some extending back to 1850. They cover the global land area, with relatively
rough positional precision of the station. The location of stations are available at-0.1
degrees precision in geographic coordinates, that is around 10 km at middle geographic
latitudes. HadCRUT and CRUTEM station data had assigned codes to each station, giving
the principal source for each seri@&@han et al.2006. 2

ftp://tgftp.nws.noaa.gov
8http://www.srh.noaa.gov/gis/kml/metar/metarlink.kml
Shttp://www.cru.uea.ac.uk/cru/data/temperature/

34



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Chapter Fublicly available global meteorological data sets

3.2.6 FAOCLIM 2.0

Another valuable source of historical meteorological observations is the FAOCLIM 2.0
global climate database i.e. CD ROMr{vironment and Natural Resour¢c2801). FAO-

CLIM 2.0 contains monthly data for weather stations across the world. This station
database contains monthly data for around 28,000 stations, precipitation data for 27,372
stations, mean temperature data for 20,825 stations, and minimum and maximum temper-
ature data for 11,543 stationdlijmans et al. 2005. FAOCLIM 2.0 also contains both
long-term averages (1961-1990) and monthly time series for precipitation and tempera-
ture.

3.3 Publicly available remote sensing data

The rst weather Television and Infrared Observation SatellltR0S-1) was launched

on 1960 by NASA. It was in operation for just 78 days, but it sent back thousands of pic-
tures of cloud patterns. It proved the theory that satellites could effectively survey global
weather from space. TIROS was followed by nine more test satellites launched between
1960 and 1965 (TIROS X) to provide routine, daily weather observations. This polar-
orbiting satellite was providing images of clouds across parts of the globe that may be
compared with coincident meteorological observations. Since then, the development of
satellite systems has advanced signi cantly, with different satellite platforms and instru-
ments operating on boar&idd, 2007).

Satellite images are now routinely used in climate studies due to its availability, spatial
coverage and multi-decade length of the serigsugzik et al, 2011). They also allow
determination of different climatic parameters at different scales. Some data are freely
available trough the Internet while the others require registration. Many research agree
that meteorological satellites are the key to weather forecast, and analysis of climate.

Satellite images often need to be calibrated using the ground data which can be tricky since
even small systematic differences can lead to wrong conclusions. For exéapley

et al. (2000 found an apparent difference between surface estimated warming of 0.2°C
per decade since 1979 and the much smaller temperature trend in the lower troposphere
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estimated from satellites and radiosondes. According to them these differences mainly
come from data quality problems in either the surface and/or satellite and radiosonde
data. Further on, the difference may be due to the effects of natural variability and/or
external forcing. A third reason for the observed difference in the temperature trends
is the discrepancy in spatial coverage between surface and satellite data. Accordiag to
Thorne et al(2005, the choice of data set in meteorological studies can even change
the sign of upper-air temperature trends relative to those reported at the surface. Many
papers have been published dealing with analysis of ground based and satellite based data
(Proedrou et a.1997 Feidas et a).2004). The focus is mainly put on assessing the bias

of remote sensing based measurements of ground conditions, and on methods that gan be
used to minimize the biasMmith et al, 2009. 1

There is a close cooperation between two US agencies, NASA and NOAA in making
the land, oceans and atmosphere visible from space and sometimes their roles is hard to
distinguish. While NASA is responsible mainly for satellite pre-launching and launching
faze, the NOAA is taking the responsibility for the satellite operation, processing, disiri-
bution and archiving of the data. Convention for naming the NASA/NOAA satellites isd¢o
set the name and letter before the launch, e.g. last launched meteorological satellite was
GOES-P, and after it reached its proper orbit the it was renamed GOES-15. 18

It can be said that all meteorological remote sensing system are often specialized in maoni-
toring speci ¢ meteorological features at some working spatio-temporal scale. For practi-
cal reasons, distinction between two groups of Remote Sensed (RS) systems is made: RS
systems focused on monitoring surface temperatures and RS systems focused onzmoni-
toring precipitation (Table 3.1). 2

3.3.1 The National Oceanic and Atmospheric Administration (NOAA) .

NOAA's Satellite and Information ServicedNESDIS) is leading provider of meteorolog-zs

ical satellite data. This USA agency operates meteorological satellites, processes and
distributes climate data managing one of the world's largest climate data archive at-the
National Climatic Data Centré&NCDC). NOAASs satellites monitor Qhring et al, 1989 2
Ohring and Booth1995: 29
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Atmospheric temperatures

Oceanic temperatures

Greenhouse gasges

Ozone Sea ice, glaciers, snow cqver

Sea level Ocean acidi catign

Extreme temperatures and oods/droughts

NOAA's satellites provide consistent, long-term observations, 24-hours-a-day, 7-days-a-
week, at a basic resolution of 1 km.

The NOAA series of satellites began weather monitoring in 1970. These series of satellites
were known as Polar Orbiting Environmental SatellitBOES). Currently, NOAA-15
through NOAA-18 serve as the stand-by satellites and NOAA-19 as the operational one
performing the morning and afternoon global coverage, orbiting the Earth every 6 hours
with a spatial resolution 1.1x1.1 km. The POES among other instruments include the
Advanced Very High Resolution Radiometé®%HRR ) instrument and the Advanced
TIROS Operational Vertical Soundek{OVS) suite.

From 2012 the Suomi NPP became fully operational new satellite as bridge to the forth-
coming series of the advanced Joint Polar-Orbiting Satellite Sysi®¥8g whose rst
satellite JPSS-1 is planned for launching in 2016. Currently two Geostationary Oper-
ational Environmental Satellites (GOES-13 and GOES-15) circle the Earth at the same
speed as Earth's rotation. This allows them to hover continuously over one position on
the surface. GOES-13 (or GOES EAST) monitors North and South America and most of
the Atlantic Ocean, while GOES-15 (or GOES WEST) monitors part of North America
and the Paci c Ocean basin. The era of these satellites began with launching of Syn-
chronous Meteorological Satellites-1 (SMS-1) on 1974. However, this program of cially
started on 1975 in cooperation between NOAA and NASA by launching GOES-1. This
series operates until today and will be improved by new generation of GOES-R satellites
scheduled for launching in 201B#é&vis 2007).
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3.3.2 The National Space Science and Technology Centre (NSSTC)

The National Space Science and Technology CeM&STC) is a mission conducting

and researching in order to support NASA mission. In cooperation with The University
of Alabama in Huntsville (UAH) produces temperature data set for the lower and mid-
troposphere and the lower stratosphere that merge data from the nine Micro Sounding
Units (MSUs) and two Advanced Micro Sounding Units (AMSUS).

The data are obtained from Microwave Sounding Units (MSUSs) on the NOAAs TIROS-N
(polar orbiting) satellites, which relate the intensity or brightness of microwaves emitted
by oxygen molecules in the atmosphere to temperature. Images and data for the download
are available via the NSSTC web site. Spatial coverage of the MSU data set is nearly
global while temporal coverage is limited, as the MSU data set is in existence since 1979
(Christy et al, 2000.

3.3.3 European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT)

EUMETSAT is the European operational satellite agency for monitoring weather, cli-
mate and the environment. It operates a system of meteorological satellites monitoring
the atmosphere and delivering weather satellite data on a daily basis 365 days a year. EU-
METSAT is offering a list of atmosphere products available from their geostationary MSG
satellites, polar orbiting METOP and low orbiting satellites. EUMETSAT Polar System
program (EPS) is European contribution to a joint European-US satellite system called
the Initial Joint Polar-Orbiting Operational Satellite System (IJPS). This is an agreement
between EUMETSAT and the NOAA on providing instruments for each other's satellites,
exchange all data in real time, and assist each other with backup services. Other part-
ners are the European Space Agency (ESA) ancCtmre National d'Etudes Spatiales
(CNES) of France.
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3.3.4 National Aeronautics and Space Administration (NASA) 1

The Moderate Resolution Imaging Spectroradiomeé#®DIS) images of the Terra and -
Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving at-
mospheric, oceanographic including biological variables using different techniques. There
are many data products from MODIS observations describing land (temperature, land
cover), oceans (sea surface temperature, optical thickness) and atmosphere (water vapor,
cloud product, atmospheric pro les) that can be used for studies at different scales, local
to global. In meteorological studies are very often used Land Surface Temperature (LsST)
data and images obtained from MODIS thermal bands and distributed by Land Processes
Distributed Active Archive Center (LP DAAC FTP) of USGS (US Geological Survey)..wo

Additionally to this MODIS Level 2 or higher level data, there are also the MODIS Levek 1
data that are distributed trough the LAADS portal hosted at Goddard Space Flight Canter.
The MODIS LST data are available on daily basis and have spatial resolutions of 1x1:km
(Coll et al, 2009. The accuracy of MODIS LST is 1°K. However, some validations
reported accuracy better then 1°K in clear sky conditions within the temperature range
from -10°C to 50°C Yoo et al, 2011). MODIS LST data and/or images are one of the
mostly used and best documented publicly available RS products in the world. 17

3.3.5 NASA/Goddard's Space ight Center Laboratory for Atmo-
sphere 10

Precipitation satellites are not able to estimate ground conditions as accurately as e.g. land
surface temperature sensoldendelsohn et al.2007. This can be overcome throughe
combining the satellite with the rain gauge data. The international authority that gathers
both sources of precipitation data is the Global Precipitation Climatology Project (GP&P),
established at the Laboratory for Atmospheres at the NASA Goddard Space Flight Center.
The aim of this project is merging the precipitation data taking advantage of the each:¢lata
type. Rain Gauge data contributing to this project are available from German Weather
Service's project GPCC. Satellite precipitation estimates project are computed from geo-
stationary satellites (GOES — United States, Meteosat — Europe, GMS — Japan);sand
polar-orbiting satellites (NOAA). 29
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Set of precipitation estimates by Geostationary Satellite Precipitation Data G8R8PDQO

Is another standard resource of the RS data. Data from NASA Aqua and TIROS are also
included in GPCP. Regarding temporal coverage daily precipitation data are available
since 1996, while monthly series are available since 1979 in mmday. Precipitation data
with a global spatial coverage is currently available only for coarse spatial resolutions
of 1°x1° resolution for daily data and 2.5°%2.5° for monthly data. Monthly and daily
data are freely available in a FORTRAN binary format with software for reading from
NOAA's National Climate Data Center (NCDC), and from the German Weather Sé&tvice

An overview of the remote sensing system used to map precipitation is givendsnt
(2010.

3.4 Environmental layers

The environmental layers used for this thesis were provided from WorldGrid jpog-

tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded
and maintained by ISRIC (International Soil Reference and Information Center). The
portal serves continues raster layers, for example, DEM, MODIS Terra products, various
climatic, land cover and geological layers. Layers are thematically grouped in sections:

Climatic and meteorological images

DEM-—derived parameters

MODIS products

Land cover and land use

Urbanization and Lights at night images

Biodiversity and human impact maps

Land, vegetation and water masks

Harmonized World Soil Database images

Oftp://ftp.dwd.de/pub/data/
Uhttp://www.worldgrids.org/doku.php
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* Various layers 1

The environmental grids from the data repository are available at various resolutions from
1 to 20 km. The short description of the most commonly used layers for this research is
presented in further sections. a

3.4.1 Global relief model (DEMSRE) 5

The environmental layers used for this research were provided from WorldGrids.org por-
tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded
and maintained by ISRIC (International Soil Reference and Information Center). TEhe
portal serves continues raster layers, for example, DEM, MODIS Terra products, various
climatic, land cover and geological layers. Global relief model at 1km resolution was
derived as combination of SRTM 30+ and ETOPO DEM at 1/120 arcdeegres resolution.
The model is based on SRTM 30+ and ETOPO DEM, publicly available data sets. 1

Shuttle Radar Topography Mission (SRTM) is an international project managed by:Na-
tional Geospatial-Intelligence Agency (NGA), National Aeronautics and Space Adminis-
tration (NASA), National Imagery and Mapping Agency (NIMA) and Italian and German
space agency (Deutsche Zentrum fur Luft und Raumfahrt - DLR). SRTM for the rst time
provides a near global high quality DEM at resolution levels of 1 and 3 arc sec, covered
land mass between 60°N and 57°S. The horizontal spacing is 1 arc sec; the elevation
value is given in meters. WGS84 is used as horizontal and vertical datum. This means
that ellipsoidal heights are provided. The DEM accuracy requirements &ké f ab- 2o
solute and A6 m relative vertical accuracyR@bus et a).2003. For detail description 2

of DEM produced by SRTM seRBabus et al(2003; Farr et al.(2007). SRTM 30+ isa =
near-global digital elevation model (DEM) comprising a combination of SRTM data and
U.S. Geological Survey's GTOPO30 data set. 24

ETOPO is a 1 arc-minute global relief model of Earth's surface that integrates landsto-
pography and ocean bathymetry. It was built from numerous global and regional datassets
covering complete global topographic and bathymetric coverage. The detail description
Is provided in publicatiomante and Eakin2009. 28
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DEMSRE comes with an accompanying processing script providing detailed instruction
for layer reproduction. DEMSRE is a main source of many geomorphometric layers on
the portal, such as slope, potential incoming solar radiation, topographic wetness index,
etc. Figure 3.4 shows DEMSRE global Earth coverage.

3.4.2 SAGA Wetness Index (TWISRE)

The topographic wetness index (TWI), which combines local upslope contributing area
and slope, is commonly used to quantify topographic control on hydrological processes
(Sorensen et gl2006, but also can be used as an indicator of cold air accumulation
(Bader and Ruijten2008. Methods of computing this index differ primarily in the way

the upslope contributing area is calculated. TWI is de ned in the equation 3.1 :

TWI= In (3.1)

A
tan(b)

where A (m?) being the contributing area, and ¢an being the slope.
SAGA GlSlocumentation contains description of SAGA Wetness Index:

“The "SAGA Wetness Index' is, as the name says, similar to the "Topographic Wetness
Index' (TWI), but it is based on a modi ed catchment area calculation (‘Modi ed Catch-
ment Area'), which does not think of the ow as very thin Im. As result it predicts for
cells situated in valley oors with a small vertical distance to a channel a more realistic,
higher potential soil moisture compared to the standard TWI calculation. "

The process of computing the SAGA Wetness Index for global land areas is very time
consuming, even if a strong PC con guration is provided the computation takes several
days. To achieve this, it is necessary to tile the DEM at continental level, re-project to
equal area projection, compute 'SAGA Wetness Index' for each tile and build a mosaic
for the global land mass (Figure 3.5). Majority of grid analyses and computation for this
research was done in Sinusoidal projection. The result of distortion analysis and pixels
omission process, in context of mapping global image data, suggests use of Sinusoidal
projection in comparison to other equal area projecti@en(g et aJ.2002. The script
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FIGURE 3.4: Global relief model (DEMSRE), full global covarage.
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FIGURE 3.5: SAGA Wetness Index, global land mass covarage.
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for layer production produced by Tomislav Hengl and Milan Kilibarda is available on the
WorldGrids.org. 2

3.4.3 Potential incoming solar radiation derived inSAGA GIS (IN- -
MSRE) 4

Potential incoming solar radiation is topo-climatic parameter which depends on few fac-
tors, it is not just DEM derivative. Topo-climatology is the part of climatology which
deals with impacts of land surface (i.e. topography) on climBteefiner and Antonic -
2009. 8

Potential incoming solar variability depends @ogéhner and Antonj2009 : 9

“There are three major causes of spatial variability of radiation at the land surface: ()
orientation of the Earth relative to the sun, (2) clouds and other atmospheric inhomo-
geneities and (3) topography. The rst cause in uences latitudinal gradient and seasans.
The second cause is associated with local weather and climate. The third cause sugh as
spatial variability in elevation, slope, aspect and shadowing, can create very strong lecal
gradients in solar radiation. 15

One of the rst articles about GIS modelled solar radiation is writteDbipayah and Rich 1
(1995 as initial proposal of using GIS for computing solar radiation, the formulas and
illustration are provided in publicatiortdo erka and Suri(2002; Boehner and Antonic s
(2009. 19

Author calculated potential incoming solar radiation for 8-days intervaBAGA GIS
thus computing is very time consuming and for global land areas takes more thaa 20
processing days. The processing steps were in general: 2

re-projection of initial DEM (DEMSRE) in equal area Sinusoidal projection, 23

* creation of tiles across land mask, around 500 tiles, 24
» calculation of potential incoming solar radiation for 8 day period, 2
* mosaicking results. 2
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Finally, result of this computation contains 46 images at 1 km resolution. The script for
computing is provided on WorldGrids.org, but only available at the moment on the portal
is annual average (Figure 3.6) and standard deviation grid at resolution 1 km, or smaller.

3.4.4 Distance from the sea coast line(DICSRE)

Distance from the sea coast linelCGSHwas derived using the Global Self-consistent,
Hierarchical, High-resolution Shoreline Database (GSHH®9sel and Smith1996.

The coastline vector map was rasterized to the Robinson projection with three central
meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast
line has been derived, and then merged to create a complete and consistent distance to the
coast line map in kilometers.

3.5 Methods

After identifying major publicly available sets and following the preliminary inspection

of their temporal and geographical coverage and data formats, three clean and consistent
data sets have been merged for purpose of testing: GSOD and ECA&D (station data) and
time-series of MODIS Land Surface Temperature images. We run a number of standard
spatial analysis operations in tReenvironment for statistical computing ©evelopment

Core Team2012 to determine possible problems with using this data for spatio-temporal
interpolation and time-series analysis.

We focused on three important aspects of data quality:

() representation of station data in geographical space and temporal coverags-
sessed using kernel density analysis;

(b) representation of station data in feature spaeeassessed using the MaxEnt anal-
ysis;
(c) suitability of data for spatio-temporal interpolation- assessed using cross-vali-

dation of spatio-temporal prediction models;
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FIGURE 3.7: Distance from the sea coast line(DICSRE).
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3.5.1 Representation of station data in geographical space and tem-
poral coverage 2

To assess temporal coveradga)] we plot change in number of stations and then try te
explain differences and trends. To assess geographical representation we produced ker-
nel density maps using thBaussiansmoothing kernel as implemented in theatstat s
package foR (Baddeley and Turne2006. Kernel density estimation of point processs
intensity requires an optimal bandwidth selection. To derive the optimal bandwidth we
used algorithm based on cross validation as describBibigle (2003 pp.115-118). The s
obtained bandwidth was 70 km for the temperature and 40 km for the precipitation sta-
tions. To provide comparable maps of density for two meteorological variables, we further
derived and plotted only the relative density maps with values in the f@ngje 1

3.5.2 Representation of station data in feature space 12

To asses the feature space representation i.e. the samplingljasve use theMax- 1

Ent analysis Phillips et al, 200§. MaxEntuses maximum entropy model, purposely
developed to explain distribution of animal or plant species as a result of environmental
conditions Phillips et al, 2006, to derive a probability of occurrence of point patternss
Moreover, this technique could be successfully used to explain distribution of people in
certain areas as well as to assess spatio-temporal dynamics of human populations as a
function of environmental predictor8§jat et al, 2011). MaxEntis consider to be one 1

of the most robust methods to assess the feature space covEldiget al, 2011). In

this paper we use it to assess the sampling preference i.e. feature space representations of
meteorological station network. Asccurrenceswe used records of mean temperature

for year 2011 and precipitation for the same year respectively (GSOD and ECA data sets).
MaxEntgenerate the receiver operating curve (ROC) and the area under the curve (AUC)
which allows for evaluation of the model performance between occurrence of climate
locations and their absence. The area under the curve (AUC) values can be interpseted
as indicating the probability that, when a presence site and an absence site are drawn at
random from the population, the rst will have a higher predicted value than the secend.
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Models with an AUC value above 0.75 are consideresigsi cant (for more details refer
to Elith et al.(2000).

As environmental predictors for tidaxEntanalysis we used the following ve publicly
available environmental layers:

DICGSH- distance from the sea coast line,

GLCESA-land cover classes based on the MERIS FR images (factor-type variable),

DEMSRE global Relief Model based on SRTM 30+ and ETOPO DEM,

PDMGRW(gridded Population of the World, version 3 (GPWv3),

GACGEM world accessibility map,

Distance from the sea coast linelCGSHwas derived using the Global Self-consistent,
Hierarchical, High-resolution Shoreline Database (GSHH®3<gsel and Smith1996).

The coastline vector map was rasterized to the Robinson projection with three central
meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast
line has been derived, and then merged to create a complete and consistent distance to the
coast line map in kilometers.

The environmental grids listed above are available for download via the WorldGrids.org
(http://www.worldgrids.org/doku.php ) data repository at various resolutions from

1 to 20 km. In this case study we used the grids with spatial resolution of 0.05 degrees i.e.
5 km when projected in the Robinson projection systétip(//spatialreference.
org/reflesri/54030/ ).

3.5.3 Suitability of data for spatio-temporal interpolation

For assessing usability of point and RS data (8-day MODIS images) for spatio-temporal
modeling (c)), we rst t a spatio-temporal regression-kriging model for mean daily tem-

peratures, then run cross-validation to detect possible outliers and critical areas. Within
the regression-kriging framework, the regression and residual kriging parts are dealt with
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separately, the regression part is used as trend surface and residuals are t with a giobal
space-time sum-metric variogram model. The interpolation surface is the sum of trend
surface (regression part) and the residuals surface (spatio-temporal kriging prediction).

As auxiliary predictor to model the spatio-temporal trend we used a time series of 8-day
MODIS day-time LST images. Original MODIS LST were converted to degrees Celsius
from Kelvins. Missing pixels in the original LST maps were replaced uSIAGA GIS s
function“Close Gaps”. Close Gaps function uses splines as robust method for lling the
gaps in areas with sparse or irregularly spaced data padideler 2010, the missing s
pixels Itering from 8-day MODIS mosaics were performed because the predictor need
to be known over the domain of interpolation, i.e. over the land mass area. The temporal
dissaggregation from 8-day images to daily images is done by applying spline in temporal
domain, by splining 8-day MODIS LST pixels to provide daily values. Thus, we provided
daily values of predictor for global land mass area at 1 km spatial resolution. The linear
regression for 2011 year were applied on the MODIS spline images. Figure 3.8 shows the
plot of observation against the 8-day MODIS spline values. 15

The spatio-temporal regression-kriging method is described in detddmgl et al (2012 16
andHeuvelink et al.(2012, they used sum-metric variogram structure for temperature
modeling, as we in this paper. The sum-metric space-time variogram were tted viathe
space-time kriging framework fromstat package Pebesma2004), the package that is 1
also capable of working with space-time class d&abesma2012. The sum-metric 2o
covariance structure assumes that the component of variation can be explained by:pure
spatial variability (space variogram), the second part with pure time component (temporal
variogram) and the third part is explained by joint variogram (spatio-temporal interactien),
where the time component is multiplied by geometric anysotropy coef cient. Finally,
tted variogram surface is described by 10 parameters. The prepared spatio-temporal
point data set contained around 3 billion measurements of daily average temperaturedrom
8713 stations for the selected year 2011. 27

The cross-validation technique was performed by usiegve-one-station-out’proce- s

dure. This takes neighborhood stations to predict the all values in temporal domain £365
days in this case for each day in 2011) without using any observation from cross-validated
station. Cross-validation predictions are than compared with actual observed values to
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FIGURE 3.8: The station Novi Sad, Serbia € 19:850f = 45:333) (above), gray solid

line: mean daily temperature observation in 2011; black dashed line: 8-day MODIS

LST values; red dashed line: MODIS LST spline (red); Station Swanbourne, Western
Australia { = 115767,f = 31:950) (below).

derive the root mean square error (RSME). The RMSE was derived for statidey
(Figure 3.19) and for each day of the year globally (Figure 3.17).

Before model tting, station data needed to be cleaned-up for duplicates and inconsisten-
cies. All assumed duplicate stations (closer than 2 km) were removed from the analysis.
Also, stations that have obvious artifacts (usually not visible in the original data) were
iteratively removed by comparing the cross-validation versus the observed values. For
example, 27 GSOD stations with large difference between cross validation and actual ob-
served values for Canada are shown in Figure 3.9. These are assumed to be gross errors
and were removed from nal analysis.
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FIGURE 3.9: Outliers and inconsistencies detected for station data from Canada. The
observed mean daily temperature (grey) and cross-validation prediction of temperature
(black line) in °C. Heading numbers refer to internal identi er of stations.

3.6 Results .

3.6.1 Temporal coverage 2

Change in annual number of available stations is illustrated separately for daily (kig-
ure 3.10, upper) and monthly (Figure 3.10, lower) data sets. As plots indicate, there: are
several major differences in these sets. ECA&D data set comprises some historicalsdata
back to 1800s while GSOD starts in 1890s. Maximum number of stations in GSOD is
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1 more than three times larger than in ECA&D due to GSOD's global geographical cover-

> ages compared to ECA&D's European one. ECA&D number of station reached steady
s plateau from 1960s through 1990s when number of station started to drop down. GSOD
» number of stations per year had strong increase from 1940s to 2000 but then the number
s also declines.

FIGURE 3.10: Number of stations per year with daily records in ECA&D (European

Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day) data sets

(above). Number of stations per year with monthly records in GHCN-M V3 (Global

Historical Climatology Network-Monthly) and CRUTEM4 (Climatic Research Unit land
stations) (below).

s The reasons for decline in number of stations could be many. The development of com-
7 puters and telecommunications are mainly responsible for the rise in number of stations
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while reasons for the reduction in number are harder to explain. Ground measurements
are expensive to maintain so at one moment it was suspected that automatic meteorelogi-
cal stations and remote sensed data (radars and satellites) could replace ground measure-
ments. This technological shift is still on-going, so that the plots show a slight dropsas
there are less records for the last decade. Also the number of stations available in all
global data sets is dependent on national data exchange policies, so sometimes just part
of the national data are available. This is also subjected to change. For example ECA&D
has been expanded in 2013 with Finnish and a number of Russian stations. 8

The number of stations with monthly temperature records per year are provided for GHCN-
M v3 and CRUTEM4 data-sets. For selected meteorological element these numbers for
global area (Figure 3.10, lower) are comparable with nhumber of stations in European
ECA&D data set even though the overall number of stations in GHCN is larger. Thisse-
ects in lower average global spatial density of GHCN set compared to European ECA&D
(except in eastern US and some other smaller regions). 14

3.6.2 Geographical coverage 15

Geographic coverage analysed with Gaussian smoothing kernel is shown in Figure:3.11.
The regions with average and higher than average station density values are coloured or-
ange to red (Europe, North America, South and East Asia, coastal part of South Amesica,
Africa and Australia). Regions with lowest relative density and mostly zero density pix-
els are coloured in white<( 0:1 or 10%). The later are the areas where spatio-tempasal
prediction models would possibly result in data extrapolation. 21

The results of the neighborhood analysis show that for 25% of global land areas the.dis-
tance to nearest station 38200 km. Further analysis of station frequency counts fer
100 kmx100 km blocks (about one decimal degree cells) shows that 72% of land areas
contains no stations, 15.5% of land area has only one station per 10,60White only s
12.5% of land areas is covered with more then one station per 10,000 km 2
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FIGURE 3.11: Relative density of stations for 2011: (above) estimated for the ECA&D

(European Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day)

daily temperature data set, (below) estimated for the GSOD and ECA&D daily precipi-
tation data set. Bandwidth used to derive kernel denbity70 km.
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FIGURE 3.12: Relative station density compared to relative population density and land
areas arrangement depending on latitude. Density values are in thg@gtder the all
showed elements.

3.6.3 Feature space coverage ]

The results of cross-validation using 75% of records for training and 25% of records:for
validation in MaxEnt show that distribution of GSOD and ECA sets are fairly controlled
by selected environmental layers (AB®:84). This means that distribution of station.
locations could be explained with these covariates with an accuracy of 84%. The cur-
rent distribution of stations locations is strongly controlled by all continuous predictor
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layers DICGSHDEMSREDMGP@BACGIENEvVen if each of this predictors is used sepa-
rately, they explain about 80% of distribution individually. ObviousWCGSHOEMSRE
PDMGP®WACGE;Me highly cross-correlated, and highly correlated with the density of
meteorological stations. The environmental layer that decreases the gain the most when
omitted from the prediction iISLCES@and cover map), which therefore appears to have
the most information that is not present in the other layers.

Figure 3.13 indicates that there is indeed a clear sampling preference for meteorological
monitoring. As expected, most of Europe is densely covered and represented with meteo-
rological stations (except Alps region), so are the South and East Asia and coasts of North
and South America. On the other hand, the areas of Central Asia (Himalaya Range), An-
des Range and Amazon Basin in South America, Central Australia, north coasts of Asia
and North America, Central Australia and Sahara desert in Africa, as well as all of Green-
land, Antarctic and Arctic poles suffer from a signi cant misrepresentation in the feature
space.

The station clustering is also illustrated using histogram plots in Figure 3.14. This shows
that there is a higher grouping of stations along the coast lines. Note also in Figure 3.14
(upper) that some stations are located further from the coast line, which is not an artifact,
but the consequence of the resolution of the covariate layers (5 km). Many meteorological
stations are located on small islands (with ax&b square kilometer) not mapped in the
DICGSlhap. From Figure 3.14 (lower) it is also obvious that large mountain chains are
globally under-represented in the meteorological networks.

3.6.4 Spatio-temporal models for temperature

The results of regression modeling show that time series of 8-day MODIS LST images
explain 81% of the variability in mean daily temperature values for the year 2011. MODIS
LST images are signi cant estimators of the daily temperatures but with somewhat lower
precision than indicated by e.gvan et al.(2004): the correlation plot in Figure 3.15
indicates an average precision 06.3°C. Note also that we use the 8-day averages of
MODIS LST images, hence somewhat higher error can be expected.
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FIGURE 3.13: Sampling bias in feature space derived using the MaxEnt software and

standard covariates (distance from the sea coast line, land cover classes, elevation map,

population map, world accessibility map): (above) probability of station occurrence de-

rived for observed temperature data sets (European Climate Assessment & Dataset and

Global Surface Summary of Day; ECA&D and GSOD), (below) probability of station

occurrence derived for observed precipitation data sets (ECA&D and GSOD). White col-
ored areas indicate extrapolation areas. Spatial resolution of the maps is 5 km.
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FIGURE 3.14: Station clustering for observed temperature data sets (European Climate

Assessment & Dataset and Global Surface Summary of Day) visualized in feature space

(distance to the coast line and elevation). The histograms were derived by overlaying

stations and environmental layers. The points below the two histograms show actual me-

teorological stations. The red lines shows global relative density distribution of distance
from coast line and elevation.
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FIGURE 3.15: Scatter plot showing the general relationship between daily temperature
and 8-day MODIS LST images. The tted regression line and the 1:1 line (dotted).

Figure 3.16 shows the space-time variogram for residuals tted using automated tting
in gstat The pure spatial component of the space-time variogram, showing the residual
correlation at any time separation between two spatial point exists, pure spatial spherical
variogram has the nugget of 3.22%Ghe sill of the 18.28°€is reached with the range 4
more than 6000 km. Thus, if it is known just spatial distance between two observations
without knowing time separation the part of total covariance is known. The pure time
component of variogram structure is zero, implying that if it is just known time separation
between two points even part of total covariance is not known, implying that all tempo-
ral variability is explained by space-time interaction components. The joint variogram,
representing space-time interaction is modeled by spherical function with the parameters:
nugget 1.8°¢, the sill 8.35°C and range 2349 km. The geometric anisotropy parameter
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FIGURE 3.16: Fitted sum metric model (left) and sample variogriom (right) of linear
regression residuals of mean daily temperature observation on 8-day MODIS spline im-
ages. The variogram surface is presented in 2D (above) and 3D manner (below).

is 583 km/day, this allowing to scale time separation in spatial distance for purpose of
calculating space-time joint components of covariance. Therefore, space-time correlation
of mean daily temperature residuals on MODIS LST spline images modeled with sum-
metric covariance structure contains 7 parameters describing correlation at any space-time
distances.

The results of cross-validation con rm that the spatio-temporal prediction model of mean

63



Chapter Fublicly available global meteorological data sets

FIGURE 3.17: Daily temporal variation for RMSE aRl squarefor year 2011.

daily air temperature can explain between 87.4-97.1% of variability in the observed val-
ues, with an average of 92.5% (9Re squarein Figure 3.17). Figure 3.17 further shows:
that average root mean square error per day (RMSE) varies from 2.5°C to 3.2°C with
overall average 2.8. 4

Annual changes of RMSE aftl squarewith the largest errors during winter on southern
hemisphere when the global range of minimum and maximum mean daily temperature
on the global land mask is the highest. RMSE calculated for latitude bands shown in
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FIGURE 3.18: Spatial variation of (RMSE) for different latitudes (aggregated per 1 de-
gree).

Figure 3.18 illustrates thgt 70  90]° latitudes have the highest RMSE, the same plot
shows that for the latitude rang®;50]° global spatio-temporal model has the highest
precision, in average less than 2°C, what is expected because the number of stations in
this range is the highest (Figure 3.12).

Spatial distribution of RMSE calculated per year for each station (Figure 3.19) indicates
that there are several regions where model is critically inaccurate. In the map shown in
Figure 3.19, 47 stations, 0.5% of total points involved in cross-validation have an RMSE
above 6°C (with an average of 6.8°C), 10% of total points have an RMSE in range from 3
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to 6°C (with an average of 3.8°C). The most of the stations with RMSE higher then 3°C
are located in Antarctica, mountains regions and in the sparsely populated areas with low
station density coverage. Black circles in Figure 3.19 are points with high accuracy i.e.
RMSE< 2 (63% of total points) and with an average of RMSE.5°C. Finally, average
RMSE for the global land mass of 2.8°C, but for USA and Europe the accuracy of interpo-
lation by using this data set and spatio-temporal regression kriging model is less than 2°C
in average. The interactive web map of the stations with RMSE producedpiéitkage
plotGoogleMap¢Kilibarda and Bajgt2012, with cross-validating values against obser-
vation is provide on thittp://dailymeteo.org/WorldMap-RMSE-STRK-MeanT-on-MODIS.
htm.

3.7 Discussion and conclusions

All the data required to produce WorldDailyMeteo images are basically ready to be used.
The remaining issues are: how to t global spatio-temporal models and run automated
geostatistics, and how accurate can we expect to get? The preliminary results of this re-
search indicate that, before the production of daily estimates of meteorological variables
at 1 km resolution can become operational, a care needs to be taken to account for spatial,
temporal and feature space clustering of the meteorological networks. The expected accu-
racy probable can be better if more static and dynamic covariate layers are included, but
sparsely covered areas in geographical and feature space still would be areas with double
lower accuracy.

Temporal coverage analysis of the publicly available meteorological station data sets in-
dicates that the GSOD and ECA&D data sets together represent respectable source of
meteorological data for spatial-temporal analysis at daily resolution (especially from year
1960), however the distribution through time and space is unequal. What worries espe-
cially is that there is a drop in the observation density in the last decade. Even more
distinct clustering can be observed in geographical and feature spaces. Analysis of distri-
bution of stations locations in feature space shows that the spatial distribution of the me-
teorological network is distinctly controlled by environmental factors with an AU840
(estimated using cross-validation), which means that most of the distribution of the sta-
tions can be explained by population density and accessibility. Figure 3.14 also clearly
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shows that the stations frequency is the highest near coast lines and at the lower eleva-
tions. Thus, unequally station distribution in feature space coverage, proved by MaxEnt
results, can lead to inaccurate prediction in higher elevation and sparse populated areas.

For mean daily temperature measurements at stations we have further tted a spatio-
temporal model using the 8-day MODIS LST time series of images and got an average
accuracy of about 2—3°C when assessed using cross-validation (which con rms the results
of some local studies bilengl et al.(2012, Heuvelink et al(2012 andNeteler(2010). -
This is promising as it indicates that indeed highly accurate maps of daily temperatuares
could be produced at high spatial resolution using the global spatio-temporal models. &ig-
ure 3.19 also shows that the outliers are distinctly grouped in areas poorly covered:with
meteorological stations. The second group of outliers we observed were in the meun-
tain regions i.e. areas frequently covered with snow. This corresponds to the work of
Neteler(2010 who experienced similar dif culties of working with dynamic snow coves

on mountain tops. All this indicates that the produced spatio-temporal models will have
serious problems for all areas that have been under-sampled in geographical or feature
space. 16

Figure 3.15 also indicates that temperatures fforh0; 50]°C range are much better cor-»
related with the MODIS LST images and hence easier to map than temperatures within
this range. Similar results were reported, for exampleWan et al.(2004); Yoo et al. 1
(2011]). Lack of stations in polar areas and in large mountain chains remains probablythe
most serious problem for global meteorological mapping (as illustrated in Figures 3.19,
3.18). The current meteorological station networks (Figure 3.1, 3.3, 3.2) probably da:not
represent the true complexity of climate at higher elevations, deserts, tropical forests;that
Is in sparsely populated areas (25-50% of the land surface). Topography, arrangement
and orientation of mountain ranges are the key climatic factors in land a&feasnann
1994 Beniston 2006, hence station networks should follow this complexity in order te
allow for a truly global assessment. It is not realistic to expect that the density of.the
meteorological stations will change in the years to come, and that these geographicadscov-
erage gaps will be solved. What is more interesting to the research community is probably
how to overcome these problems with using appropriate statistical methods and the higher
precision remote sensing technologies. a1
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FIGURE 3.20: Mean daily temperatures for all stations in year 2011 (red), as compared

to the mean 8-day temperature estimated based on the MODIS LST product (black), and

the long-term sea surface daily temperatures obtained Frit//discover.itsc.
uah.edu/amsutemps/ (blue).

Remote sensing is the future of global meteorology, even if the original RS imagery is
noisy and produces biased estimates. For example, surface temperatures estimated by
MODIS LST product can contain signi cant noise and artefacts. On the other hand, they
can be used to get a more representative estimate of the global temperahee®in-

plete picture), which is impossible to achieve by using ground data only. Figure 3.20,
showing differences between the global mean daily temperature from three sources, illus-
trates what we mean by bias. There are two logical explanations of the differences in the
three curves in Figure 3.20. First, the mean sea surface temperature is relatively constant
with slightly higher values in March (2011); both MODIS LST mean temperature and
the mean temperature at the stations follow the same pattern that re ects the seasonality
in the northern hemisphere as most of the land mass falls in the northern hemisphere.
Second, meteorological stations do not cover land mass uniformly so that the mean can
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not represent global mean temperature and therefore the values are in average somewhat
higher than the MODIS LST temperatures. In general, accuracy of station's observations
is higher than of the MODIS LST estimated values, but the station's observations provide
a biased estimate of the global mean daily temperature because of clustering of points. If
one would try to estimate global land temperature only based on the values on meteoro-
logical stations that he/she would probably make a systematic error (under-estimation) of
2-3°C. On the other hand, MODIS 8-day satellite images with 95% of coverage of land
mask lack the ne precision of the daily measurements, providing land surface tempera-
ture. All this indicates that there is indeed a need for spatio-temporal regression-kriging
methods that can produce calibrated images of daily air temperatures, so that alse the
global daily average can be estimated in an unbiased manner. 1

To conclude: the observed high temporal, spatial and feature space clustering of meteoro-
logical stations potentially represent a limitation of these data sets that could complieate
tting of accurate global spatio-temporal models. This does not imply that no reliable
models can be tted using these data sets, but that sophisticated spatio-temporal.tech-
niques need to be used that can account for the data clustering, spatially if remote sens-
ing and/or monthly images are not used as predictor. Spatio-temporal regression Kkriging
model can provide the most realistic estimate of the uncertainty, so that also an unbiased
estimates of the global and local land air temperature and other meteorological variables
can be produced. The presented model can be used for calibration of 8-day MODISA.ST
images by using station observation resulting with daily global images of mean daily.air
temperature at 1 km scale. This would be the rst global daily images at very high spatial
and temporal resolution (1 km spatial and 1 day temporal resolution). 2
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Spatio-temporal interpolation of daily
temperatures for global land areas at
1 km resolution?t

Around 9000 stations from merged GSOD and ECA&D daily meteorological data sets
were used to build spatio-temporal geostatistical models and predict daily air tempera-
ture at ground resolution of 1 km for the global land mass. Predictions were made for
the mean, maximum and minimum temperature using spatio-temporal regression-kriging
with a time series of MODIS 8 day images, topographic layers (DEM and TWI) and a geo-
metrical temperature trend as covariates. The model and predictions were built for the year
2011 only, but the same methodology can be extended for the whole range of the MODIS
LST images (2001-today). The accuracy of predicting daily temperatures has been as-
sessed using leave-one-out cross-validation; the standard approach is extended with block
approach. The values were aggregated for blocks of land of size 500x500 km to account
for geographical point clustering of station data. All computations were implemented in
theR environment for statistical computing by combining functionality of giséat pack-

age (geostatistical modellinggdalandrasterpackages (raster data loading and analysis),
andsnowfallpackage (cluster computing). The results show that the average accuracy for

1Based on article: Kilibarda M, Hengl T, Gerard B.M. H, Benedikt G, Edzer RgeeFadi M, Branislav
B (2013?) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resatution.
review; Journal of Geophysical Research, D: Atmospheres
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predicting mean, maximum and minimum daily temperatures is RMSER°C for areas :
densely covered with stations, and betwee&fC and 4°C for areas with lower station -
density. The lowest prediction accuracy was observed in highland©00 m) and in s
Antarctica with a RMSE around 6°C. This automated geostatistical framework could:.be
used to produce global archives of daily temperatures (new generation WorldClim repos-
itory) and to feed various global environmental models. 6

4.1 Introduction ;

Records from near-surface weather stations are the foundation of climate res&archs (
terson and Vosel997). These stations still provide the most accurate and most reliable
measurements of weather. Ground station measurements are not only important because
of their high accuracy, they are also the only available records of spatial and temporal
variation of climatic variables before the rst satellite based observations came available
in the 1960s. 13

Station observations are the main source of input of spatial interpolation that predict.cli-
matic variables on raster grids, while some interpolation methods also make use of addi-
tional, auxiliary information such as remotely sensed images and/or topographic layers.
In-depth reviews of interpolation methods commonly used in meteorology and climatol-
ogy are given byPrice et al.(2000, Jarvis and Stuar200]), Tveito et al.(2006§ and 1s
Stahl et al(2006), just to mention the most recent publications in the eld. The literature,

in general, shows that interpolation techniques used in meteorology and climatology are
quite diverse: they range from nearest neighbour methods, splines, regression and keiging,
to neural networks and machine learning techniques. 2

Hofstra et al.(2008 made a comparison of six interpolation methods for prediction sf
daily precipitation, mean, minimum and maximum temperature, and sea level pressure
from station data in Europe, and compared anomalies interpolation relative to the leng-
term monthly mean (1960-1990). The result showed that global kriging on anomalies
was the best overall performing method. Besides using ordinary kriging on anomalies
for predicting daily values at regional scales, a method knowfreggession-kriging” 2
(RK) (also known asKriging with External Drift” and/or‘Universal kriging”) has been 2
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widely recognized as a exible and a well-performing technique for unbiased spatial pre-
diction of meteorological and environmental variabl€airera-Hernandez and Gaskin
2007 Haylock et al, 2008 Hengl et al, 2012).

To our knowledge, no group has previously attempted to interpolate daily values of mete-
orological variables using spatio-temporal regression-kriging with time-series of remote
sensing based covariates, at ne resolution of 1 km. The challenges to achieve this are sig-
ni cant, both from a methodological and technological perspective. The global land mask
contains about 149 million pixels at 1 km resolution, which means that predicting daily
values for 10 years would result in about 4 TB of data. Fitting of geostatistical models
with millions of point pairs, and predicting at such large grid stacks can only be achieved
by intelligent programming that avoids memory limit problems and computations that
take weeks or longer.

In this study, we present an automated mapping framework for producing predictions of
daily mean, minimum and maximum air temperatures using spatio-temporal regression-
kriging implemented in th& environment for statistical computing via thstat(Pebesma

2004 andstats(R Development Core Teard012 packages. As inputs we use a collec-

tion of publicly available daily records from NCDC's Global Surface Summary of Day
and European Climate Assessment & Dataset, and a time series of MODIS LST 8 day
images and topographic layers as covariates. The research reported herein focuses on
the year 2011 for practical purposes and assumes that the same methodology can be ex-
tended for the whole range of MODIS LST images (2001-today). The input data sets and
methods are described in Section 4.2. The results of model tting, cross-validation and
validation are presented in Section 4.3, whereas summary results are given in the nal 4.4
“Discussions and conclusions”.

4.2 Data and Methodology

4.2.1 Merged global station data set

GSOD and ECA&D daily meteorological data sets have been merged to produce a con-
sistent global station data set. A large portion of the station data had missing values, but
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all stations were used in the interpolation procedure. Even though the meteorological
services responsible for collecting the data also perform at least basic quality contrel, a
small portion of the stations from the merged data sets contained clear gross errors and
needed to be cleaned. The gross errors were detected using the following procedure: an
initial spatio-temporal model was rst tted using all data followed by analysis of cross-
validation predictions at the station location. The high cross-validation root mean square
errors (derived from yearly residuals at certain station) for a number of stations suggest
that there could be some gross errors in the data. This was usually con rmed with absupt
jumps in observation values in time series plots; thereby showing observations against
cross-validation prediction. We decided to remove all stations that had cross-validation
residual higher than 15°C, as these clearly contain errors in the data set. After all data
Itering, the nal set contained about 9000 stations from merged GSOD and ECA&D

data sets. 13
4.2.2 Covariates: remote sensing images and DEM-derivatives 14
4.2.2.1 National Aeronautics and Space Administration (NASA) 15

The Moderate Resolution Imaging Spectroradiometer (MODIS) images of the Terrazand
Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving.at-
mospheric and oceanographic variables using different techniques. There are many data
products from MODIS observations describing land (temperature, land cover), oceans
(sea surface temperature, optical thickness) and atmosphere (water vapor, cloud praduct,
atmospheric pro les) that can be used for studies at different scales ranging from local to
global. Land Surface Temperature (LST) data and images obtained from MODIS thermal
bands that are distributed by the Land Processes Distributed Active Archive Centees(LP
DAAC FTP) of the US Geological Survey are very often used in meteorological studies
(Coll et al, 2009. 25

In addition to the MODIS Level 2 or higher level data, there are also MODIS Levek 1
data that are distributed trough the LAADS portal hosted at the Goddard Space Hight
Center. The MODIS LST data are available on a daily basis and have spatial resolutions
of 1x1 km Coll et al, 2009. The nominal accuracy of the MODIS LST product i$°K. 2
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However, some validations reported accuracy statistics smaller better than 1°K in clear sky
conditions within the temperature range of -10°C to 50YGo(et al, 2011). MODIS LST

data and/or images are one of the most often used and best documented publicly available
remote sensing products in the world.

In this work, we only use Level 3 MODIS LST 8 day composite images to improve spatial
predictions of mean, minimum and maximum daily temperature despite the fact that daily
day-time and night-time MODIS LST images are also available. Notably, the correlation
with ground data would probably be more signi cant if we would use day-time MODIS
LST images for maximum temperature prediction and night-time images for minimum
temperature prediction. However, day/night images contain many missing pixels that
ultimately limit their usability for global mapping.

The original 8 day MODIS LST images were converted from degrees Kelvin to Celsius.
The original images still contained 0—15% of missing pixels due to clouds or other reasons
which were replaced using tH®RAGA GlSunction “Close Gaps”. This function uses
splines as a robust method for lling gaps in areas with sparse or irregularly spaced data
points (Neteler 2010. Furthermore, the 8 day images were disaggregated in the time
dimension through the use of splines for each pixel. As a result, the daily coverage was
obtained.

4.2.2.2 DEM derivatives

The elevation data used in this study were obtained from the WorldGrids.org portal. The
data set is derived as a combination of the publicly available SRTM 30+ and ETOPO data
sets, and is commonly referred to as DEMSRE.

The "SAGA Wetness Indeis based on a modi ed catchment area calculation imple-
mented INSAGA GI§Bo6hner et al.2008. The Global SAGA Wetness Index used in this
paper was produced by Milan Kilibarda and Tomislav Hengl and the processing script is
available via the WorldGrids.org data portal.
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4.2.3 Spatio-temporal regression kriging 1

Consider the problem of describing the spatio-temporal process of a continuous variable
Z. Z varying over space and time, e.g. temperature varies in space from one location to
another and in time from one point in time to another. The statistical model of such a
process is typically composed of the sum of a trend and a stochastic reSduaugh s
1998 Heuvelink and Grif th, 201Q Hengl et al, 2012): 6

Z(st) = m(s;t)+ eds;t)+ efs;t) (4.1)

wheres;t is the space-time continuurm is the trend componene{s;t) is the spatio- -
temporally correlated stochastic component afgs;t) is the uncorrelated noise. Thes
phenomenorZ is observed at a nite set of points in space and time. An interpolation
technique is required in order to predicat an unobserved location or time. Geostatistical
interpolation techniques start by de ning a model that describes the degree of variatian of
the variable of interest in space and time, then followed by characterizing its relationship
with explanatory variables that are denoted@wariates: 13

The global trend oZ can often be explained using covariates known over the spatio-
temporal domain, e.g. part of the variation of temperature can be explained using climatic
factors (static) such as latitude and elevation, TWI and time dependent predictorsslike
day of year and space and time dependent MODIS LST. It is convenient to represent the
relationship between the dependent variable and the covariates using a linear models The
linear trend model is given by: 19

m(s;t) = é’lp bi fi(s;t); (4.2)
i=0

where theb; are unknown regression coef cients, tfiecovariates that must be exhauss
tively known over the spatio-temporal domain, gnid the number of covariates. Covarix
ate fp is taken as unity, resulting iny representing the intercept. 2

The linear model for the mean daily temperature is given as a multiple linear regression
on the covariate layers (described in section 4.2.2). In addition to these covariate layers,
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we assume that the global daily temperature is a function of geometrical position of a
particular location on Earth and day of the year. We call thigemmetrical temperature
trend'. The geometrical temperature trend for the mean temperature was modelled as a
function of the day of the year and latitude)(

tgeom= 30:4cod  155(1 cosq)sinjf j; (4.3)

whereq is derived as:

q = (day 18)%3+ 21 sof)p: (4.4)

The number 18 represents the coldest day in the northern and warmest day in the southern
hemisphere and was derived empirically by graphical inspection of mean daily temper-
ature plots from stations in the northern and southern hemisphere. The sgn denotes the
signum function that extracts the sign of a real number. Parameters 30.4°C and 15.5°C
of the geometric temperature trend were calculated by least squares tting on circa 44
million daily temperature observations from 2000 to 2011. These two numbers are, in
fact, similar to the mean yearly temperature on the Equator and the mean global Earth
temperature.

The linear model for the minimum daily temperature uses the same covariates as the
linear multivariate model for mean daily temperature. The geometrical temperature trend
for minimum daily temperature was:

tgeom= 24:2cod  157(1 cosq)sinjf j; (4.5)

The geometrical temperature trend for maximum daily temperature was:

tyeom= 37cod  154(1 cosq)sinjf j; (4.6)
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The parameters 24.2°C and 15.7°C in Eq.(4.5), and 37°C and 15.4°C in Eq.(4.6) were
also derived by the method of least square estimation based on the 11 years of observation
from 2000 to 2011. 3

In recent years, many covariate layers with ne resolution have become available and
regression models can often explain a signi cant part of the observed variation. However,
in practice, the trend cannot explain all variation even though predictors are spatially,
temporally and spatio-temporally varying. The residuals of the regression model might
show spatio-temporal dependencies, which suggests that a spatio-temporal variogram may
be estimated from the residuals at observation locations and used to krige the residuals. To
make this explicit, we write the variable of interest as a sum of the trend and spacetime
residual: 1
Z(s;t) = m(s;t)+ V(s;t); 4.7)

whereV is a zero-mean stochastic residual. 12

To proceed with the estimation of the spatio-temporal covariance structMeveé as- 1
sume it to be stationary and spatially isotropic. In other words, we assume that the vari-
ance ofV is constant and that the covariancevoht points(s;t) and(s+ h;t+ u) only s
depend on their separation distaifbgu), wherehis the Euclidean distanghj. These as- s
sumptions might be hard to ful | for the random eld but are more likely to be realistic -

for the residuals. The spatio-temporal covariances are usually described using a spatio-
temporal variogram, which measures the average dissimilarity between data separated in

the spatio-temporal domain using the distance vedtar) de ned as: 20
1 2
g(h;u) = EE(V(s;t) V(s+ h;t+ u)) (4.8)
whereE denotes mathematical expectation. 21

The residual/ may be thought of as comprising three components: spatial, temporal,.and
spatio-temporal interactiotdguvelink et al.2012. The sum-metric variogram structureszs
that considers these three components as mutually independent, is de réelaslink 2.
etal, 2012: 2
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Chapter 4Spatio-temporal interpolation of daily temperatures

q___
g(hu) = gs(h)+ gr(u)+ gst( h?+(a u)?); (4.9)

whereg(h;u) denotes the semi-variance 9f with h units of distance in space and

units of distance in timeg; gr are purely spatial and temporal components, @fids the
space-time interaction component. The spatio-temporal anisotropyaraboverts units

of temporal separationu) into spatial distances). The spatio-temporal sum-metric var-
logram model can be seen as a surface with ten parameters; three parameters for each
variogram component (sill, nugget, range) and the spatio-temporal anisotropy parameter
a. Semivariances (and covariances) can be estimated for any spatio-temporal separation
distance(h; u) once these parameters are estimated from the observed residuals. In turn,
these can be used in spatio-temporal kriging to compute the best linear unbiased predic-
tor (i.e., with minimum expected mean squared error) for any space-time point Where
(andZz) was not observed. The formulas of kriging in the spatio-temporal domain do not
differ fundamentally in a mathematical or statistical sense from those of spatial kriging
(Heuvelink et al.2012):

V(soito) = o' ¢ V; (4.10)

wherecis then nvariance-covariance matrix of the residuals atrtledservation space-
time points, as derived from the spatio-temporal variogregms a vector of covariances
between the residuals at the observation and prediction pdidisnotes matrix transpose,
andV is a vector of residuals (see Eq. 4.7) at thebservation points.

The nal prediction of variableZ at location(sy;tp) is de ned as:

2(s0;t0) = M(So;t0) + V(s0;to): (4.11)

whereni(so;tp) is the estimated multiple linear regression trend. The regression coef -
cients are estimated in the usual way, using where possible Generalized Least Squares
or Ordinary Least Square®ifiheiro and Bate2009. Note that ‘regression-kriging'

speci cally implies that the regression modelling and residual kriging parts are addressed
separately: we rst produced predictions for the regression part (see Eq. 4.2), followed by
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extracting residuals for all observations and nally tting a global sum-metric variogram
model. The residuals were then interpolated and added to the predicted trend. 2

Spatio-temporal regression-kriging has made a breakthrough in the past decade with the-
oretical concepts and providing various examples of applicatiGeshing et al.2007 4
Heuvelink and Grif th, 201Q Heuvelink et al. 2012 Gréler et al. 2011 Hengl et al, s
2012. Here, we extend the spatio-temporal regression-kriging framework that combines
ground observation together with MODIS 8 day images, as was presented in a Croatian
case studyHengl et al, 2012, to a global data set and hyper-resolution data. We imple-
mented all the computing in tHe environment for statistical computin® (Development o
Core Team2012 by combining functionality ofjstatpackage (geostatistical modelling);o
rgdalandrasterpackages (raster data loading and analysis) saod/falpackage (cluster 1.
computing). We used thgstat package Pebesma2004) that is also capable of working»
with spatio-temporal data sets de ned $spacetime packag@ebesma2012 for vari- 13
ogram model tting. The sample variograms were estimated with spatial lags of 50:km
and time lags of 1 day. Because this is a global point data set, all distances were calcuiated
as great circle distances in the WGS84 coordinate reference system. 16

4.2.4 Accuracy assessment w7

Two approaches were applied for assessing the accuracy of the predictions made fer the
daily temperature of the global land surface as obtained with spatio-temporal regression-
kriging. These were: (1) cross-validation (CV), and (2) comparison with GHCN-M
monthly data. For validation using GHCN-M data, we predicted values at daily resolution
and then aggregated these predictions to monthly averages. Stations from the GH@N-M
dataset that were closer than 50 km to any station used in this study were excluded in
order to avoid station overlap and to increase the independence of the validation data to
obtain more objective results. 25

For cross-validation, we use the leave-one-out cross-validation method. This works as
follows: the method predicts a complete annual time series of daily temperature at alk:sta-
tions using only observations from neighbouring stations (i.e. the 35 nearest observation
were sampled for current date and the day before and after the current one, resultiag in
the collection of around 105 observations that exclude data from the target station itself).
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Chapter 4Spatio-temporal interpolation of daily temperatures

The predicted values were compared with the actual observations of the target stations to
derive cross-validation statistics. The nal accuracy of the model is assessed using the
root mean squared error (RMSE):

S
RMSE=

T(sity)  T(sity) ° (4.12)
1

T Qog

1
m

whereT (sj;t)  T(sj;t;) is the difference between the cross-validation prediction and the
observed temperature at spatio-temporal locatsprt;j, andm is the number of obser-
vations for the station. The derived RMSE per station were then exported to KML and
HTML formats to allow for visual exploration of errors in space and time domains. These
visualizations can be accessed via litgp://dailymeteo.org website.

Because stations are heavily clusterdilfarda et al, 20139, the global RMSE mostly
depends on the accuracy in areas with a high station density. In order to obtain a more
objective measure of accuracy that accounts for this point clustering the block aggre-
gated RMSE for 500 by 500 km blocks of land prepared in Sinusoidal equal area projec-
tions is analysed. The regression-kriging cross-validation statistics were rst calculated
in the WGS84 coordinate reference system using geodetic line distances, and then were
re-projected to Sinusoidal projection for the block aggregation.

4.3 Results

4.3.1 Mean daily temperature interpolation
4.3.1.1 Linear regression for mean daily temperature

Figure 4.1 shows the geometrical trend values against observed temperatures for two sam-
ple stations. Surprisingly, the geometrical temperature trend already explains 75% of daily
temperature variation with a standard error &.7°C.

Figure 4.2 shows the dissagregated MODIS LST 8 day layer (MODIS spline) against
observed temperature for two stations. The linear regression model using only MODIS
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FIGURE 4.1: Mean daily temperature observation in 2011 (gray solid line) and geo-
metrical temperature trend (black dashed line). PHILADEPLHIA, UBA( 75;f =
39:993) (top). BUNBURY, Western Australid (= 11565,f = 33:35) (bottom).
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Chapter 4Spatio-temporal interpolation of daily temperatures

LST spline images explains 80% of the variability in mean daily temperature values for
the year 2011. Thus, MODIS LST spline images are signi cant estimators of the daily
temperature with an average precision &.2°C. Again, this precision is lower than the
one reported byan et al (2004 because we use 8 day composites and not daily MODIS
LST images in order to reach full land coverage.

The DEM and TWI layers also appeared to be signi cant covariate layers even though
we expected that MODIS LST will account for the variation of temperature with eleva-
tion. We suspect the main reason for some elevation dependency was left unexplained
in MODIS LST is related with the fact that this is a cloud free product so it is likely

to underestimate winter temperatures (due to strong radiative cooling in cloud free sit-
uations) and overestimate summer temperatwas De Kerchove et gl2013. As a
consequence, during winter days/nights surface observed temperatures would be higher
under the clouds due to suppressed radiative cooling and our MODIS LST gap- lling pro-
cedure would probably underestimate temperature in these areas. During summer, under
the clouds in the mountains observed surface temperature would be lower, while over gap-
lling procedure would result in higher temperatures. Since this two processes are mainly
elevation dependent this could be accounted for with DEM and TWI covariate layers.

The nal multiple linear model with four covariates explains 84.2% of the variation and
associated standard deviation o4.6°C. Figure 4.2 shows plots of modelled against ob-
served temperature for the same stations as used in previews gures.

Figure 4.3 presents the general relationship between the observed temperature and linear
model on the full data set used for spatio-temporal modelling. Note that the residuals are
in general normally distributed around the regression line and no heteroscedasticity can
be observed.

4.3.1.2 Spatio-temporal variogram model for mean daily temperature
AnThe right-hand side of Figure 4.4 shows the 2D and 3D sample space-time variogram.

The tted model (ten variogram parameters described in Section 4.2.3 with$iteariogram
function ingstat) is shown in the left-hand side of Figure 4.4. Table 4.1 summarizes the
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FIGURE 4.2: Mean daily temperature observation in 2011 (gray solid line) and multi-

variate linear model of mean daily temperature (red dashed line) on MODIS LST spline

(black dashed line), geometrical temperature trend (black dotted line), elevation and to-

pographic wetness index. PHILADEPLHIA, USA € 75;f = 39:993) (top). BUN-
BURY, Western Australial (= 11565;f = 33:35) (bottom).

parameter estimates of the sum-metric variogram model. Note that all variogram compo-
nents were modelled as spherical functions. 2

The Figure 4.4 indicates that regression residuals have clear correlations both in space and
time and therefore spatio-temporal kriging of residuals is certainly applicable. The tted
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FIGURE 4.3: Scatter plot showing the general relationship between mean daily tempera-
ture and multivariate linear model prediction of mean daily temperature. The dashed line
is the 1:1 relationship.

spatio-temporal variogram parameters of the mean daily temperature residuals show a sig-
ni cant purely spatial variogram component, while the purely temporal component is zero
and temporal variability is only contained in the space-time interaction component. This
suggests that the temporal pattern in mean temperature is probably already suf ciently
captured by the regression model. Current residuals are correlated with residuals from
day after (or before) and correlation depends on space-time distance. But only temporal
separation between any two stations (without knowing spatial distance) doesn't explain
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FIGURE 4.4: Fitted sum-metric model (left) and sample variogriom (right) of residu-

als from multiple linear regression of mean daily temperature on MODIS, geometrical

temperature trend, elevation and topographic wetness index. The variogram surface is
presented in 2D (top) and 3D (bottom).
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TABLE 4.1: Parameters of the tted sum-metric variogram model for mean daily tem-
perature regression residuals, each component (see Eqg. 4.9) is modelled using a spherical
function.

Nugget Sill Range parameter Anisotropy ratio
spatial 1.934 14.13 5903 km
temporal 0 0 0 days
space-time 0.474 9.065 2054 km 497 km/day

even part of spatio-temporal correlation. Contrary, only spatial distance between two sta-
tions (without knowing temporal separation) explain part of spatio-temporal correlation.
The short distance variation (nugget effect) in both the purely spatial and spatio-temporal
components indicates that the model can't give better precision tHas°C globally (for
interpolation at daily resolution). The range parameters are very large (especially pure
spatial range) showing that the residuals are correlated within wide zones reaching sill af-
ter 6000 km. Thus, the local neighbourhoods need to be selected in a way that re ects the
spatial and temporal ranges. Only few temporal instances will be selected while the spa-
tial selection spans several hundred kilometres. This is captured by the spatio-temporal
anisotropy as well suggesting that a station with a temporal lag of one day exhibits a
similar correlation as a station about 500 km apart.

4.3.1.3 Accuracy assessment: mean daily temperature

An interpolated map of daily mean temperature for the rst and second January of 2011
is shown in Figure 4.5, daily maps for the year 2011 at 1 km spatial resolution in GeoTiff
format are available for download vidtp://www.dailymeteo.org . The mean daily
temperature map of coterminous USA for the rst 4 days in January 2011 is presented in
Figure 4.6.

The cross-validation results on the complete data set showed a RMSE=2.4°C for global
land areas including Antarctica, with R-square of 96.6%. The block aggregated RMSE
results shows that the average accuracy is a bit worse (RM3B , see also map Fig-

ure 4.7). As mentioned previously, the global block aggregated RMSE gives a more
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objective global measure of accuracy. Thus, the actual RMSE is half a degree largerthan
RMSE calculated as a simple mean from all stations. 2

The monthlyRMSE obtained from cross-validation of monthly aggregated observations
with cross-validation prediction is 1.7°C. This is an important result because it indicates
that the model can be used for monthly image production (aggregation of daily geid-
ded data). The yearly RMSE is 1.4°C. The spatial distribution of RMSE calculated per
station (yearly average of squared daily cross-validation residuals, which is a daily qual-
ity measure) is shown in Figure 4.8. In this gure, the stations with RMSEC rep- s
resent 59% of the total number of stations (black dots), and 26% of stations have an
RMSE between 2°C and 3°C. Figure 4.8 is also provided as an interactive map produced
with the R packageplotGoogleMapgKilibarda and Bajgt2012, and is available via
http://www.dailymeteo.org . 12

Observed and cross-validated values for two stations are shown in Figure 4.9. Considering
the fact that cross-validation predictions are made using only 35 neighbouring stations (in
spatial and 3 days in temporal domain) without any observation from the validation sta-
tion, the spatio-temporal regression-kriging model is an accurate tool for Itering missing
values in time series of mean daily temperatures. 17

The spatial distribution of RMSE can also be aggregated in the spatial domain by region
or country. The aggregated results show that the smallest RMSE=1°C is achieved ia the
Netherlands, whereas Europe on average performs with an RMSE=1.6°C. Other results
for large countries and regions are Russia (c.a. 2.2°C), USA 1.8°C, South America 3:1°C,
while Antarctica has the highest RMSE with 5.9°C. An interactive map of spatially ag-
gregated RMSE at the country level is also availablehtip://www.dailymeteo.org . =2

The RMSE on the GHCN-M data is 1.5°C and spatial distribution of RMSE calculatedsper
year (yearly average of squared monthly validation residuals) for each station is shown on
Figure 4.10 (an interactive map is availablé#ap://www.dailymeteo.org ). Thismap 2
shows that 48% of predicted points have prediction accuracy smaller than 1°C. GHCN-
M stations at a monthly resolution have an accuracy between 1 and 2°C for 40% ofsthe
points. 29
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FIGURE 4.9: Comparison of mean daily temperature observations in 2011 (gray solid

line) and space-time regression kriging cross-validation prediction of mean daily temper-

ature (black dashed line). PHILADEPLHIA, USA & 75f = 39:993) (top). BUN-
BURY, Western Australial (= 11565;f = 33:35) (bottom).
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4.3.2 Minimum daily temperature interpolation
4.3.2.1 Linear regression model for minimum daily temperature

The geometrical temperature trend explains about 72% of the minimum daily temperature
variations for 2011 with a standard error 06°C, Figure 4.11 shows geometrical trend
against observation. The results of regression modelling based on MODIS LST spline
images explains 70% of the variability in minimum daily temperature values for the year
2011 with an average precision 0f6.3°C; thus performing somewhat worse than for
mean temperature.

DEM and TWI layers also showed to be highly signi cant covariates for minimum daily
temperature. The nal linear model with four covariates explains 77% of the variation
with a standard error of 5.5°C. Figure 4.11 shows a plot of the modelled geometrical
trend for minimum daily temperature and MODIS LST spline values against observed
temperature on the same stations.

4.3.2.2 Spatio-temporal variogram model for minimum daily temperature

The spatio-temporal variogram is modeled in the same way as was described for mean
daily temperature. The variogram for minimum daily temperature has similar parameters
as the mean daily temperature (see Table 4.2 and Figure 4.12). Again, the pure spatial
component exists and pure temporal one doesn't. The pure spatial component shows spa-
tial dependence of regression residuals across the Globe (pure spatial range is 5725 km)
at any time separation, whereas complete temporal variability of residuals is contained in
the spatio-temporal interaction part of the variogram structure. The nugget parts of these
components are around 3.5%Gvhich is higher than in the mean temperature case and
suggests that short range variability in space and time of minimum temperature regres-
sion residuals is signi cantly higher than for the mean temperature so extreme tempera-
tures being harder to predict.
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FIGURE 4.11: Minimum daily temperature observation in 2011 (gray solid line) and

multivariate linear model of minimum daily temperature (red dashed line) on MODIS

LST spline (black dashed line), geometrical temperature trend (black dot line), elevation

and topographic wetness index. PHILADEPLHIA, USA£€ 75;f = 39:993) (top).
BUNBURY, Western Australial (= 11565;f = 33:35) (bottom).
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FIGURE 4.12: Fitted sum metric model (left) and sample variogriom (right) of residuals

from multiple regression of minimum daily temperature observation on MODIS, geomet-

rical temperature trend, elevation and topographic wetness index. The variogram surface
is presented in 2D (top) and 3D manner (bottom).
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TABLE 4.2: Parameters of the tted sum-metric variogram model for minimum daily
temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-
ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 3.695 22.682 5725 km
temporal 0 0 0 days
space-time  1.67 9.457 1888 km 485 km/day
4.3.2.3 Accuracy assessment: minimum daily temperature 1

The results of cross-validation for minimum temperature produced a RMSE=2.7°Cfor
global land areas including Antarctica, with R-square of 94.2%. Monthly RMSE ob-
tained from the cross-validation of monthly aggregated observation and cross-validation
prediction is 2°C, yearly RMSE is 1.7°C. The spatial distribution of RMSE calculated per
station (yearly average of squared daily cross-validation residuals, daily quality measwure)
for each station is shown in Figure 4.13, where the stations with RMS are repre- -
sented with 40% of the total number of stations (black dots), ang RERISE< 3°C with
35% (blue dots), 23% of points are with ZRMSE< 6°C, and 200 stations are with s
RMSE> 6°C. 10

The spatial distribution of RMSE also shows lower accuracy than predictions of the mean
temperature in general. The aggregated results show that the lowest RMSE=1.45C is
achieved in the Netherlands, Europe without Russia (c.a. 2.7°C) an RMSE of areund
2.3°C, USA 2.3°C, South America 3.1°C, Antarctica has again the highest RMSE=4.7°C.

4.3.3 Maximum daily temperature interpolation 15
4.3.3.1 Linear regression model for maximum daily temperature 16

The geometrical temperature trend in the linear model explains 75% of maximum daily
temperature variation for 2011 with a standard error 6f6°C. Figure 4.14 shows the:s
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geometrical trend compared against observation. The geometrical trend results are com-
parable to the results of modelling the mean temperature and are hence better than the
results for modelling the minimum daily temperature case. 3

The regression modelling only with MODIS LST spline images already explains 84.%%
of the variability in maximum daily temperature values for the year 2011 with an average
precision of 5.2°C. MODIS LST 8 day images are the best predictor for the maximum
daily temperature when compared to actual mean and minimum daily temperatures. BEM
and TWI layers also were signi cant covariate layers for the maximum daily temperature.
The nal linear model with four covariates explains 86.7% of variation with standasd
deviation of 4.8°C, Figure 4.14 shows the modelled linear regression line, the geomet-
rical trend for the maximum daily temperature and the MODIS LST spline values against
observed temperature for the same stations. 12

4.3.3.2 Spatio-temporal variogram model for maximum daily temperature 13

Table 4.3 summarizes the parameters of the spatio-temporal variogram model, as in the

previous variograms the components of variogram are spherical functions. Similas as

for minimum daily temperature the nugget effect of pure spatial component is higher

showing that this model can not achieve a better accuracy than the model for mean.daily

temperature. 18
TABLE 4.3: Parameters of the tted sum-metric variogram model for minimum daily

temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-
ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 2.8722 8.314 4930 km
temporal 0 0 0 days
space-time 1.750 11.175 2117 km 527 km/day
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FIGURE 4.14: Maximum daily temperature observation in 2011 (gray solid line) and
multivariate linear model of maximum daily temperature (red dashed line) on MODIS
LST spline (black dashed line), geometrical temperature trend (black dotted line), ele-
vation and topographic wetness index. PHILADEPLHIA, USAK{ 75,f = 39:993)

(top). BUNBURY, Western Australid (= 11565,f = 33:35) (bottom).
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FIGURE 4.15: Fitted sum-metric model (left) and sample variogriom (right) of residuals

from multiple linear regression of maximum daily temperature on MODIS, geometrical

temperature trend, elevation and topographic wetness index. The variogram surface is
presented in 2D (above) and 3D (below).
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4.3.3.3 Accuracy assessment. maximum daily temperature

Results of cross-validation for maximum daily temperature on the complete data set
gave a RMSE= 2:6C for global land areas including Antarctica, with R-square 95.9%.
Monthly RMSE obtained from cross-validation of monthly aggregation of observation
and cross-validation prediction is 1.9°C, and yearly RMSE is 1.6°C. Spatial distribution
of RMSE calculated per station (yearly average of squared daily cross-validation resid-
uals, daily quality measure) for each station is shown in Figure 4.16, where the stations
with RMSE< 2°C are represented with 41% of total number of stations (black dots), and
2°C< RMSE< 3°C with 41% (blue dots), 16.6% of points are with ¥RMSE< 6°C,

and 106 stations are with RMSE°C.

The spatial distribution of RMSE also shows lower accuracy than for mean daily tem-
perature. The aggregated results show that the best RMSE=1.3°C is achieved in the
Netherlands, Europe without Russia (ca. 2.7°C) achieves around 2.1°C, USA 2.1°C, South
America 3.2°C, Antarctica has the highest RMSE=5°C.

4.4 Discussion and Conclusions

In this paper we have demonstrated how dense publicly available ground station data
together with a time series of remote sensing images and covariates at 1 km resolution
can be used to predict mean, minimum and maximum daily temperature for the global
land mass in space and time. The obtained global models for mean, minimum and max-
imum temperature were further used to produce gridded images of daily temperatures at
very high spatial and temporal resolution. We achieved an average prediction accuracy
of about 2-3°C for daily temperature prediction when assessed using cross-validation
(which con rms the results of some local studiesigngl et al.(2012), Heuvelink et al.

(2012 andNeteler(2010). This is promising as it indicates that highly accurate maps of
daily temperatures can be produced at high spatial resolution using global spatio-temporal
models. Figures 4.8, 4.13, 4.16 also show that the outliers are distinctly grouped in areas
that are poorly covered with meteorological stations and in mountain regions, i.e. areas
frequently covered with clouds or snow. This agrees with ndingblefeler(2010, who
experienced similar dif culties in working with dynamic snow cover on mountain tops.
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During the model tting, we discovered that the GSOD point data sets still contain many
artifacts and possible gross errors. We removed a small portion of obvious errors, but
surely there is even more noise in this data set. It was beyond the scope of this study
to identify and remove all errors. Station data ltering should probably be performed by
the organizations that collected the data because they have expert knowledge on the mea-
surements and stations. In that context, our proposed methodology for cross-validation
provides a tool to detect stations with potential errors in time series, and we recommend
that responsible organizations use it to detect errors and clean up their data sets. Further-
more, by overlaying the point data and WorldGrids.org covariates, we were able to detect
stations with inaccurate locations. This is especially important for stations in mountainous
regions, which proved to be very important for model building as the error of predicting
temperature increases with elevation.

It is worth noting that the presented global regression-kriging models can also be used to
produce maps of associated uncertainty at very high spatio-temporal resolution in addi-
tion to providing estimates of the values of target variables. Basically, by using the global
models presented in this paper, one can get an unbiased prediction of daily air tempera-
tures for any place on the global land mask (at support size of 1 km) and for any day of
the year for the period from the beginning of the MODIS mission until today.

The geometrical temperature trend (Eqg.4.3) presented in this paper turned out to be a cru-
cial covariate. Alone, it can explain more than 70% of the temperature variation. This
indicates that a similar model without remote sensing images can be made for the daily
temperature interpolation for the period when MODIS images were not available and
would not perform much worse than a model that includes MODIS data as a covariate.
The tted spatio-temporal global models for mean, minimum and maximum daily temper-
ature could be used as a tool for disaggregation of MODIS 8 day images to daily images
and for the calibration of land surface temperatures (conversion to air temperature).
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Chapter 5 1

Meteo package for automated :
spatio-temporal mapping :

This Chapter describes tHe packagemeteothat is under development. The package
purpose is to provide functionalities for the automated mapping of meteorological obser-
vations using spatio-temporal regression kriging. The package contains regressiorns and
variogram models that were presented and described in Chapter 4. The models were-tted
using publicly available data sets (see Chapter 3). Spatio-temporal regression krigiag is
implemented in a way that can be used for large amounts of data. Detection of outliers,
which are based on iterative cross-validations, is also implemented in the package. In
addition to the implemented methods, the package performance is presented through the
case study of mapping mean daily temperatures in Serbia. 12

5.1 Introduction s

The most powerfuR package available for geostatistical analysigstat, which was de- 1
veloped for applied geostatisti®ebesmg2004). Many spatial geostatistics techniques
(including ordinary, universal kriging, block kriging, kriging in a local neighbourhood,
variogram cloud diagnostics, variogram modelling, multivariable variogram modelling,
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Chapter SMeteo package for automated spatio-temporal mapping

cokriging and simulation)are available to the broad community of geoscientists. The tech-
niques of spatio-temporal variogram tting and implementation of global spatio-temporal
ordinary kriging has recently been developed. Spatio-temporal regression kriging predic-
tion and cross validation have not been implementegbiat, yet.

The packageneteoKilibarda et al.(20138* has been implemented in tReenvironment

for statistical computingR Development Core Tean2012. It combines functionali-

ties of thegstat, rgdal (Bivand et al, 2013 andraster (Hijmans and van Etter2013
packages (raster data loading and analysis)samuvfall(Knaus 2013 package (cluster
computing). This package provides an automated framework for various tasks including:
spatio-temporal regression kriging interpolation of ground based observations interpola-
tion and de-trended using covariates, e.g. satellites products and DEM derivatives. Global
temperature models are stored in the package (see Chapter 4 for models details) such that
the prediction (interpolation) can be performed without tting spatio-temporal regression
and variogram models.

The automated spatio-temporal kriging interpolation procedure is a data driven approach
designed for mapping with little or no human interactidtengl (2009 describes auto-
mated mapping, as an evolving technique that encompasses the future of mapping frame-
works:

“We can conclude that an unavoidable trend in the evolution of spatial prediction models
will be a development and use of fully-automated, robust, intelligent mapping systems.
Systems that will be able to detect possible problems in the data, iteratively estimate the
most reasonable model parameters, employ all possible explanatory and empirical data,
and assist the user in generating the survey reports.”

The meteopackage endeavours in this direction and includes the additional paradigm of
using a global model as the target meteorological/climatic variable. Currently, automated
mapping with themeteopackage can be decomposed in chunks:

1. de ning input observations and covariates;

2. use of pre-calculated global models;

Lhttps://r-forge.r-project.org/projects/meteo/

107



Chapter SMeteo package for automated spatio-temporal mapping

3. detecting and/or removing outliers; 1
4. creation of nal prediction (and its export to GIS formats); 2

5. cartographic visualisation of results and/or creation of web maps (e.g. by using
R packageplotGoogleMapgKilibarda and Bajgt2012 for automatic creation of
interactive web maps). 5

In addition,meteooffers the possibility of using user de ned covariates, regressions and
variograms; thereby giving more exibility of using the package in a semi-automated

approach. 8
5.2 R enviroment and related packages ]
5.2.1 R enviroment 10

As stated in the Introductory section of tReLanguage De nition on-line manuaR 1
Development Core Team2012), R is a system for statistical computation and graphics,
which provides, among other things, programming facilities, high-level graphics, inter-
faces to other languages, and debugging facilitRsmplements a language similar tou
the S language that was originally developed by John ChamBerkér and Chambers s
1984. The main difference is in the license statement bec&ises free and open sources
software under the terms of the GNU General Public License in contrast to the S language.
The syntax of théR language is analogous to the C programming language. Howeves, a
fully functional interpreter permits the creation of functions and calculations within.an
environment de ned by a command line window or a graphical user interfacen6ky 2
2002. Ris organized as a collection of packages designated for speci c tasks. 21

The R package system has been one of the key factors in the overall successRof the
project R Development Core Teg2012. TheR contains the base system which enables
statistical computation, linear algebra computation, graphics creation, and other similar
features. A package is arelated set of functions, help, and data les that have been buadled
up together. Packagesare similar to modules in Perl, libraries in C/C++, and classgs
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Chapter SMeteo package for automated spatio-temporal mapping

in Java. Itis not necessary to install the speci ¢ packages if they do not part into the user's
computing and analysing interests.

The set of developed packages are especially interesting foné¢eopackage. Th&
developers have written the R packageo extend R with classes and methods for spatial
data Pebesma and Bivanpd005. Classes specify a structure and de ne how spatial data
are organised and stored. Methods are instances of functions specialised for a particular
data classHivand et al, 2008. Another important package used in this study isrtigal
package. This package uses functions of the Geospatial Data Abstraction Library to read
and write GIS data with options of handling a coordinate referent system (CRS). This
package allows the user to de ne CRS for spatial object. CRS might be obtained directly
from the data if data are imported from the GIS le by trgdal package. Performing
transformations among different CRSs is available using the PROJ4 Rbvermich is im-
plemented in thegdalpackage. A very ef cient tool for raster manipulation is ttaster
package flijmans and van Etter2013, which provides functionalities for reading, writ-

ing, manipulating, analysing and modelling of a gridded spatial data. Pac&pgestime
andgstatwill be brie y described in further text.

5.2.2 Package spacetime

Spatio-temporal data have been used in meteorological/climatic mapping for a long time.
However, they have not been de ned as an object with structured spatial and temporal
elements and bound together as a spatio-temporal data model. The examples of those
data are: time series of weather measurements from ground stations in regions of interest,
satellite images of weather, etc. Spatio-temporal data have mainly been used and analysed
separately, whereby the spatial aspect is analysed rst and the temporal aspect afterwards
or reversed. Such data has not been included in an integral modelling appBoasid(

etal, 2008. The lack of GIS data models and software for storing, handling and analysing
spatio-temporal data were the main reason for the described data processing approach
outlined in this Chapter.

2http://trac.osgeo.org/proj/
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Packagespacetimeprovides classes and methods for different types of spatio-temparal
data that are implemented R Spatio-temporal data types implementedspacetime
include: space-time regular lattices, sparse lattices, irregular data, and simple trajectories
(Pebesmg2012. In addition, the utility functions for plotting data as map sequences (lat-
tice or animation) or multiple time series and methods for spatial and temporal selection
and subsetting and spatial and temporal overlay are provided in this package. 6

A STFDF-classs used in thaneteopackage for storing, overlaying and manipulation of
spatio-temporal datasSTFDF-classs a data model referred to as a full space-time grid.

It contains observation data (storeddega.frameobjects that are presented in analogue
form as a spreadsheet in Excel), spatial features (points, lines, polygons, grid cells) as
sp objects and time information data and time as a vector. This data model (class):im-
plies that each spatial location contains observations for each time instance. Therefore,
the number of observations is a product of the number of locations and number of time
instances. Unobserved space-time locations (e.g. missing observation on certain day at
meteorological station) are stored as a missing valdan an observation table. Thisis
class is suitable for storing meteorological/climatic data from both ground stations:and
remote sensing data. 17

5.2.3 Package gstat 15

The gstat package provides a wide range of univariable and multivariable geostatistical
functions for modelling, predicting and simulation, whereby the packpgeovides gen- 2
eral purpose classes and methods for de ning, importing/exporting and visualizing spatial
data Pebesma2004). The package allows one to calculate sample variograms, t valid
models, show variograms, calculate (pseudo) cross-variograms, t valid linear models,
and calculate/ t directional variograms and variogram models (anisotropy coef cientszare
not tted automatically). 2

The development of thepacetimgackage has already started in 2010 andytatfunc- 2
tion has been adapted for spatio-temporal mappiebésma2013. This package can »
be used for spatio-temporal geostatistics, estimated sample spatio-temporal variogskams,
spatio-temporal variogram tting and ordinary global spatio-temporal kriging. 29
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1 ThevariogramSTfunction calculates empirical spatio-temporal variograms using an ob-

> ject of STFDF-classas input data. The resulting variogram can be visualised as a sur-

s face (see Figure 5.1) or an image. Spatio-temporal model tting is provided by the

4 t.StVariogramfunction. It ts a spatio-temporal variogram model of a given type from

s a spatio-temporal sample variogram. Different variogram models can be de ned using
s thevgmSTfunction. A variogram model (separable, product-sum, sum-metric, ect.) de-

7 termines a structure of the space-time covariance model, e.g. the sum-metric structure
s IS de ned using the Equation 4.9 that contains pure spatial, pure temporal and spatio-
s temporal components.

FIGURE 5.1: Spatio-temporal sample (experimental) variogram surface.

10 A function krigeSTprovides the particular implementation of global spatio-temporal or-
1 dinary kriging. At the momentkrigeSTdoes not support block kriging or kriging in a
12 local neighbourhood and it does not provide simulation.
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The prediction over a large area with lots of spatio-temporal observations cannot be per-
formed using the generlkaigeSTfunction because of the intensity of computation efforts.
The alternative solution could be: 3

« dividing area of interest in smaller parts (tiles), as well as observations points;
 usekrigeSTfor prediction and ; 5

» mosaic back tiles to area of interpolation. 6

Spatio-temporal regression kriging usiggtat also must be performed separately: the

rst step isto produce predictions for the regression part using the regression functiongthe
second part involves extracting residuals for all observations and nally tting a global
sum-metric variogram model. The residuals then should be interpolated and added io the
predicted trend. For large areas and lots of observations, the prediction of residuals using
ordinary kriging needs to be completed tile by tile. Tineteopackage automates the-
procedure for regression kriging prediction over large areas. 13

5.3 Development of meteo package ”

Themeteopackage contains several functions that aim to t table data to spatio-temparal
objects. Such tting is necessary for acquiring a spatio-temporal kriging prediction. The
spatio-temporal regression kriging functigoréd.strR is the most important part of their
package. This function can perform predictions fully based oktige STfunction with- s
out any simpli cation of the kriging procedure. The use of this function for “large data”
sets (even few hundreds of observations) need to be performed with tilling and simpl.ed
local spatio-temporal kriging with a fast neighbouring searching algorithm implemented
in meteo 2

5.3.1 Simpli ed searching algorithm for spatio-temporal kriging 23

Fast spatio-temporal regression kriging implementesh@ieoapplies a tiling procedure 24
for prediction. The area is divided into tiles (smaller parts, see Figure 5.2)by the tiling
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Chapter SMeteo package for automated spatio-temporal mapping

function, which is implemented in thmeteopackage. For each tile, the nearest spatio-
temporal observations are selected according to distance from tile's centroids. Subse-
quently, spatio-temporal regression kriging estimates values within each tile on the base
of nearest selected observations. Thus, within each tile, all estimates are calculated by
using global kriging from previously selected observations. The procedure differs from
traditional kriging in a local neighbourhood approach (which uses the neighbours obser-
vations while searching for an algorithm for each location) in that the number of spatial
searches for nearest observations is reduced.

Figure 5.3 shows a tiling and searching algorithm in a graphical manner. For this ex-
planatory example, ten nearest spatial locations are selected for the eachldier j

are coloured in black and green and contain around 4,000 unmeasured locations points
(regular grid at 1 km). The predictor function at any location fridlmi uses 10 nearest
observations in the space domain, and only two of these ten observations are not used in
thetile j. In other wordstile j, uses 8 common observations for both tiles.

After tiling and selection of the nearest spatial locations, a prediction is performed for
all target temporal instances. Accordingly, the procedure spares time spent in spatial
searching because the prediction is performed for each of the time instances in a row and
is based on the initial neighbourhood selections. Therefore, the full advantage of this
approach is evident when the prediction is performed for longer periods of time (e.g. for
month or year period). For example, the reduced number of local searches ( just for one
tile containingnpointg for a spatio-temporal prediction that is completed for a one year
period, is de ned as:

Nred = Npoints Mtimes (5.1)

whereneq is a number reduced search®gmes IS @ humber of time instances of the
target spatio-temporal prediction angyints is @ number of spatial locations in one tile.

The number of tiles should be de ned and depend on multiple criteria, e.g. observation
density over an area of interpolation, the number of points for prediction, the number of
nearest observations that should be used for kriging, and target savings in computation
etc.
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FIGURE 5.2: Plot of tiles over domain of interpolation over with observations.

The automated selection of an optimal number of tiles within the domain of interpolation
is still open for question. For example, the Figure 5.3 depicts an area that is divided into
56 tiles for the territory of Serbia. Figure 5.2 shows all tiles and observations over tiles.
It is clear that many tiles ‘share' nearest observations and therefore potential artefacts
in the edge line appear mostly due to the presence of outliers in observations or when
observations are heavily clustered. Timeteopackage offers option for double tiling s
(two different networks of tiles) followed by averaging the results of predictions derived
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FIGURE 5.3: Plot of tiles together with accompaning observations used for spatio-
temporal regression kriging.

from different tiling systems to avoid artefacts.

5.3.2 Outliers detection based on cross-validation

During the model tting (in Chapter 3 and Chapter 5), it was discovered that the GSOD
point data set still contain many artefacts and possible gross errors. The small portion
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of obvious errors was removed based on the comparison of a cross-validation prediction
with the observations. The example of outliers detected by cross-validation is given in
Figure 5.4. Stations with RMSE averaged per year from daily residuals higher than 15°C
are selected as potential outliers. Visual inspection shows that most of selected stations
are obvious outliers, but the fact is that they also increase hardly RMSE of neighbours.

FIGURE 5.4: Exapmle of outliers detected based on cross-validation. Point labels show
RMSE averaged per year from daily residuals. Map presents only sample of potential
outliers from GSOD data set in 2011.

The outliers' detection algorithm rstly performs cross-validation and detects the station
with the highest residual. If the residual is higher thanalpeiori de ned threshold value, -

the station is removed from the dataset and new cross-validation is performed. Agains the
station with the highest residual is compared against the threshold value and the iterative
process is repeated while no more residuals exceed the de ned threshold. 10

The described method is implemented in theteopackage (as part of thpred.strkfunc-
tion) and the package can perform detection and removal of outliers based on the de:ned
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Chapter SMeteo package for automated spatio-temporal mapping

threshold. This method should be described in detail and should be tested with simulated
and real data in further work.

5.4 Case study: Automated mapping mean daily temper-
ature in Serbia

A collection of stations from GSOD and ECA&D data sets descried in Section 3.2 were
used for mapping the mean daily temperatures in Serbia from 2011-07-05 to 2011-07-08.
Observation data (for July 2011) are stored inrtieteopackage as table datgta.framé

for the purpose of demo examples. Corresponding spatial information are stored in the
package as the same class. A functroeteo2STFDFereates spatio-temporal objects
from two data tables. The rst table must contain at least three columns (attributes): time,
station id and observation. The second table with station information must at least contain:
station id and coordinates.

data(dtempc)
data(stations)
temp<- meteo2STFDF(dtempc,stations)

Covariates also need to be transformed into spatio-tem@IrBDF-classobjects. Co-
variates for Serbia (2011-07-05 to 2011-07-08) are stored in the package and contain two
dynamic covariates (geometrical temperature trend, splined MODIS LST, see Chapter 4)
and two static covariates DEM and TWI. Figure 5.5 shows a spatio-temporal plot of the
splined MODIS LST over the domain of interpolation.

The geometrical-temperature trend is shown on Figure 5.6. Static covariates are shown in
Figure 5.7.

Static and dynamic covariates used in this example were stored as one objeSiidifie
classand was namerkgdata The following command produces spatio-temporal regres-
sion kriging prediction for the period between 2011-07-05 and 2011-07-08.

res= pred.strk(temp, newdata= regdata[,1:4], threshold.res=10 )
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FIGURE 5.5: Splined MODIS LST 8-day images in Serbia (2011-07-05 to 2011-07-08).

Thetempobject contains spatio-temporal observationsr@gdatade nes covariates and 1
the frame for prediction. The prediction has been estimated for each spatio-temporal
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FIGURE 5.6: Geometrical-temperature trend in Serbia (2011-07-05 to 2011-07-08).

1 points de ned in theegdataspace-time grid. The global regression model tted and de-
> scribed in Chapter 4 is presented as a variogram model for mean temperature and was
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FIGURE 5.7: (left) Digital elevation model. (right) SAGA topographic wetness index

speci ed in the function as a default setting. The threshold value was speci ed with.an
argumenthreshold.res 2

The resulting objeatesis a list of particular results: 3

an object oSTFDF-classvith column contains prediction of mean daily teperature;

cross validation information for points used in prediction; 5

removed locations as spatial object, showing spatial locations of removed statians;

removed locations with observations as an obje@BFDF-class 7

The prediction of mean daily temperature (Figure 5.8) was produced based only on the

observations of 27 stations and the trend part was computed using covariates previeusly
described that uses a regression model within the function. The total number of 27 stations
was selected from the 35 stations that were available in the pool. A total of 8 stations were

removed by function as outliers that were determined based on the de ned threshold:and
iterative cross-validation process described in Section 5.3.2. 13
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FIGURE 5.8: Prediction of mean daily temperature for Serbia (from 2011-07-05 to 2011-
07-08) produced by automated mapping.

Detected outliers are showed in the spatio-temporal plot shown in Figure 5.9 and the
multi-panel time series plot. The plot shows 7 out of 8 outliers because the station name
“BELGRADE(OBSERVATORY)” contains measurement showing7°C temperature
that is obviously an error and would cause trauesaxis to be incorrectly scaled on

the plot.
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FIGURE 5.9: Oultliers detected using detection based on cross-validation.

The detected outliers were removed but could be analysed individually. For example,
the rst station from the Figure 5.9 entitled “NIS” is obtained from the GSOD data set
and the same station obtained from the ECA&D data set has around 15°C lower mean
daily temperatures( see Figure 5.10). The lower temperatures from ECA&D are more
correlated with covariates than the rest of the used observations. Therefore, the station

from GSOD that was from the same location was detected as an outlier and presented
residuals around 15°C, see Figure 5.9. 7
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5.5 Discussion and conclusion .

The mapping framework described in this Chapter enables the use of spatio-temporal
regression kriging for meteorological mapping. The Implementation of a fast searching
algorithm provides an advantage in computing when completing interpolations over a
large spatio-temporal grid. The advantage is especially noticeable if the grid of points
contains larger time series (e.g. predictions made for the area of interpolation over a year
period where each location contains around 365 observations). 7

The automated mapping framework presented herein is still under development andaa lot
of functionalities need to be implemented in the future. There are still many open ques-
tions related to a) an optimal number of tiles for the domain of interpolation, b) the chaice
of an optimal threshold for the detection of outliers, and c) incorporating a function:for
downloading ground station observations from data providers. Likewise, the develop-
ment of procedures for downloading and mosaicking remote sensing imagery andtheir
organisation in an appropriate space-time object would be useful for many meteo/climatic
applications. 15

Filtering missing pixels in MODIS LST 8-day images through the use of spatial splines
also needs to be implemented in the package. Similarly, temporal disaggregation ffrom
8-day images to daily images using splines (in the temporal domain) might be offered as
an automated procedure. 19

Automated mapping using a global model incorporated in the mapping framework:is a
new approach in the automated mapping eld. The global model should be iteratively
improved with increasing availability (and/or quality) of observations both from grouad
stations and/or from remote sensing data. Therefore, global modelling of processes4{that
can be modelled with spatio-temporal kriging) could be performed similarly by storing
the global model within automated mapping frameworks. 25
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Chapter 6

Spatio-temporal visualisation of
meteorological data using
plotGoogleMaps*

Google Maps are increasingly used for communication throughout many map-based ser-
vices and are often embedded on third-party websites via the Google Maps API. The main
objective of this study is to develop a solution for the easy creation of an interactive web
map, with a base map supplied by Google, where all map elements and additional func-
tionalities are handled by just one line of code. The present solution for the automatic
creation of a complete web map is the R package that is based on the Google Maps API,
plotGoogleMapsThis tool provides a new interactive plot device for handling the geo-
graphic data for web browsers. It also offers a complete map in the HTML format, which
has become a regular medium for cartographic communication. HTML as a multimedia
medium gives new possibilities in the visualisation of spatial and spatio-temporal data.
The toolplotGoogleMaps developed in the R software language and is designed for the
automatic creation of web maps. This chapter discugke&oogleMapsapplications in
meteorological spatial and spatio-temporal mapping.

Mostly based on article: Kilibarda M, Branislav B (2012) plotGoogleMaps: The R-based web-mapping
tool for thematic spatial dat&eomatica 2012, 66, 37-49
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6.1 Introduction .

Although the Internet has been in existencesince the late 60's, the widespread use af the
World Wide Web (Web)was estabished in the mid-@Za and shortly after has become a
foremost medium for cartographeRgterson2007). The real tipping point in the usage .

of geographic information on the Web was the year 2005. In June 2005, Google released
the Google Maps Application Programming Interface (API), which allows a combination
of geographic information from a variety of sources and formats. One of the most im-
portant capabilities of the API is the generation of mashup maps, which is the product
of the combination of geographic data from one source with a map from another sodrce
(Miller, 2006 Haklay et al, 2008 Gartney 2009. The mashup maps are easy to creaie
and can be implemented in any web page for free and without any technical speci cation
and requirements whatsoever, thereby resulting in an increased web mapping popularity.
This progress, together with the popularity of web mapping and its application, is clarked
by Haklay Haklay et al, 2008): 14

“These rapid developments in web mapping and geographic information use are enabled
and facilitated by global trends in the way that individuals and communities use thedn-
ternet and new technologies to create, develop, share and use information (including ge-
ographic information), through innovative, often collaborative, applications” 18

This change in direction of Web philosophy from communication media to contribution
media is named Web 2.0. The Web 2.0 term and concept was rst coined and described
by Tim O'Reilly in 20052 and later in publication@'Reilly, 2007). 21

The collaborative nature of the Web 2.0 environment allows data production to be shared
among many individualsHeick and Depardgay2010. Goodchild(2007) described the 2
term "Web Mapping 2.0” as an important part of the Web 2.0 concept. Integration aneh vi-
sualization of different geographic information on base maps (such as Google Maps/Earth,
Virtual Earth, or Yahoo Map), is the core of "Web Mapping 2.0'. The most signi cant past

of Web Mapping 2.0 corresponds to Google Maps/Earth services. Google Earth/Magps is

2http://oreilly.com/web2/archive/what-is-web-20.html
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Chapter 6Spatio-temporal visualisation of meteorological data using plotGoogleMaps

ground-breaking software that excelled in at least ve categories: availability of applica-
tion, high quality background maps, single coordinate system, web-based data sharing,
popular interface and availability of API servicesgngl 2009.

Google Maps API has encouraged a considerable number of users, with intermediate
and advanced programming knowledge, to build their own applications using Google
Maps data as visualization interfac€xl§in et al, 2008. According to BuiltWith Trends
statistics® the number of Google Maps websites usage was over 800,000 and, comprised
mainly of thematic cartography.

A thematic map displays the spatial pattern of social or physical phenomena such as pop-
ulation density, life expectancy or climate change. Thematic mapping has a long history

in geography and one important part of presenting thematic data is the provision of high

quality base maps that allow integration into the Google Map interface through the Google

Maps API. The London Pro lerGibin et al, 2008 presents geographic information as

a series of choropleth maps on top of Google Maps. This example is an exception from

most mashups because they mostly display spatial point data (push pins).

The existing solution of using a Google Maps image as a background for plotting spatial
data is the general concept of tRgoogleMap® packagel(oecher 2013 that is based

on Google Static Maps API. The Google Static Maps ARllows the embedding of a
Google Maps image in the user's webpage without requiring JavaScript or any dynamic
page loading. This package provides static maps without interactive tools such as data
pan or zoom control and with a constrained quality of the Google background map. The
maximum zoom level, provided by Google Static Maps API, concurs with the maximum
size limitation of 640 x 640 pixels.

The other package with similar functionalities, which provides an interface between the

R and the Google Visualisation API, is called tpeogleVigGesmann and de Castillo

2011). The Google Visualisation API offers interactive charts that can be embedded into
web pages. The googleVis package contains options to produce map mashups based on
Google Maps API. The input data for the package is the data frame with marked columns

Shttp://trends.builtwith.com/websitelist/Google-Maps
“https://developers.google.com/maps/documentation/staticmaps/
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that are related to location information. This is a typical package used for handling spatial
data and their visualization. 2

The objective ofplotGoogleMap¢Kilibarda, 2013 is to provide a solution for the easy s
creation of an interactive web map, with a base map supplied by Google, where all map
elements and additional functionalities are handled by just one line of code. The 0b-
tained result is an interactive map rendered in a web browser. The automatic creatian of
a complete web map, which is based on the Google Maps API (the HTML le with CSS
styling and Java Script functionality) , is provided by the R packaiggGoogleMaps s
The package provides a solution to create and visualize vector and raster data, tosmap
features, plot choroplet maps, and include proportional symbols. The version of package
2.0 is extended to accommodate the visualisation of spatio-temporal classes in the form of
afull space-time gridTFDF and the visualization of unstructured spatio-temporal data
(STIDF), for more datails seBebesm#2012. The growing popularity of the R language:s
was the driving force behind the development of phetGoogleMapsool, particularly 1.
among academic and expert communities and especially in the eld of spatial data analy-
ses. The goal of the presented work is to adopt and apply map design principles in arder
to create mashups and to focus on the minimization of coding and scripting. This weuld
enable the creation of mashups based on Google Maps without any Internet programiming
knowledge. Thus, the creation of web maps becomes a plot facility for R users. idhe
web maps created pylotGoogleMappackage could be used as a temporary result tor
spatial visualization (spatio-temporal) generated on local machines or published om.any
web page. The next section contains a brief description of theoretical and technical back-
ground for the development of thelotGoogleMappackage, Web 2.0 and AJAX, Googles
Maps API. In addition to this section, there is a description of package functionalities-and
an explanation of how these functions were programmed. Details concerning the saurce
code and instructions on how to get this package are also included. The paper continues
with examples of practical package applications in meteorological/climatic mapping.z
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6.2 Package plotGoogleMaps and underling web technolo-

gies
6.2.1 Web 2.0 and AJAX

Best(2006 de ned the main characteristics of Web 2.0, and in a few words are listed as: a
rich user experience, user participation, dynamic content, metadata (tagging, as semantic
enrichment), web standards (e.g. W3@commendations) and scalability. Examples of
Web 2.0 applications embrace social networking sites, video sharing, wikis, blogs, etc.
The Web 2.0 concept is based on the AJAX technology.

Asynchronous JavaScript and XML, or shorter, AJASchutta and AslesQ2005 is the

name given to a set of modern web application development technologies that were pre-
viously known as the dynamic HTML (DHTML) and remote scripting. The fact that this
web application has a similar speed to standard desktop applications makes up the core
bene t of this technology. Traditional web pages, created in HTML, were static, non ex-
ible, and hardly adopted for any dynamic content. AJAX, on the other hand, as the base of
Web 2.0 concept, was built for use in dynamic, interactive, and ef cient web pages with
high performance. Web pages without AJAX were slow; user interaction with the website
required signi cant web server-side resources such that the server needed to send a com-
plete web page if just one part of the web page was changed and sent back to the user. If
the user drew a point on the web map, the server would send back the whole redrawn map
with the new point icluded. AJAX brings a new concept such that the user interaction
is left to a user's computer, which works only with a changeable part of the web page.
Therefore, even if the user operates with one point only, it would not be necessary to re-
draw the whole map again. AJAX-based geographical applications signi cantly improve
the usability of web mappingSkarlatidou and Haklgy2006 Haklay and Za ri, 2007

Haklay et al, 2008 Kilibarda et al, 2010. Apart from AJAX, APIs have also in uenced

web mapping strongly. APl is a set of routines, protocols, and tools for building software
applications. The most popular web mapping APIs are: Google Maps API, Yahoo! Maps
API, Microsoft Virtual Earth API, AOL MapQuest APartner 2009.

Surlhttp://iwww.w3.org/
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6.2.2 Google Maps API 1

Google Maps API is a set of prede ned JavaScript classes that are designed for embed-
ding the Google Maps site into an external website. The resut of this process is suchsthat
additional geographical data could be overlaid over a basic Google Map. These results are
possible to realize even if the creator is not an expert in web programming, although basic
knowledge in JavaScript programming language, XML, Ajax and XHTML is required.
Google Maps API, compared to the relative complexity of Open Geospatial Consortium
(OGC) standards, is much easier for implementation. Google Maps API provides map-
ping functionality and high-resolution background data, but map mashups implementation
still requires some web programming knowledge. It enables a combination of geographic
information from a variety of sources and formats. GIS data objects, such as vectors,
points, polylines, polygons or raster are represented in the mashups as Google Maps API
Java Script objects. For that reason, it is necessary to transform the GIS data intasJava
Script objects that are appropriate to Google Maps API. These objects could be carto-
graphically represented with point symbols, (although with some limitation) . Polylines
and pongonAZs line representations could be de ned with outline width, color, trans-
parency and Il color for the polygon area. Transforming the GIS data into Google Maps
API objects and de ning a cartographic representation for every single object is time
consuming and rather dif cult, especially for someone who has no experience in web
programming. The developed R packagplotGoogleMapsoffers an easy creation ofzo
mashups as local les or les ready to be published on the Web. 21

6.2.3 Development of plotGoogleMaps 2

The newly developed R packagelotGoogleMapdased on AJAX and Google Maps APbs
service, produces HTML le map mashups (web maps) with Google Map high-resolution
background data and additional data layers. The rst version of the package was devel-
oped in 2010 and the current 2.0 version was published in 2iBgrda, 2013. 2

The package depends on two packages for spatial and spatio-temporal data handling,
sp (Pebesma and Bivan@005 Bivand et al, 2008 and spacetimeg(Pebesma2012?). 2
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Another package signi cant for the automatic cartographic re-projection witpiat-
GoogleMapss rgdalR packageBivand et al, 2013. These sets of developed packages
are especially interesting for geoscientists. The R developers have written the R package
sp to extend R with classes and methods for spatial d@agsma and Bivan@009.
Classes specify a structure andrdgie how spatial data are organized and stored. Meth-
ods are instances of functions, specialized for a particular data 8ass(l et al, 2008.

The packagegdalprovides functionalities for importing and exporting the most popular
formats of GIS data in R. This package uses functions of the Geospatial Data Abstraction
Library © to read and write the GIS data and includes options for handling a coordinate
referent system (CRS). With thrgdal package, users can optionally de ne a CRS or
inherit it from the input data as well as perform data transformations between different
CRSs using the PROJ4 librafyimplemented as part o§dal The imported GIS data are
converted intespobjects and are used for handling the vector and raster (grid) data in R.
These functionalities enable the use of a very large amount of the GIS data format as an
input for theplotGoogleMapspreviously read viagdal Input datasp or spacetimeob-

ject with de ned CRS, is the only mandatory argument in pl@tGoogleMapgunctions.
Hence, different GIS formats of input data are read in R and are afterwards based on a
prede ned visualization method; those data are mapped as web map (Figure 6.1).

The plotGoogleMapgontains functionalities from PROJ4 library, which performs co-
ordinate transformations from source CRS to WGS84 CRS that is used for spatial data
handling by Google Maps. Google Maps API allows for additional spatial data handling,
in the form of XML, KML, and GeoRSS, but some visualization functionalities, as well
as interaction with attribute data in the form of Google Maps lWRdWindowobject, and
similar, are dif cult to be controlled. Another solution is to use the data in the form of
prede ned JavaScript classes of vector data primitives; point, line and polygon data and
raster overlay. This approach is also implementeglatGoogleMapsit means that ev-

ery single primitive is separated from the spatial object and its geometry is translated into
a JavaScript object. Attribute data for every single feature is converted into a JavaScript
Infowindowobject; its activation is available by clicking on the related feature on the
produced web map. Additional visualization options supported by Google Maps API ob-
jects such as outline width, color, and transparency can be speci gdatGoogleMaps

Shttp://www.gdal.org/
http://trac.osgeo.org/proj/
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FIGURE 6.1: Simpli ed work ow for web map production by using plotGoogleMaps.

functions. The visualization of mandatory parameters is easy to set and is achieved by
using optional arguments inplotGoogleMapg$unctions. Therefore, plotGoogleMaps -
writes object arguments in every JavaScript object and in the nal HTML le. Google
Maps API provides the majority of Google Maps utilities including pan, zoom, back-
ground layer control, and scale bar. Map utilities are controlled by optional arguments in
plotGoogleMaps$unctions. Similarly, map width, background color, layer name, legend
name, default background map, etc., can be set by using optional argumentsplothe -
GoogleMaps$unction. Some advanced utilities for interactive controls of additional lay-
ers are provided by defaults iplotGoogleMagacluding: layer appearance, line width,s
transparency, and legend colors display control. Spatial data, with visualization parame-
ters and utilities, are written in the HTML le with JavaScript and CSS elements. Thus,
in the RlanguageplotGoogleMapsith only one function, and with few arguments, may:
produce many lines of codes in few languages for Web programming (Figure 6.2). 13

The map mushup (6.2- right bottom window) is produced by the R command: 14

> plotGoogleMaps(meuse, filename="myMap.htrm) 15

The command contains two arguments: (1) the rstis the set of spatial data, named Meuse,
that contains 155 points with 12 soil properties in the form of attributes,(2) the second is
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FIGURE 6.2: Plotting vector point data. Just one line of R code substitutes many lines of
HTML with JavaScript and CSS code.

an optional argument with a le name of the output map mashup. This function contains
many optional arguments. For example, the description of the function arguments may be
provided by using the “help” function in R or can be found on the package wel§ page

in the reference manual. The same web page contains the package source; the source code
Is open and available under the GPL license. Technical details about the used solutions in
the package could be obtained from the source code.

Generally, the idea of package implementation is denoted as the automatic production
of HTML map mashups using spatial or spatio-temporal data objects. The R command
used in the previous example produces an HTML le from the Meuse data. The output
map also contains CSS elements and JavaScript scripts. The control of CSS elements is
available through the use of optional function arguments in order to set the dimensions of

8http://cran.r-project.org/web/packages/plotGoogleMaps/index.html
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a map area. Since the optional arguments are not set in this example, the resulting HTML
le contains default CSS styling settings. The rest of the produced HTML is JavaSceipt
that contains Google Maps API and a set of JavaScript functionalities related to layer
control options. The Meuse data was transformed from native CRS to WGS 84 and every
single point was translated to a Google Maps Marker object, i.e. JavaScript object, used in
Google Maps API. The base map is set, by default, to be a Google hybrid map where the
initial zoom and central points of the base map depend on the Meuse bounding box.:The
attribute data, for every single point separately, are convertgddgle.maps.Infowindow s
objects, with an associatdistener function included to handle the click event on the
marker. 10

The next section contains examples focusing on the package application in meteoralogi-
cal/climatic visualisation. 12

6.3 Implementation and applications 13

The functionalities of the package that are used for the production of web maps of.cli-
matic spatial and spatio-temporal data are presented through the following case stugdies -
examples. The applications illustrated in this paper pertain to different studies concetring
spatial and spatio-temporal data analysis. 17

6.3.1 Spatio-temporal visualisation of climatic variables 15

The packagelotGoogleMapplots spatial objects afpandspacetimelasses over Google:s
Maps using very simple syntax and only one or a few lines of R code. Figure 4.8 shews
results of an accuracy assessment presented in Chapter 4. The map of mean daily temper-
ature cross-validation errors (RMSE) is averaged per year for each station. Daily resieluals
should be very interesting, but the traditional way to represent daily residuals associated
with a multi-panel plot (365 plots for year 2011) and space-time cross section plot (e.9.,
space on the-axis and time on thg-axis) or animated plot. The traditional approach

for daily residual visualisation is cumbersome to be both informative and intuitive atthe
same time. Thanks to the multimedia nature of the HTML, the packig&oogleMaps
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Chapter 6Spatio-temporal visualisation of meteorological data using plotGoogleMaps

uses traditional spatial plots together with a time series multivariate plot implemented in
zoo(Zeileis and Grothendie¢R009 package, see Figure 6.3.

FIGURE 6.3: RMSE map. Space-time regression kriging of mean daily temperature
observations on 8-day on MODIS 8 day images, topographic layers (DEM and TWI) and
a geometrical temperature trerdtp://dailymeteo.org/

In multi-panel (lattice) plots, panels share x- and y-axis, a common legend, and the strip
above the panel indicates what the panel is abBiafd et al, 2008. Similar, plot is
implemented implotGoogleMapsas well, giving the possibility to visually compare data
from few time instances. The interactive nature of the produced map provides an oppor-
tunity to inspect additional attributes by opening more thangoagle.maps.InfowWindow
simultaneously. A Multi-panel plot of temperature data in Serbia for 2011-07-05 and
2011-07-06 is provided as a web map. The map showed in Figure 6.4 is produced simply
with the following code:

> stplotGoogleMaps(MeanTemp,zcol= tempc , mapTypeld= ROADMAR="49%,h="100%)

A similar line of code produces the spatio-temporal visualisation of predicted mean tem-
peratures in Serbia for 2011-07-05 and 2011-07-06. The additional interactive control
utilities: layer appearance, transparency line width, and legend colors display can be set
by adding additional arguments plotGoogleMap®lotting functions. The color cod-

ing system for map design iR is supported byRColorBrewepackage Brewer et al,
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FIGURE 6.4: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05 and 2011-07-06.

2003. It provides palettes for drawing nice maps. This package was derived from the
ColorBrewer websitéttp://colorbrewer2.org/ . ColorBrewer is an online tool that
helps chose a colour palette according to the number of data classes and the nature af data
(matched with sequential, diverging and qualitative schemes). The colors obtained from
RColorBreweare used for the color scheme in Figure 6.5. 5

blues=colorRampPalette(brewer.pal(9, "PuBu")[c(8,5,2)] , space = "Lab")
reds=colorRampPalette(brewer.pal(9, "YIOrRd")[c(2,5,8)] , space = "Lab") 7
stplotGoogleMaps(Prediction, w= ' 49%), h="'100%, colPalette= c(blues(7),reds(7))) 8

(=2}

Quantitative point symbols, such as proportional symbols of varying sizes that are used
to symbolize totals at a point, are available in fletGoogleMapsThe most frequently 1o

used shapes are circles, however squares and triangles are also possible solutions affered
by theplotGoogleMap#gunction. A spatial plot with proportional symbols is presented in
Figure 6.6. 13
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FIGURE 6.5: Mean daily temperature images for Serbia for 2011-07-05 and 2011-07-06.

FIGURE 6.6: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05. Proportional symbols.

6.3.2 Real-time visualisation of meteorological observations
The package can be implemented for the visualisation of meteorological observations in

real-time. The example of using the package for this purpose is illustrated in the presen-
tation of meteorological data in Catalonia (Spain), see websipe//meteo4u.com/
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Figure 6.7 shows a temperature map where Google Maps markers are represented as num-
bers that indicate actual temperatures in near real-time, which were obtained from a.few
different sources. The map mushup (Figure 6.7) shows detailed station information inthe
form of atooltip' window. Detailed information are also available as Google Maps ARI
JavaScript objecgoogle.maps.Infowindqvappearing after the user clicks on a speci G
station point. As a result, the obtained map mushup is interactive, intuitive and functional
thanks to underlying Google Maps API and prede ned JavaScript functions created by
plotGoogleMapsThe map creation could be automated using the R server and mapsare
changed as data are updated. 0

FIGURE 6.7: Plotting temperature data usiplgptGoogleMapsMap mushup is availible
on http://meteo4u.com/

The main function in the packagesctorsSRcreates a radius vector from point data i
form of SpatialLinesDataFramelass depending on radius and azimuth. This functien
is very appropriate for mapping wind speed and wind direction observation. Figure6.8
shows a real life application of the automated visualisation of wind observations. 13
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FIGURE 6.8: Plotting wind observation by using proprortional symbols depending on
wind speed. The orientation of the radius vectors depends on wind direction. Map
mushup is availible ohttp://meteod4u.com/

6.3.3 Spatial visualisation of rainfall trends in Serbia

The spatial pattern of annual, seasonal and monthly rainfall trends in Serbia are ex-
amined byLukovic et al.(2013. The study used data from 63 weather stations be-
tween the period of 1961-2009. Precipitation trends are depicted with different col-
ors in Figure 6.9 (positive trends are blue and negativetrends are red) and are overlaid
with proportional bubble symbols presenting the trend values of each considered station.
The bubbles outlined with black circles in the maps represent stations with statistically
signi cant trends at the con dence level of 97.5 %. The web maps are available on
http://lwww.grf.bg.ac.rs/~bajat/Trends.htm

Kilibarda et al.(2013¢a) useplotGoogleMaps$or scienti c communication and visuali-
sation in meteo/climatic mapping, sktp://dailymeteo.org/
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FIGURE 6.9: Spatial distribution of rainfall trends in Serbia from 1961 to 2009, annual

map. The bubbles with blackoutlined circles represent stations with signi cant positive

and negative trends at the con dence level of 97.5 %. The web map is availible on
http://www.grf.bg.ac.rs/~bajat/Trends.htm

6.4 Discussion and Conclusions .

The plotGoogleMapis a free and open source software solution for the simple creation.of
rich interactive web maps. In this casplotGoogleMapsses the web browser as a plot-
ting device instead of the default R graphic device. Therefore, it offers more advantages
when compared to the classical R plotting device environment. For an example, sighi -
cant advantages include high quality of background Google layers for better abstractions
of geographical reality, spatial data exploration functionality and map interactivity (nav-
igation control, pan, zoom, attribute info windows, etc). The packatEGoogleMaps s

is a tool that can be used for plotting meteorological/climatic spatial and spatio-temperal
data for internal use or for website. 10

This package promotes the creation of interactive maps in user friendly environments
where a map is stored in the HTML format. Map sharing with non GIS map users is
easier and it is not necessary to use the GIS software. Sharing is simply achieved using
aweb browser and the map remains interactive and simpler than in professional software.
Also, R users can use this package instead of standard plot functions because it pravides
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a faster preview of the mapped data in relation to geographic reality provided by Google
Maps.

Google Maps API is not suitable for handling large amounts of data and consequently
plotGoogleMap$ias the same constraint. One of the possible alternapres-source
solutions might be the combination of a server side software (e.g. Geoserver) and a client
side software (e.g. Openlayers), according to OGC stantlarHsis solution requires

more speci ¢ GIS knowledge and a greater understanding of software and standards for
establishing a mapping framework. The implementation of automatic web map creation
would have more requirements and depend more on server software components.

Shttp://www.opengeospatial.org/standards
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Chapter 7 1
Discussion and conclusion :

This work was conducted in part thanks to organizations such as the national Meteoralog-
ical Services and WMO, National Aeronautics and Space Administration (NASA), Na-
tional Climatic Data Center (NCDC), European Climate Assessment and Dataset Preject
(ECA&D), Global Precipitation Climatology Centre (GPCC), European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT), and the United States Na-
tional Oceanic and Atmospheric Administration (NOAA). The meteorological data pko-
vided by these organizations is available to the public and to the research community.
The spatio-temporal models were based on publicly available ground observations to-
gether with publicly available time series of atmospheric and surface re ectance images
(MODIS, Meteosat, GOES, GMS). Such data can be used to produce a new genekation
of detailed daily global maps of meteorological variables. Even though the positions of
meteorological stations are representative to describe the weather and climate in some
neighbourhood, the global geographical or feature space coverage is not representative
from the point of view of spatio-temporal statistics requirements or sampling strategies
(Heuvelink et al.2012. 17

Global spatio-temporal analysis of publicly available data sets (a collection of GS®©D
and ECA&D) shows that the observed high temporal, spatial and feature space clustering
of meteorological stations potentially represent a limitation of these data sets and could
further complicate the tting of accurate global spatio-temporal models. This implies
that sophisticated spatio-temporal techniques need to be used that can account far the
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Chapter Miscussion and conclusion

data clustering. The use of remote sensing and/or monthly images as covariates is one
solution to overcome clustering issues. The spatio-temporal regression kriging model
uses covariates for de-trending and is followed by the interpolation of regression residuals
. This interpolation step uses the covariance model integrally in space and time through the
incorporation of a spatio-temporal variogram. The applied covariance model in this thesis
takes into account pure spatial, temporal and spatio-temporal components of variability.
Such treatment can provide the most realistic estimate of the uncertainty so that unbiased
estimates of the global and local land air temperature and other meteorological variables
can be also be produced.

The presented model can be used for calibration of 8-day MODIS LST images by inte-
grating station observations together with geometrical temperature trends, elevations and
the topographic wetness index. The result of this treatment would afford the rst global
daily air temperature images at very high spatial and temporal resolution (1 km spatial and
1 day temporal resolution). The geometrical temperature trend (Eg. 4.3) presented in this
thesis could be a crucial covariate for real-time mapping or for temperature interpolation
for the dates before MODIS LST images has been launched.

Furthermore, globally tted models of daily temperatures could be used for regional or lo-
cal studies, e.g. where a limited number of ground observations are available so that some
referent global model of spatio-temporal variability is required. The models described in
this thesis can be obtained by installing theteopackage that has been mostly created
and maintained by the author.

Clearly, the presented computational framework could be used to produce a global archive
of the mean, minimum and maximum temperature images. The daily maps of temperature
could also serve as raster les in a similar fashion as climate layers from the WorldClim
project Hijmans et al.2005. This would require HUGE data storage and serving capac-
ities considering the amount of output pixels (10 years by 365 days by 3 meteorological
variables plus uncertainty maps). The service should also offer Web GIS functionalities
implemented through OGC standards.

This study discovers that the GSOD point data sets still contain many artefacts and pos-
sible gross errors. Therefore, the mapping accuracy can be improved by Itering station
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observations. Concerning the number of stations, this procedure should be done by us-
ing some automated method. One of the main objectives for the further development of
the meteopackage will be incorporation of an automated and tested algorithm for the
detection of outliers. 4

A future plan is to use the publicly available data sets shown in this thesis to model and
interpolate daily meteorological variables such as: precipitation, wind speed, snow depth,
meteorological indicators etc. at the spatial resolution of 1 km and temporal support of

1 day. WordDailyMeteo could be extended to offer all meteorological variables contained

in publicly available data sets. °

Presented approach in this thesis could be also used for climatic mapping. Figure 7.1
shows general climatic-mapping scheme based on spatio-temporal daily mapping in.con-
trast to classical climatic mapping approach. Classical approach assumes aggregaiion of
meteorological measurements to climatic variable and than spatial modelling and predic-
tion. WorldDailyMeteo approach, is based on the aggregation of daily maps, archiving
and offering daily weather images but also offering monthly, yearly or other climatic
global maps at very high spatial resolution. The climatic maps would be based on daily
spatial estimates, therefore, all daily measurements even from stations with time series
covering short period are incorporated into nal climatic estimate. 18

What would WorldDailyMeteo offer that other services do not provide: 19

1. WorldDailyMeteo maps would be of high spatial detail (1 km), high temporal reso-
lution (1 day; 10 years of maps) and with a global coverage; 21

2. WorldDailyMeteo predictions would be based on using state of the art geostatistical
methods (linear or GLM-based spatio-temporal regression-kriging with time series
of predictors - MODIS and similar RS images); 24

3. All target meteorological variables would be mapped using automated mapping
frameworks with a single global model for each target meteorological variable; 2

4. All target meteorological maps could be aggregated to climatic maps, at very vari-
ous temporal support (monthly, yearly, etc); 28
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FIGURE 7.1: A general spatio-temporal prediction framework. (Path#1) Classical cli-
matic mapping approch. (Path#2) Daily mapping and climatic aggregation, WorldDaily-
Meteo approch.

5. The produced time series (10 years of daily images) of the target meteorological
parameters could be analysed using time-series / Fourier analysis algorithms. We
could extract global, regional and local components of dynamics of meteorological
variables (per pixel);

Very high spatio-temporal resolution dataset offered from WordDailyMeteo, based on
cleaned publicly available data, could be used for analysing extremes of climate, in en-
vironmental modelling, precise agriculture, hydrological modelling, terrestrial biospheric

modelling, ect.
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