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Abstract
Faculty of Civil Engineering

Department of Geodesy and Geoinformatics

Automated Mapping of Climatic Variables Using Spatio-Temporal Geostatistical

Methods

Publicly available global meteorological data sets, from ground stations and remote sens-

ing, are used for spatio-temporal interpolation of air temperature data for global land ar-

eas. Publicly available data sets were assessed for representation and usability for global

spatio-temporal analysis. Three aspects of data quality were considered: (a) represen-

tation in the geographical and temporal domains, (b) representation in the feature space

(based on the MaxEnt method), and (c) usability i.e. �tness of use for spatio-temporal in-

terpolation (based on cross-validation of spatio-temporal regression-kriging models). The

results show that clustering of meteorological stations in the combined data set (GSOD

and ECA&D) is signi�cant in both geographical and feature space. Despite the geograph-

ical and feature space clustering, preliminary tested global spatio-temporal model using

station observations and remote sensing images, shows this method can be used for ac-

curate mapping of daily temperature. Around 9000 stations from merged GSOD and

ECA&D daily meteorological data sets were used to build spatio-temporal geostatisti-

cal models and predict daily air temperature at ground resolution of 1 km for the global

land mass. Predictions were made for the mean, maximum and minimum temperature

using spatio-temporal regression-kriging with a time series of MODIS 8 day images, to-

pographic layers (DEM and TWI) and a geometrical temperature trend as covariates. The

model and predictions were built for the year 2011 only, but the same methodology can be

extended for the whole range of the MODIS LST images (2001–today). The results show

that the average accuracy for predicting mean, maximum and minimum daily tempera-

tures is RMSE= � 2°C for areas densely covered with stations, and between� 2°C and

� 4°C for areas with lower station density. The lowest prediction accuracy was observed

http://www.bg.ac.rs
http://www.grf.bg.ac.rs/
http://www.grf.bg.ac.rs/UniWeb/catedraHome.jsp?l=1&id=3


in highlands (> 1000 m) and in Antarctica with a RMSE around 6°C. Automated map-

ping framework is developed and implemented asR packagemeteo. Likewise, package

plotGoogleMapsfor automated visualisation on the Web, base on Google Maps API is

developed.

Key words: spatio-temporal interpolation, spatio-temporal kriging, space-time variogram,

linear regression, MaxEnt, daily air temperature, MODIS LST, global model

Scienti�c area: Geodesy

Scienti�c sub-area: Geodetic cartography

UDC number: 007:528.9(043.3) ; 551.581(043.3)
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Rezime

Grad̄evinski fakultet

Odsek za geodeziju i geoinformatiku

Automatsko kartiranje klimatskih varijabli primenom prostorno-vremenskih

geostatisti�cih metoda

Javno dostupni meteorološki podaci, kako sa stanica tako i iz daljinske detekcije, korišćeni

su za prostorno vremensku interpolaciju temperature vazduha iznad površine Zemlje.

Zastupljenost i pogodnost javno dostupnih podataka je ocenjena, kroz tri aspekta kont-

role kvaliteta: (a) zastupljenost u geografskom i prostornom domenu, (b) zastupljenost

u karaktesti�cnom prostoru (feature space; bazirano na MaxEnt metodi), kao i (c) pogod-

nost koriš́cenja podataka za prostorno-vremensku predikciju (na osnovu kros-validacije

prostorno-vremnskog regresionog kriginga). Rezultati pokazuju da je kombinovani set

podataka (GSOD i ECA&D) zna�cajno klasteriran i u geografskom i u karakteristi�cnom

prostoru. Uprkos klasteriranju, preliminarni rezultati globalne interpolacije primenom

prostorno-vremenskog regresionog kriginga koristeći merenja sa stanica i snimke daljinske

detekcije su pokazali da se tako mogu dobiti precizne globalne karte dnevne tempera-

ture. Oko 9000 stanica kombinovanog seta podataka (GSOD i ECA&D) je korišćeno

za prostorno-vremensko geostatisti�co modeliranje i predikciju dnevnih temperatura u re-

zoluciji 1 km, iznad površine Zemlje. Za predikciju srednjih, minimalnih i maksimalnih

temperatura koriš́cen je regresioni kriging uz pomoćne prediktore: MODIS LST 8-dnevni

snimci, topografski lejeri (DEM i TWI) i geometrijski temperaturni trend. Model i predik-

cija se odnose na 2011 godinu, ali ista metodologija bi se mogla primeniti od 2001 godine

do danas (od kada su dostupni MODIS snimci). Rezultati pokazuju da je prose�cna ta�cnost

predikcije za srednju, minimalnu i maksimalnu temperaturu vazduha oko� 2°C za oblasti

gusto pokrivene stanicama i izmed̄u� 2°C i � 4°C za oblasti koje su slabo pokrivene stani-

cama. Najni�a ta�cnost predikcije je dobijena u planinskim predelima i na Antartiku, oko



6°C.Rsoftverski paket,meteo, je razvijen kao resenje za automatsko kartiranje. Razvijen

je i paketplotGoogleMapsza automatsku vizuelizaciju na Web-u, koristeći Google Maps

API.

Klju �cne re�ci: prostorno-vremenska interpolacija, prostorno-vremenski kriging, prostorno-

vremenski variogram, linearna regresija, MaxEnt, dnevne temperature vazduha, MODIS

LST, globalni model

Nau�cna oblast: Geodezija

U�a nau �cna oblast: Geodetska kartogra�ja

UDK broj: 007:528.9(043.3) ; 551.581(043.3)
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Chapter 11

Introduction2

One of the main applications of using data from meteorological stations is to produce3

maps showing spatio-temporal patterns of climatic variables, also referred as mapping4

climatic variables. The termmapping, in this thesis, is considered as an interpolation on5

regular grids that are also called raster grids, climatic images or surfaces. Chapter 2 de-6

scribes interpolation methods used in meteorology and climatology; they range from near-7

est neighbour methods, splines, regression and kriging, to neural networks and machine8

learning techniques. The most of used methods, and related works of global mapping at9

daily temporal resolution (see Chapter 2 for literature review on interpolation of climatic10

variables) uses only spatial interpolation. The reason for this purely spatial modelling of11

spatio-temporal phenomenons might be that the areas of spatial statistics (and spatial GIS12

modelling) have been much more developed in contrary to spatio-temporal statistics, able13

to model processes, essential dynamics. Similar, time series analysis have been developed14

and used mostly without considering spatial component of time series of observations.15

Spatio-temporal geostatisticshas made a breakthrough in the past decade with theo-16

retical concepts (Cressie and Wikle, 2011) and various examples of applications have17

been provided (Gething et al., 2007; Heuvelink and Grif�th, 2010; Heuvelink et al., 2012;18

Gräler et al., 2011; Hengl et al., 2012). An extension from purely spatial statistical mod-19

els to spatio-temporal models is a logical evolution of the �eld, especially since we know20

that most meteorological parameters vary both in space and time and that observations21

1



Chapter 1Introduction

are correlated in space and time. The �tting of spatio-temporal models and making pre-1

dictions using spatio-temporal covariates (regression-kriging) implies more than just the2

smoothing of station data. The insights obtained from the process are much richer and3

allow one to distinguish sources of variability and to isolate purely temporal, spatial and4

spatio-temporal components of variability. Moreover, we can predict values using spatio-5

temporal observations in individual domains such as the spatial domain (e.g. as daily map,6

pure spatial data),the temporal domain (predict missing values at a certain meteorological7

station in the form of a time series) and in the spatio-temporal domain as spatio-temporal8

full grid data as is demonstrated in the spatio-temporal class (data model) developed by9

Pebesma(2012). 10

A literature review shows that no group has previously attempted to interpolate daily11

values of meteorological variables using spatio-temporal regression-kriging with a time-12

series of remote sensing based covariates, especially at a �ne resolution of 1 km.Hengl 13

et al.(2012) describe a framework for space-time regression kriging interpolation of daily14

temperatures that makes use of a time-series of MODIS images, which are presented as15

a Croatian case study.Questions that remain include: 1) Can this methodology now be16

extended and improved? 2) How can daily maps of climatic elements at ground resolution17

of 1 km for the global land mass be produced? 3) Can this method be implemented using18

publicly available global data sets? 4) What remote sensing images and environmental19

layers can be used to model the trend? 5) Can we make an automated mapping procedure20

that can be applied to create an archive of global weather patterns at very high resolution21

for serving daily maps at 1 km and are similar toWorldClim. org ? (WorldClim.org as 22

a climatic repositoryHijmans et al.(2005). ) 23

Chapter 3 provides a review of publicly available meteorological data sets form ground24

stations and remote sensing. In addition, the chapter discusses the results of analysis,25

points to the possible problems with using this data for climatological mapping and sug-26

gests new directions of development in creating daily spatial grids for global land areas27

using the spatio-temporal regression kriging. International datasets from ground stations28

used in this thesis include the Global Surface Summary of Day (GSOD) disseminated29

by the National Climatic Data Center (NCDC) and the data set from the European Cli-30

mate Assessment and Data sets (ECA&D). This data is intended to be used for free and is31

unrestricted when used in research, education, and other non-commercial activities.32

2
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Predictions of the daily mean, the minimum and maximum air temperatures using spatio-1

temporal regression-kriging with a time series of MODIS 8 day images, the topographic2

layers (DEM and TWI) and a geometrical temperature trend as covariates is described in3

detail within Chapter 4. The methodology, accuracy assessment and prediction is made4

for year 2011, but the same methodology can be extended for the whole range of the5

MODIS LST images (2001–today).6

Automated mapping is a data driven approach to mapping with little or no human inter-7

action.In this thesis, geostatistical mapping is assumed and used, which mostly requires8

expert involvement in the mapping procedure. An automated mapping framework for the9

mapping daily meteorological observations using spatio-temporal regression kriging is10

developed and implemented in theR environment (R Development Core Team, 2012) as11

a package calledmeteo. The implemented framework, which also includes some special12

adaptations for climatic mapping, is described in the Chapter 5. The package source code13

is available onhttps://r-forge.r-project.org/projects/meteo/ .14

Chapter 6 presents the spatio-temporal visualisation of meteorological data usingplot-15

GoogleMaps(Kilibarda and Bajat, 2012), which is a part of the automated mapping16

framework, and also highlights isolated solutions for scienti�c cartographic communi-17

cation in climatic mapping research (Luković et al., 2013). Interactive web maps related18

to the results of this thesis were produced usingplotGoogleMapsand are available on19

http://dailymeteo.org/ .20

3
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Chapter 2 1

Methods for the interpolation of 2

climatic variables 3

In this chapter the basic principles of the spatial interpolation methods mostly used in4

climatology and meteorology are presented. 5

2.1 Introduction 6

An interpolation method is the process of estimating (assessing) the values of a target vari-7

able at any spatial or temporal location where the target variable has not been measured.8

The mapping of climatic variable is one of the most important tasks for many applications.9

The term mapping in this study is considered as an interpolation on regular grids that are10

also called raster grids, climatic images or surfaces. 11

The interpolation methods used in meteorology and climatology are quite diverse; they12

range from nearest neighbour methods, splines, regression and kriging, to neural networks13

and machine learning techniques (Tveito et al., 2006). Hartkamp et al.(1999); Tveito 14

et al.(2006) gives a review of the interpolation methods used in climatic/meteorological15

mapping (interpolation). There are also various studies reported in literature that describe16

comparisons of the most commonly used interpolation methods and are given byPrice 17

et al.(2000), Jarvis and Stuart(2001), Stahl et al.(2006) andHofstra et al.(2008). 18

4
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One of the main applications of using data from meteorological stations is to produce1

maps showing spatio-temporal patterns of climatic variables. This is not only interesting2

for predicting approaching events, but also to create an archive of weather patterns (so3

called “climate normals”). Images of weather conditions are commonly produced for4

different spatial and temporal supports, e.g. ranging from single day to 50 or 100-year5

time periods at the local, national and global scale. At the global scale, the �rst monthly6

images of land surface temperature at 0.5° decimal degrees resolution was produced by7

Legates and Willmott(1990). They used a collection of data consisting of 24,635 inde-8

pendent terrestrial station records, 2223 oceanic grid-point records and a series of inter-9

polations made using a spherically based interpolation procedure.Leemans and Cramer10

(1991) generated grids at the same resolution for mean monthly temperature, precipita-11

tion and cloudiness using a triangulation network followed by smooth surface �tting.New12

et al. (1999, 2000) mapped terrestrial climatic variables at 0.5° decimal degrees resolu-13

tion showing the monthly space-time variability of global land areas excluding Antarctica14

for the period 1901–2000.Mitchell and Jones(2005) further re�ned interpolation tech-15

niques to produce climatic grids for nine climate variables (temperature, diurnal tempera-16

ture range, daily minimum and maximum temperatures, precipitation, wet-day frequency,17

frost-day frequency, vapor pressure, and cloud cover) for the period between 1901–2002,18

on a monthly temporal scale. Further on,Hijmans et al.(2005) used a thin-plate smooth-19

ing spline on a collection of public meteorological data-sets of monthly records to produce20

global (land mass) climatic images at 1 km resolution for the period from 1960 to 1990.21

Becker et al.(2012) recently mapped monthly precipitation for the whole world using22

an empirical interpolation method based on angular distance weighting at resolutions of23

0.25°, 0.5°, 1.0° and 2.5° using data from the Global Precipitation Climatology Centre24

(GPCC).25

Examples of the most recent applications of interpolation methods on daily observation26

at regional or global scales are worth listed below. The �rst global terrestrial gridded data27

set of daily temperature averages and ranges, and daily precipitation has been developed28

by Piper and Stewart(1996) for use in terrestrial biospheric modelling. Daily station ob-29

servations, commencing from the year 1987, have been interpolated to a 1 by 1 degree30

grid (longitude, latitude) using a nearest neighbours interpolation technique.Frei and31

Schaer(1998) used an advanced distance weighting scheme commonly adopted for the32

5
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analysis of precipitation on a global scale to create a daily precipitation grid at 25 km res-1

olution. The produced maps covering the European Alps were based on a station network2

with more than 6000 stations within countries of the Alpine region. Global daily predic-3

tions of meteorological variables were produced byKiktev et al.(2003); Alexander et al. 4

(2006), who used an angular distance weighting technique to interpolate extreme daily5

precipitation and temperature indices onto a 2.5° latitude by 3.75° longitude grid.Caesar 6

et al.(2006) mapped daily maximum and minimum temperature anomalies using the same7

method and the same output resolutions asAlexander et al.(2006). There are now numer- 8

ous approaches to produce daily weather images with �ne resolutions at regional or local9

scales.Haylock et al.(2008) produced European-coverage maps of daily mean, minimum10

and maximum temperature and precipitation at 0.25° and 0.5° resolution using the Eu-11

ropean Climate Assessment and Dataset Project (ECA&D ). These maps were generated12

by �rst estimating monthly averages, whereby daily anomalies from those averages were13

interpolated using kriging and added back to monthly estimates (Haylock et al., 2008). 14

Van den Besselaar et al.(2011) mapped sea level pressure for Europe using the same data15

source and global kriging.Di Luzio et al. (2008) presented a method for mapping daily16

precipitation and temperature across conterminous USA at 2.5 arc-minutes (around 4 km)17

for the period of 1960–2001. Their method also combines interpolation (inverse distance18

weighting) of daily anomalies from respective gridded monthly estimates. In their case,19

interpolations were generated from the Parameter Elevation Regressions on Independent20

Slopes Model (PRISM). 21

The different interpolation methods listed above can be divided into several categories22

according to the fundamental mathematics they are based on. Classi�cation given by23

Tveito et al.(2006) is given here: 24

1. Deterministic methods, 25

2. Probabilistic methods, 26

3. Arti�cial neural networks, 27

4. Physical methods, 28

5. Hybrid methods. 29

6
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In this chapter the basic principles of the methods mostly used in climatology and me-1

teorology are presented. The presentation of the methods will be structured in sections:2

“Deterministic methods”, “Probabilistic methods” and “Arti�cial neural networks”. The3

described interpolation techniques, in this chapter, have been widely applied in spatial4

modelling and not just in meteorology/climatology. Two presented methods specially5

developed for meteorology and climatology are presented in a separate section entitled6

“Methods specially developed for meteorology and climatology”, and hybrid methods are7

described in the section “Probabilistic methods”. Physical methods are not included in8

the scope of this study.9

2.2 Deterministic methods10

Deterministic interpolation techniques create surfaces from measured points that are based11

on either the extent of similarity (inverse distance weighted) or the degree of smoothing12

(polynomial characteristics). Similar to other interpolation groups, deterministic interpo-13

lation techniques can be global or local. Global techniques calculate predictions using14

the entire set of observations in the domain of interpolation. Local techniques calculate15

predictions from the measured points within neighbourhoods smaller then the study area.16

These methods are exact interpolators (splines can be exact but not necessary) and the17

resulting surface is made to pass through the data values.18

The most used deterministic methods in meteorology and climatology are:19

1. Nearest neighbours,20

2. Triangulation,21

3. Inverse distance weighting,22

4. Splines and local trend surfaces,23

5. Thin plate splines.24

7
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2.2.1 Nearest neighbours 1

Assuming that the area of interpolation is divided into polygons, the nearest neighbour2

method predicts the value of a variable at a target point that depends on the accompanied3

polygon. Due to the fact that the area of interpolation can be divided into polygons in4

an in�nite number of ways, the Thiessen (or Dirichlet/Voronoi are also the same methods5

but with different names) method is used for dividing a domain of interpolation. Speci�-6

cally, it divides a test area into polygons using lines that are equidistant between pairs of7

observation stations. 8

The Thiessen method also has two other requirements when forming polygons. The �rst9

requirement is that each polygon contains only one observation point. The second re-10

quirement is that any unobserved location from the polygon is closer to its enclosed ob-11

servation than to any other observation or observations contained within other polygons.12

So, the area of the one polygon is considered as the area of a unique value of target vari-13

able, where by the value is the same as the observation enclosed within the polygon (see14

Figure 2.1). The predicted image (surface) is similar to a mosaic, depending only on geo-15

metrical distribution of observation. For more details about the nearest neighbours method16

seeRipley (1981); Isaaks and Srivastava(1989); Burrough and Mcdonnell(1998); Li and 17

Heap(2008). 18

The nearest neighbours method has rarely been used in meteorology and climatology19

in recent times. However, the method is widely used in hydrology for estimating areal20

precipitation, but gives poor accuracy in comparison to novel methods. 21

2.2.2 Triangulation 22

The triangular irregular network (also known as Triangulation) was developed for digital23

elevation modelling and is also a geometrical method. The area of interpolation is divided24

into a network of non-overlapping triangles between observation points (similar to the net-25

work of polygons in the nearest neighbours method) but the triangles are empty. Unlike26

the nearest neighbors method, observation points are vertices of the triangles, see Fig-27

ure 2.2. Triangle network creation follows Delaunay triangulation principals (for details28

and variants seeTsai(1993)). Simplistically, the method tends to avoid skinny triangles.29

8
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FIGURE 2.1: Sample of meteorological stations and accopanied Thiessen's polygons.
Projected in the Robinson projection system.

An added bonus is that each triangle will become part of a 3D surface (e.g. similar as in1

terrain modelling) if we consider observation values as third coordinates of the triangle2

vertices. As such, the constructed triangulated surface provides a surface representation3

of the target variable (estimated values at any location in study area).4

The triangulation method is ef�cient for estimation purposes but, as of late, is rarely used5

in meteorology and climatology. The main reason for this is that the method is very sen-6

sitive to the sampling design. The sampling design should cover all characteristic points7

of the target phenomenon, e.g.all the points where the phenomenon has local minimum8

or maximum. The approach is commonly used in geodesy and land surveying where to-9

pographic points are well designed and sample sizes are relatively large compared when10

compared to other disciplines. In contrast, sample sizes for meteorology and climatology11

are considerably smaller.12

2.2.3 Inverse distance weighting method13

The inverse distance weighting or inverse distance weighted (IDW) method estimates the14

values of a variable at an unobserved location using a linear combination of values at15

9
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FIGURE 2.2: Sample of meteorological stations and accopanied triangulation polygons.
Projected in the Robinson projection system.

sampled points. The weights of this linear combination are proportional to the inverse1

of the distance between the interpolated and measured points. These weights are then2

normalised so the sum for all stations is equal to 1 (within the search neighbourhood for3

local IDW) (Tveito et al., 2006). The formula for the IDW estimation at an unmeasured4

locations0 is: 5

ẑ(s0) =

m
å

i= 1

1
dp

i
z(si)

m
å

i= 1

1
dp

i

; (2.1)

wherez(si) the measured value at locationsi , m is number of observations used for pre-6

diction (if m= n wheren is total number of observation it is global IDW, but oftenm< n, 7

local IDW, the searching criteria is based on the maximum distance to used observations8

for estimation or maximum numbers of neighbouring observations),p is a power param- 9

eter,di is distance from estimated location toi-th observation. 10

Formula 2.1 shows that if the power parameter is higher, the nearby observation has a11

heavier weight and has more in�uence on the estimation. This means that higher power12

10
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parameters hardly decreases the in�uence of the observations that are far apart from the1

prediction location, because weight is de�ned as powered inverse distance. Therefore,2

the high power parameter gives the high local in�uence of closer observations (almost3

local interpolation) even if global IDW is used, because in�uence of distant observations4

is small. IDW is referred to as a “moving average” whenp is zero, “linear interpolation”5

when p is 1, “weighted moving average” whenp is not equal to 1 and “inverse distance6

squared method” whenp is two (Li and Heap, 2008). The choice of the parameterp is7

often arbitrary and gives a biased solution for the result of interpolation (Burrough and8

Mcdonnell, 1998). However. thep can be chosen on the basis of error measurement, e.g.9

root mean square error or minimum mean absolute (MAE) error, to optimize the IDW. The10

calculation of the optimal power parameter that is based on MAE is provided byintamap,11

R software package (Pebesma et al., 2010).12

IDW is frequently applied in climatology and meteorology (Tveito et al., 2006). The13

weakness of this very fast method is that the direct measurement of uncertainty can not be14

obtained and that the spatial dependency is only modelled by the inverse distance weights.15

2.2.4 Splines and local trend surfaces16

Mitas and Mitasova(1999) describes splines as part of variational interpolation methods:17

“The variational approach to interpolation and approximation is based on the assumption18

that the interpolation function should pass through (or close to) the data points and, at the19

same time, should be as smooth as possible. These two requirements are combined into20

a single condition of minimising the sum of the deviations from the measured points and21

the smoothness.”22

The interpolation function consists of a series of polynomials with each polynomial of23

degreep. For degreep is 1, 2, or 3, a spline is called linear, quadratic or cubic respectively.24

The local trend surface �ts a polynomial surface for each predicted point when using25

only nearby observations. The local in�uence is ensured by using weighted least squares,26

whereby the local point is the most in�uential (Venables et al., 1994).27

11
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2.2.5 Thin plate splines 1

Thin plate splines (TPS), previously known as “laplacian smoothing splines”, is a very2

popular interpolation method in climatic mapping (Hartkamp et al., 1999; Li and Heap, 3

2008). “The TPS function minimises the surface curvature and imitates a steel sheet4

forced to pass through the data points: the equilibrium shape of the sheet minimises5

the bending energy that is closely related to the surface curvature” (Mitas and Mitasova, 6

1999). In simpler words, the TPS function minimises observation deviations from surface7

and smoothing. In climatological applications, the smoothing parameter is calculated by8

minimising the generalised cross validation function (Li and Heap, 2008). 9

2.3 Probabilistic methods 10

This group of methods is based on a probabilistic framework in which expected values11

are of primary importance (Isaaks and Srivastava, 1988). This means that the measured12

observations represent one of the possible realisations of reality when considering the13

randomness of observed values. The resulting interpolation produces the expected value14

along with its associated uncertainty and con�dence intervals for the prediction. The15

following section brie�y describes linear regression and geostatistics. 16

2.3.1 Linear regression 17

Linear regression explores a possible linear relation (this is stochastic not functional re-18

lationship) between the primary variable (interpolated variable, e.g. temperature) and the19

explanatory variables (e.g. geographical coordinates, elevation, distance to coast line),20

which are easy to measure (or already known) over the domain of interpolation (Burrough 21

and Mcdonnell, 1998). These explanatory variables are usually referred to as secondary22

variables, predictors, auxiliary variables, ancillary variables or covariates. Spatial inter-23

polation is often interpolation on a regular grid, so the explanatory variables should also24

be regular grids that cover the domain of interpolation. In further text below, the explana-25

tory variable is referred to as covariate. Linear regression is often used in geostatistical26

12
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applications for de-trending, where the part of variation estimated by regression is called1

the deterministic part of a target variable phenomenonZ.2

The linear regression model is given by:3

m(s) =
p

å
i= 0

bi fi(s); (2.2)

where thebi are unknown regression coef�cients,s any location in domain of interpola-4

tion, the fi covariates that must be exhaustively known over the spatial domain, andp is5

the number of covariates. Covariatef0 is taken as unity, resulting inb0 representing the6

intercept.7

2.3.2 Geostatistics8

Webster and Oliver(2007) gives a very interesting history of geostatistics. It is is usually9

believed that origin of geostatistics were in mining (Krige, 1951), but the �rst origin was10

actually in agronomy (Mercer and Hall, 1911, in their article shows yields crop plots and11

ideas about spatial dependence, correlation range ect.) and the second was in meteorology12

(Kolmogorov, 1931).13

Kolmogorov tried to describe and predict turbulence of the air and weather in his stud-14

ies. He recognized a spatial correlation phenomenon and modelled it using a `structure15

function'. He also tried to apply this function for an optimal and unbiased interpola-16

tion method with minimum variance. Kolmogorov's study is published with the name17

“Interpolated and extrapolated stationary random sequences”, in 1942. Inspired by Kol-18

mogorov, Gandin (1963) developed a method for use in synoptic meteorology called opti-19

mal interpolation (His research was entitled “Objective analysis of meteorological �elds”)20

and the method is very similar to kriging, which was developed at same time by Matheron21

(1963) in France and is based on Krige's practical studies. Geostatistics includes several22

methods that use kriging algorithms for estimating continuous variables in space (2D and23

3D) and the space-time domain (2D + time).24

13
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This section provides a short description of methods published in books written byIsaaks 1

and Srivastava(1989); Cressie(1993); Burrough and Mcdonnell(1998); Webster and 2

Oliver (2007); Hengl(2007); Bivand et al.(2008); Li and Heap(2008). 3

In geostatistics, the spatial correlation is usually modelled by a variogram. A variogram4

plots semi-variance as a function of distance. The term semivariogram and variogram are5

mostly considered as synonymous in geostatistical practices. 6

For processes modelled using geostatistics, the stationary assumption is considered. The7

intrinsic stationary assumes that the observationZ can be decomposed into a mean and a8

residual part (Burrough, 1998; Hengl, 2009): 9

Z(s) = m+ e0(s)+ e0 (2.3)

wherem is constant mean ande0(s) is the spatially correlated stochastic part of variation10

ande0uncorrelated stochastic component (pure noise) and: 11

E(Z(s)) = m (2.4)

and spatial dependency is de�ned by the variogram as: 12

g(h) =
1
2

E(Z(s) � Z(s+ h))2 (2.5)

whereh is Euclidean distancejhj, E denotes mathematical expectation andsis any location 13

in the domain of interpolation. 14

The variogram model can be understood as measure of the average dissimilarity between15

data separated in the spatial domain of an interpolation. Typically, we assume that pro-16

cesses occurring spatially close to each other are stronger related than processes occurring17

farther apart (Tobler 's law). 18

The sample (experimental) semivariogramĝ(h) can be estimated from a set of obser-19

vations by calculating the semivariance from observation pairsz(si) andz(si + h), here 20

referred to as separation groups whereh can be interpreted as distance intervals (e.g. all21

14
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pairs separated from 50-70 km are taken as one group), and every separation group con-1

tainsn(h) number of pairs.2

ĝ(h) =
1
2

�
1

n(h)

n(h)

å
i= 1

(z(si + h) � z(si))2 (2.6)

The sample variogram is used for the �tting of a variogram model. The most used vari-3

ogram models are:Nugget, Exponential, Spherical, Gaussian, Linear, andPower.4

When a variogram model is known (modelled),a spatial covariance function is also implic-5

itly known and kriging interpolation can be performed. An ordinary kriging interpolator6

(base for many kriging variants) is a linear combination of measured values with weights7

depending on the spatial correlation between the observations. It is an unbiased interpola-8

tor since it aims at minimizing the variance of the errors and the mathematical expectation9

of the errors is zero.10

Kriging covers a range of least-squares methods of spatial prediction.Li and Heap(2008)11

shortly desribes 22 geostatistical interpolators in their applications andTveito et al.(2006)12

remarks several interpolators as important for meteorological/climatic mapping:13

1. Ordinary kriging,14

2. Universal kriging,15

3. Kriging with external drift,16

4. Residual kriging,17

5. Indicator kriging,18

6. Cokriging.19

Hengl(2007) shows that both universal kriging, kriging with external drift and regression20

kriging (residual kriging) are basically the same technique.Bivand et al.(2008) explaine21

ordinary, universal and kriging with external drift as a special case of universal kriging22

that depends on trend computation over a domain of interpolation. In the text below,23

ordinary, regression, indicator and cokriging are brie�y presented.24

15
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2.3.2.1 Ordinary kriging 1

Ordinary kriging is by far the most common type of kriging in practice (Webster and 2

Oliver, 2007). An ordinary kriging interpolator is a linear combination of observations3

that are a weighted sum of nearby observation. The weights depend on the variogram4

model and the sum of weights is one. These weights are estimated under the condition5

that kriging variance is minimal. 6

The ordinary kriging estimator for variableZ at the locations0 is (Isaaks and Srivastava, 7

1989; Webster and Oliver, 2007): 8

Ẑ(s0) = ˆl 0
T

�
h
Z(s1) � � � Z(sn)

i T
(2.7)

where ˆl 0 is the estimated vector of weights for the locations0, n is the number of obser- 9

vation of the variableZ. 10

The kriging variances and their square roots, the kriging errors, can be mapped similarly11

and give an idea of the reliability of the maps of estimates. The reliability of ordinary12

kriging or any kriging interpolator depends on how accurately the variation is represented13

by the chosen spatial model. 14

The varinace formula for variableZ at the locations0 is (Isaaks and Srivastava, 1989; 15

Webster and Oliver, 2007): 16

s 2(s0) = ˆl 0
T

�
h
g(s1;s0) � � � g(s1;s0) 1

i T
(2.8)

The formula for theˆl 0 is (Isaaks and Srivastava, 1989; Webster and Oliver, 2007): 17

"
ˆl 0

m

#

=

2

6
6
6
6
6
4

g(s1;s1) � � � g(1n;sn) 1
...

...
...

...

g(sn;s1) � � � g(sn;sn) 1

1 � � � 1 0

3

7
7
7
7
7
5

� 12

6
6
6
6
6
4

g(sn;s0)
...

g(sn;s0)

1

3

7
7
7
7
7
5

(2.9)
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the additional parameterm is a Lagrange multiplier, see details inIsaaks and Srivastava1

(1989).2

Ordinary kriging has become very popular in climatology and meteorology and is often3

applied as the stochastic component in residual interpolation (Tveito et al., 2006).4

2.3.2.2 Regression kriging5

Regression kriging uses a spatial multiple regression for de-trending so that the observed6

phenomenon is decomposed into two parts that are namely 1) the deterministic part (trend)7

and 2) the residual (regression residuals) stochastic part. Regression kriging assumes that8

deterministic and stochastic components of spatial variation can be modelled separately.9

It is mathematically equivalent to the interpolation method variously called “universal10

kriging” and “kriging with external drift”, where auxiliary predictors are used to directly11

solve the kriging weights (Hengl, 2007).12

The regression kriging model for a spatial variableZ at any of the locationss is:13

Z(s) = m(s)+ e0(s)+ e00 (2.10)

wherem(s) is the linear regression trend de�ned by Eq. 2.2,e0(s) is the regression resid-14

ual, stochastic component spatially correlated ande00the pure noise component of the15

observed variable. The sample variogram needs to be calculated from residuals.16

The regression kriging estimator for variableZ at the locations0 is:17

ẑ(s0) = m̂(s0) + ê(s0) =
p

å
k= 0

b̂k � fk(s0) +
n

å
i= 1

l i � e(si) (2.11)

where theb̂i are estimated regression coef�cients, thefi covariates that must be exhaus-18

tively known over the spatial domain, andp is the number of covariates. Covariatef019

is taken as unity, resulting inb0 representing the intercept. Thel i are kriging weights20

determined by the spatial dependence structure ande(si) is the regression residual from21

an observed locationsi .22

17



Chapter 2Methods for the interpolation of climatic variables

The regression coef�cients can be estimated using ordinary least squares or Generalized1

Least Squares (GLS), (Cressie, 1993): 2

b̂GLS=
�

qT � C� 1 � q
� � 1

� qT � C� 1 � z (2.12)

whereb̂GLSis the vector of estimated regression coef�cients using GLS,C is the covari- 3

ance matrix of the residuals,q is a matrix of covariate values at the sampling locations4

andz is the vector of measured values of the target variable. 5

The Eq. 2.11 can be rewritten in matrix form and the kriging estimator at the locations0 6

is (Christensen, 2001; Hengl, 2009): 7

ẑ(s0) = qT
0 � b̂GLS+ l T

0 � (z� q � b̂GLS) (2.13)

where ˆl 0 is the estimated vector of weights for the locations0. Prediction variance is 8

de�ned (Christensen, 2001; Hengl, 2009): 9

ŝ 2(s0) = ( C0 + C1) � cT
0 � C1 � c0

+
�

q0 � qT � C� 1 � c0

� T
�
�

qT � C� 1 � q
� � 1

�
�

q0 � qT � C� 1 � c0

� (2.14)

whereC0 + C1 is the sill variation andc0 is the vector of covariances of residuals at the10

unvisited location,C is the covariance matrix of the residuals,q is a matrix of covari- 11

ate values at the sampling locations,(q0 is a matrix of covariate values at the unvisited12

location. 13

2.3.2.3 Indicator kriging 14

Typically, indicator kriging is used for mapping binary variables, whereby such variables15

denote the presence or absence of a phenomenon, e.g. precipitation occurrence.The cre-16

ation of binary data may be through the use of a threshold for continuous data, e.g. map-17

ping the precipitation higher than the de�ned threshold. Another example of binary data18

18
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creation is the mapping of radiation higher than the allowed limit of radioactivity from1

the continuous radioactivity observations. Conversion of continuous to binary variable is2

given:3

w(s) =

(
1 if z(s) < zc

0 otherwise
(2.15)

The indicator variable isw(s) and is derived from a continuous variable,z(s), which is4

achieved quite simply by scoring binary values depending on speci�ed thresholdzc.5

Converting a continuous variable into an indicator clearly loses much of the information6

in the original data and it might seem prodigal to transform quantitative data in this way7

(Webster and Oliver, 2007). This is often the case when many zero data points are in8

observational data sets and the data distribution is far from a normal distribution; as a9

result, indicator kriging can then be used for delineation of zero and non-zeros areas.10

For example, the indicator kriging technique is used �rst to delineate the raining areas11

from rain gauge observations and then ordinary kriging or regression kriging is used to12

determine the rainfall estimates in raining areas.13

The results of the indicator kriging are values lying between 0 and 1. Such values are14

effectively the probability levels given to the data. Zero probabilityZ(s) < zc is de�ned15

with 0 and 100% probability with 1.16

2.3.2.4 Cokriging17

Cokriging estimator beside primary variable uses additional variable(s) that exhibit some18

correlation with the primary variable. An additional (secondary)variable is known at sam-19

pled locations and often on the more discrete point in the domain of interpolation, but20

limited number of points,not over all domain of interpolation like covariates in regression21

kriging. Cokriging covariance matrix depends on the variogram and the cross-variogram22

model. The cross-variogram model shows a correlation of the spatial variability of a target23

variable with the secondary variable, see Eq 2.16. Cross-correlated information contained24

in the secondary variable should help reduce the variance of the estimation errors and25

19
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the result should not be worse than univariate kriging, which does not account for cross-1

correlation. 2

The sample cross-semivariance (or cross-variogram)ĝ12(h) for two variables can be esti- 3

mated from the observations by calculating the semivariance from the observation pairs4

of z1 andz2 , n(h) (as described previously in the methods section), which is the number5

of point pairs separated withh, distance in Euclidian space. 6

ĝ12(h) =
1
2

�
1

n(h)

n(h)

å
i= 1

(z1(si + h) � z1(si))( z2(si + h) � z2(si)) (2.16)

It was shown that cokriging gives better results in comparison to the univariate kriging7

approach particularly when spatial correlation between secondary variables (covariables)8

and the variable of interest is high and when the covariables are oversampled with respect9

to the target variable (Tveito et al., 2006). 10

2.4 Methods specially developed for meteorology and cli-11

matology 12

2.4.1 PRISM 13

PRISM is an acronym (Parameter Regression on Independent Slopes Model) for a method14

developed byDaly et al.(1997). PRISM is a knowledge based method that uses point ob-15

servations, digital elevation models and other spatial datasets to produce climatic maps16

based on climate-elevation regressions. A detailed description of the PRISM knowledge17

based method is given byDaly et al.(2002). PRISM is based on a linear regression func-18

tion accounting the dominant in�uence of elevation on the climatic maps. The method in-19

terpolates the target variable using a weighted combination of stations data, where weights20

for a speci�c location depend on many distinct types of spatial information, e.g. distance21

(from station to grid point), elevation, cluster, vertical layer (includes a two-layer of atmo-22

sphere representation), topographic facet (e.g. rain shadows, windward sides ect.), coastal23

proximity, and effective terrain weights (expert based). 24

20
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Tveito et al.(2006) summarise the PRISM advantage in comparison with traditional meth-1

ods:2

“ In a comparison with kriging and detrended interpolation PRISM was shown to be the3

preferable method in regions with sparse station networks and relatively low precipitation4

gradients, and very powerful in areas where the station network is unrepresentative for5

the variation in topography. The more traditional methods showed better results in the6

areas with a very dense network, where the variability due to the terrain is represented by7

the stations.”8

2.4.2 AURELHY9

AURELHY stands for “Analyse Utilisant le RElief pour l'Hydrométéorologie” (Topography-10

based analysis for hydrometeorology). In this method, the local topography is used to11

explain variables by multiple linear regression and regression residuals are interpolated12

by ordinary kriging. This can be considered as a typical regression kriging method.The13

AURELHY method was introduced by Meteo France (Benichou and Le Breton, 1987).14

There are many similar examples of regression kriging like methods that are named dif-15

ferently, e.g. MISH (Meteorological Interpolation based on Surface Homogenized Data16

Basis) recently developed at the Hungarian Meteorological Service.17

2.5 Arti�cial neural networks18

Arti�cial Neural Networks (ANN) is machine learning technique used for data analysis19

and modelling in many �elds and have been recently applied in spatial prediction. The20

machine learning algorithms model speci�c phenomena using an empirical approach for21

�nding the relation of the input and output parameters via a computer program. ANN22

computing techniques are adaptive and “learning by example" replaces traditional “pro-23

gramming" in solving problems. In traditional programming, the modelling process is24

coded into the computer program based on the physical or statistical model (stochastic or25

functional relationship is de�ned). In contrast, themodel is unknown to the user in the26

“learning by example" approach. Instead, software that uses a mathematical/statistical27

21
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FIGURE 2.3: Simple model of arti�cial neural networks

model of optimisation synthesizes the relationship between input and output parameters1

for the user. 2

The application of machine learning in spatial prediction and analysis is given byKanevski 3

et al.(2009) in the book “Learning for Spatial Environmental Data: theory, applications4

and software”, where many applications in climatic mapping and a short description of5

ANN are supplied . There are many applications of the ANNs in meteorological/climatic6

mapping and some of the �rst studies cited areHsu et al.(1997); Demyanov et al.(1998); 7

Antonić et al.(2001). 8

ANN are inspired by the structure of the biological neural network that are composed of9

a set of numerous interconnected elements that process information (impulses, signals).10

ANN uses a set of non-linear functions as the so called processing elements (neurons,11

cells or nodes). The input information (signal, set of known parameters, e.g. longitude,12

latitude, elevation) are passed to nodes (non-linear functions) and the target variable (e.g.13

temperature) is modelled as a linear combination of the nodes (non-linear functions). Fig-14

ure 2.3 shows a simple model of the ANN. 15

The blue circles from Figure 2.3 represent the input parameters in a similar fashion as16

regression known over the domain of interpolation (e.g. elevation, longitude, latitude),17

the red circles represent the nodes (neurons). The nodes are functions de�ned generally18

by formula: 19
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f (x;w) = f (
K

å
i= 1

wixi + b) (2.17)

wherexi are some elements (some predictors) of the input vectorx , wi are weights and b1

is bias passed to the functionf , so called transfer function. Example of transfer function2

is hyperbolic tangent:3

tanhx =
sinhx
coshx

=
ex � e� x

ex + e� x (2.18)

Therefore, the resulting circle (the green one depicted in Figure 2.3) is the prediction4

representing the linear combination of processing components (nodes). Thus, the weights5

from the Eq. 2.17 are essential parts of the ANN technique since they are �tted (tuned) by6

the ANN algorithm to match certain criteria that is based on reducing error from predicted7

and observed values.8

The most frequently used neural networks consist of multi-layers, which contain several9

hidden layers of neurons that are fully connected. The step by step procedure for using a10

multilayer neural network in spatial interpolation is given byKanevski et al.(2009), who11

strongly recommend using a combination of geostatistical and ANN approaches.12
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Chapter 3 1

Publicly available global meteorological 2

data sets and preliminary 3

spatio-temporal analyses1 4

The chapter reviews publicly available global meteorological data sets from ground-based5

stations and/or remote sensing systems, prepared and maintained by national and interna-6

tional organizations: the National Aeronautics and Space Administration (NASA), Global7

Precipitation Climatology Centre (GPCC), European Organisation for the Exploitation of8

Meteorological Satellites (EUMETSAT), and United States National Oceanic and Atmo-9

spheric Administration (NOAA) with focus on available data. A merge of the Global10

Surface Summary of Day (GSOD) and the European Climate Assessment & Dataset11

(ECA&D) consisting of 10,695 stations for the year 2011 were assessed for represen-12

tation and usability for global spatio-temporal analysis. Three aspects of data quality13

were considered: (a) representation in the geographical and temporal domains, (b) rep-14

resentation in the feature space (based on the MaxEnt method), and (c) usability i.e. �t-15

ness of use for spatio-temporal interpolation (based on cross-validation of spatio-temporal16

regression-kriging models). The results show that clustering of meteorological stations in17

the combined data set is signi�cant in both geographical and feature space. Most of the18

1Based on article: Kilibarda M, Per�cec Tadíc M, Hengl T, Lukovíc , Branislav B (2013?) Publicly
available global meteorological data sets: sources, representation, and usability for spatio-temporal analysis.
Under review inInternational Journal of Climatology
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distribution of the stations (84%) can be explained by population density and accessi-1

bility maps, also with elevation, showing that higher elevations areas are less covered2

with stations, as spared populated and inaccessible areas. Although a spatio-temporal3

regression-kriging model of mean daily temperature on 8-day MODIS LST images pro-4

duced average global accuracy of 2–3°C, prediction for polar areas and mountain chains5

was 2 times worse than for areas densely covered with meteorological stations. Despite6

the geographical and feature space clustering, the presented global spatio-temporal model7

using station observations and remote sensing images can be used for production of global8

mean daily air temperature images at very high resolution.9

3.1 Introduction10

Publicly available meteorological and/or climate data are also one of the foundations of11

democracy. Combine open access data with the open source software tools and everyone12

can build his/her opinion about global change. The same way anyone is now able to zoom13

into the Ikonos and QuickBird images available via the Google Engine (Butler, 2006), and14

witness deforestation or massive land degradation (possibly not reported anywhere yet!),15

anyone should also be able to plot meteorological variables per station, per region, for16

any given selection, and identify possible changes and trends. Fortunately,“open-access17

climate science is becoming easier than ever”(Kleiner, 2011). There are now multiple18

data portals where anyone can download original meteorological data in a variety of for-19

mats. Some of the major U.S. and global open meteorological data sources have been20

reviewed byYang et al.(2010). The most popular sources of freely available satellite21

data for agro-climatic application have been described byToulios and Stancalie(2011).22

Becker et al.(2012) provide a review of global precipitation data sets and their limitations23

for global change analysis. Recently, several data portals have been launched to support24

free exchange of climatic and meteorological data sets. The University Corporation for25

Atmospheric Research (UCAR) Climate Data Guide2, for example, is a repository for the26

climate community supporting a wide range of observational data sets and their appropri-27

ate use in analyzes and climate model evaluation. The data comprises ground and satellite28

observations and re-analyzes and model simulations with links to sources of data. Royal29

2https://climatedataguide.ucar.edu
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Netherlands Meteorological Institute (KNMI) Climate Explorer portal3 is another source 1

of data and tools for climate research. In the framework of the Berkley Earth Project4, 2

monthly temperature observations from 16 sources, including the National Climatic Data3

Center (NCDC) data, were used to produce average, minimum and maximum temperature4

anomaly grids. 5

It is for example well know that meteorological stations are often allocated to represent6

provide higher density information for areas of high population density. Consequently,7

mountains and uninhabited areas are often miss-represented in the national observation8

networks. See for example maps of station location used byVose et al.(1992); Peterson 9

and Vose(1997); Klein Tank et al.(2002) and/orLawrimore et al.(2011). In addition to 10

the problem of station clustering, most spatial prediction methods do not consider varying11

uncertainty in input data and its effects on the �nal outputs. Most of the climate grids12

that can be �nd on the data portals listed above have no uncertainty measures attached,13

or the uncertainty is not spatially assessed. This is obviously a problem because the14

data quality is an important aspect for decision making. The scale of global or regional15

temperature change is often very �ne (e.g. 0.2–0.5°C) and high uncertainty can lead to16

misinterpretation of produced patterns (Rohde et al., 2012). 17

The national budgets for weather monitoring in the developing countries are of course very18

limited. Consequently, the representation of stations globally does not necessarily re�ect19

complexity of climate. This is a well know paradox in ecology that we probably know20

the least about the areas of the highest ecological and climatic complexity (Chapman, 21

2005). Thus, consistent and harmonized (unbiased) grids are needed for global analysis22

and climatic planning. But can we produce such harmonized grids using the ground and23

remote sensing data we have at the moment at all? 24

In this paper we look at the general usability of global meteorological data sets com-25

ing from ground-based stations and/or remote sensing systems which are of interest for26

spatio-temporal analysis. The �rst part of the paper provides a review of the available me-27

teorological data sets. The second part shows the results of analysis, points the possible28

3http://climexp.knmi.nl
4http://www.berkeleyearth.org
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problems with using this data for climatological mapping and suggests direction of de-1

velopment of daily spatial grids for global land areas using the spatio-temporal regression2

kriging.3

We focus on three important aspects of publicly available data: (a)content, (b) repre-4

sentation, and (c)suitability for spatio-temporal interpolation. For this purpose we have5

merged GSOD and ECA&D station observation, as clean and consistent meteorological6

(point), and then run a number of standard spatial analysis operations to determine what7

could be possible problems with using the global data sets for spatio-temporal interpola-8

tion and time-series analysis. The spatio-temporal regression kriging model on MODIS9

LST 8 day images is made just for mean daily temperature records for a year 2011.10

3.2 Measurements at ground stations11

Climate research relies heavily on the records from instruments at these near-surface12

weather stations (Peterson and Vose, 1997), as the most accurate and reliable measures13

of weather. Although, ground station measurements are the most accurate and the most14

reliable records of the weather at near surface, they are the only one available records15

of spatial and temporal variability of climatic variables to 1960, when the �rst weather16

remote sensing mission had been lunched by NASA.17

Flowing sections describes publicly available data sets at global or near global coverage.18

3.2.1 NCDC's Global Surface Summary of Day (GSOD)19

The Global Surface Summary of Day (GSOD) data set is produced and archived at the20

NOAA's National Climatic Data Center (NCDC) under the codeNCDC DSI-9618. The21

input data used in building GSOD are the Integrated Surface Data (NCDC DSI-3505),22

which includes global hourly data obtained from the US Federal Climate Complex (FCC)23

consisting of about 27,000 stations.24

GSOD (Fig. 3.1) is certainly the most consistent and probably still the largest publicly25

available international station data sets. It contains daily measurements for a list of 1126
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meteorological parameters of several climatic variables (since 1929): temperature, hu-1

midity, pressure, wind, precipitation (liquid and solid) and phenomena: 2

1. mean, minimum and maximum temperature (precision of 0.1°F), 3

2. mean dew point (0.1°F), 4

3. mean atmospheric pressure and mean sea level pressure (0.1 mb), 5

4. mean visibility (0.1 miles), 6

5. mean wind speed, maximum sustained wind speed and maximum wind gust (0.1 knots),7

6. precipitation amount (0.01 in), 8

7. snow depth (0.1 in), 9

8. and an indicator (class) for occurrence of fog, rain or drizzle, snow or ice pellets,10

hail, thunder, and tornado/funnel cloud. 11

This data set is continuously being updated so that the latest daily summary data are12

normally available 1–2 days after the date-time of the observations used in the daily sum-13

maries. The data summaries provided in the GSOD are based on data exchanged under the14

World Meteorological Organization (WMO ) World Weather Watch Program, following15

the WMO Resolution 40 (WMO-No. 837, 1996). This allows WMO member countries to16

place restrictions on the use or re-export of data for commercial purposes outside of the17

receiving country. The GSOD data is intended for free and unrestricted use in research,18

education, and other non-commercial activities. 19

3.2.2 NCDC's Global Historical Climate Network Dataset 20

The previously mentioned GSOD together with more than 20 other sources are part of the21

world's largest collection of daily climatological data that is theGHCN (Global Histori- 22

cal Climatology Network)-Daily database (GHCN-D). It contains historical data on daily23

temperature, precipitation and snow over the global land areas and it is updated daily24

where possible. One or more of the 40 meteorological elements (maximum/minimum25
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temperature, precipitation, snowfall, snow depth, snow water equivalent, wind maximum,1

cloudiness, etc.) are collected on more than 80,000 stations in 180 countries and territo-2

ries (Menne et al., 2012). GHCN-D is especially useful for monitoring the frequency and3

magnitude of extremes due to high temporal resolution. 4

The GHCN-Monthly (GHCN-M) temperature data set was �rst developed in the early5

1990s (Vose et al., 1992). A second version was released in 1997 following extensive6

efforts to increase the number of stations and length of the data record (Peterson and 7

Vose, 1997). GHCN-M version 3 released in 2011 focused on four areas (Lawrimore 8

et al., 2011): 9

(a) consolidating duplicate station records; 10

(b) improving station coverage, especially during the 1990s and 2000s; 11

(c) enhancing quality control, and 12

(d) applying a new bias correction methodology that does not require use of a compos-13

ite reference series. 14

The version 3 currently contains monthly mean temperature, monthly maximum temper-15

ature and monthly minimum temperature. The station network for the time being, is the16

same as GHCN-M version 2 (NCDS, 2012). GHCN-M version 2 has data for precipitation17

(20,590 stations, at precision of 0.1 mm), mean temperature (7280 stations, at precision18

of 0.01°C; Fig. 3.2), and minimum and maximum temperature (4966 stations, at precision19

of 0.01°C). 20

The GHCN-M has geographical station information such as latitude, longitude, elevation,21

station name, etc., and also extended metadata information, such as surrounding vegeta-22

tion and similar5. 23

3.2.3 European Climate Assessment & Dataset 24

The largest European publicly available meteorological data set is the European Climate25

Assessment and Dataset Project (ECA&D ). The idea of ECA&D project was to provide26

5ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/README
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uniform analysis methodology to daily observational series from 62 European countries1

and 6596 European and Mediterranean meteorological stations (Klein Tank et al., 2002). 2

Fig. 3.3 shows the geographical distribution of stations with daily time series, through-3

out Europe and the Mediterranean (around 2700 stations). The number of observed daily4

climatic elements varies in geographic and time domain. This data set contains measure-5

ments for the following meteorological variables and their parameters: 6

1. minimum, mean and maximum temperature (resolution of 0.1°C), 7

2. humidity (1 %), 8

3. mean sea level pressure (0.1 hPa), 9

4. mean wind speed (0.1 m/s), wind direction (degrees), maximum wind gust (0.1 m/s),10

5. precipitation amount (0.1 mm), 11

6. snow depth (1 cm), 12

7. cloud cover (oktas), 13

8. sunshine duration (0.1 hours). 14

Only a portion of this data can be downloaded and used freely for non-commercial re-15

search. On the other hand, licensed daily data are used together with the publicly available16

daily data to calculate derived value-added products, such as indices of extremes or daily17

maps of gridded data (E-OBS) available from the ECA&D project web page6. 18

3.2.4 Aviation Routine Weather Report (METAR) 19

Another station data set of interest for global analysis is distributed as the international20

standard code format for hourly surface weather observations —METAR . METAR roughly 21

translates from French asAviation Routine Weather Reportand is predominantly used by22

pilots in ful�llment of a part of a pre�ight weather brie�ng, and by meteorologists. Typ-23

ical METAR report contains data for temperature, dew point, wind speed and direction,24

6http://eca.knmi.nl/documents/ECAD_datapolicy_v5.pdf
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precipitation, cloud cover and heights, visibility, and barometric pressure. Current data,1

original and decoded, for individual stations are available from the US National Weather2

Service (NWS) FTP site7. 3

Historical data of METAR reports are not available from of�cial FTP site. Current ob-4

servations in KML format8 are available from the NWS web site showing also the largest5

density of observations in US and Europe. 6

3.2.5 Climatic Research Unit (CRU) land station temperature database7

In addition to the meteorological data at point support, a number of data sets is available8

also at block supports. For example the Climatic Research Unit (CRU), University of 9

East Anglia, UK derived several gridded monthly temperature products covering the land10

land/or sea regions on the 5° by 5° grid. These are referred to as the CRU-TEM data sets:11

CRUTEM3 and the new CRUTEM4 (from March 2012) land air temperature anomalies12

on a 5° by 5° grid (Jones et al., 2012), and their (variance) adjusted versions CRUTEM3v13

and CRUTEM4v. CRU and UK Met Of�ce Hadley Centre have also produced combined14

land and marine (sea surface) temperature anomalies on a 5° by 5° grid (HADCRUT3)15

and associated variance adjusted versions of HadCRUT3, HadCRUTv3. 16

The station data used to generate those gridded �elds are available from the CRU website9. 17

For example, CRUTEM4 underlying data set contains 5583 monthly station temperature18

time series some extending back to 1850. They cover the global land area, with relatively19

rough positional precision of the station. The location of stations are available at 0.120

degrees precision in geographic coordinates, that is around 10 km at middle geographic21

latitudes. HadCRUT and CRUTEM station data had assigned codes to each station, giving22

the principal source for each series (Brohan et al., 2006). 23

7ftp://tgftp.nws.noaa.gov
8http://www.srh.noaa.gov/gis/kml/metar/metarlink.kml
9http://www.cru.uea.ac.uk/cru/data/temperature/
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3.2.6 FAOCLIM 2.01

Another valuable source of historical meteorological observations is the FAOCLIM 2.02

global climate database i.e. CD ROM (Environment and Natural Resources, 2001). FAO-3

CLIM 2.0 contains monthly data for weather stations across the world. This station4

database contains monthly data for around 28,000 stations, precipitation data for 27,3725

stations, mean temperature data for 20,825 stations, and minimum and maximum temper-6

ature data for 11,543 stations (Hijmans et al., 2005). FAOCLIM 2.0 also contains both7

long-term averages (1961–1990) and monthly time series for precipitation and tempera-8

ture.9

3.3 Publicly available remote sensing data10

The �rst weather Television and Infrared Observation Satellite (TIROS-1) was launched11

on 1960 by NASA. It was in operation for just 78 days, but it sent back thousands of pic-12

tures of cloud patterns. It proved the theory that satellites could effectively survey global13

weather from space. TIROS was followed by nine more test satellites launched between14

1960 and 1965 (TIROS X) to provide routine, daily weather observations. This polar-15

orbiting satellite was providing images of clouds across parts of the globe that may be16

compared with coincident meteorological observations. Since then, the development of17

satellite systems has advanced signi�cantly, with different satellite platforms and instru-18

ments operating on board (Kidd, 2001).19

Satellite images are now routinely used in climate studies due to its availability, spatial20

coverage and multi-decade length of the series (Struzik et al., 2011). They also allow21

determination of different climatic parameters at different scales. Some data are freely22

available trough the Internet while the others require registration. Many research agree23

that meteorological satellites are the key to weather forecast, and analysis of climate.24

Satellite images often need to be calibrated using the ground data which can be tricky since25

even small systematic differences can lead to wrong conclusions. For example,Santer26

et al. (2000) found an apparent difference between surface estimated warming of 0.2°C27

per decade since 1979 and the much smaller temperature trend in the lower troposphere28
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estimated from satellites and radiosondes. According to them these differences mainly1

come from data quality problems in either the surface and/or satellite and radiosonde2

data. Further on, the difference may be due to the effects of natural variability and/or3

external forcing. A third reason for the observed difference in the temperature trends4

is the discrepancy in spatial coverage between surface and satellite data. According to5

Thorne et al.(2005), the choice of data set in meteorological studies can even change6

the sign of upper-air temperature trends relative to those reported at the surface. Many7

papers have been published dealing with analysis of ground based and satellite based data8

(Proedrou et al., 1997; Feidas et al., 2004). The focus is mainly put on assessing the bias9

of remote sensing based measurements of ground conditions, and on methods that can be10

used to minimize the bias (Smith et al., 2006). 11

There is a close cooperation between two US agencies, NASA and NOAA in making12

the land, oceans and atmosphere visible from space and sometimes their roles is hard to13

distinguish. While NASA is responsible mainly for satellite pre-launching and launching14

faze, the NOAA is taking the responsibility for the satellite operation, processing, distri-15

bution and archiving of the data. Convention for naming the NASA/NOAA satellites is to16

set the name and letter before the launch, e.g. last launched meteorological satellite was17

GOES-P, and after it reached its proper orbit the it was renamed GOES-15. 18

It can be said that all meteorological remote sensing system are often specialized in moni-19

toring speci�c meteorological features at some working spatio-temporal scale. For practi-20

cal reasons, distinction between two groups of Remote Sensed (RS) systems is made: RS21

systems focused on monitoring surface temperatures and RS systems focused on moni-22

toring precipitation (Table 3.1). 23

3.3.1 The National Oceanic and Atmospheric Administration (NOAA) 24

NOAA's Satellite and Information Service (NESDIS) is leading provider of meteorolog-25

ical satellite data. This USA agency operates meteorological satellites, processes and26

distributes climate data managing one of the world's largest climate data archive at the27

National Climatic Data Centre (NCDC). NOAA's satellites monitor (Ohring et al., 1989; 28

Ohring and Booth, 1995): 29
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• Atmospheric temperatures,1

• Oceanic temperatures,2

• Greenhouse gases,3

• Ozone Sea ice, glaciers, snow cover,4

• Sea level Ocean acidi�cation,5

• Extreme temperatures and �oods/droughts.6

NOAA's satellites provide consistent, long-term observations, 24-hours-a-day, 7-days-a-7

week, at a basic resolution of 1 km.8

The NOAA series of satellites began weather monitoring in 1970. These series of satellites9

were known as Polar Orbiting Environmental Satellites (POES). Currently, NOAA-1510

through NOAA-18 serve as the stand-by satellites and NOAA-19 as the operational one11

performing the morning and afternoon global coverage, orbiting the Earth every 6 hours12

with a spatial resolution 1.1×1.1 km. The POES among other instruments include the13

Advanced Very High Resolution Radiometer (AVHRR ) instrument and the Advanced14

TIROS Operational Vertical Sounder (ATOVS) suite.15

From 2012 the Suomi NPP became fully operational new satellite as bridge to the forth-16

coming series of the advanced Joint Polar-Orbiting Satellite System (JPSS) whose �rst17

satellite JPSS-1 is planned for launching in 2016. Currently two Geostationary Oper-18

ational Environmental Satellites (GOES-13 and GOES-15) circle the Earth at the same19

speed as Earth's rotation. This allows them to hover continuously over one position on20

the surface. GOES-13 (or GOES EAST) monitors North and South America and most of21

the Atlantic Ocean, while GOES-15 (or GOES WEST) monitors part of North America22

and the Paci�c Ocean basin. The era of these satellites began with launching of Syn-23

chronous Meteorological Satellites-1 (SMS-1) on 1974. However, this program of�cially24

started on 1975 in cooperation between NOAA and NASA by launching GOES-1. This25

series operates until today and will be improved by new generation of GOES-R satellites26

scheduled for launching in 2015 (Davis, 2007).27
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3.3.2 The National Space Science and Technology Centre (NSSTC)1

The National Space Science and Technology Centre (NSSTC) is a mission conducting2

and researching in order to support NASA mission. In cooperation with The University3

of Alabama in Huntsville (UAH) produces temperature data set for the lower and mid-4

troposphere and the lower stratosphere that merge data from the nine Micro Sounding5

Units (MSUs) and two Advanced Micro Sounding Units (AMSUs).6

The data are obtained from Microwave Sounding Units (MSUs) on the NOAA's TIROS-N7

(polar orbiting) satellites, which relate the intensity or brightness of microwaves emitted8

by oxygen molecules in the atmosphere to temperature. Images and data for the download9

are available via the NSSTC web site. Spatial coverage of the MSU data set is nearly10

global while temporal coverage is limited, as the MSU data set is in existence since 197911

(Christy et al., 2000).12

3.3.3 European Organisation for the Exploitation of Meteorological13

Satellites (EUMETSAT)14

EUMETSAT is the European operational satellite agency for monitoring weather, cli-15

mate and the environment. It operates a system of meteorological satellites monitoring16

the atmosphere and delivering weather satellite data on a daily basis 365 days a year. EU-17

METSAT is offering a list of atmosphere products available from their geostationary MSG18

satellites, polar orbiting METOP and low orbiting satellites. EUMETSAT Polar System19

program (EPS) is European contribution to a joint European-US satellite system called20

the Initial Joint Polar-Orbiting Operational Satellite System (IJPS). This is an agreement21

between EUMETSAT and the NOAA on providing instruments for each other's satellites,22

exchange all data in real time, and assist each other with backup services. Other part-23

ners are the European Space Agency (ESA) and theCentre National d'Etudes Spatiales24

(CNES) of France.25
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3.3.4 National Aeronautics and Space Administration (NASA) 1

The Moderate Resolution Imaging Spectroradiometer (MODIS) images of the Terra and 2

Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving at-3

mospheric, oceanographic including biological variables using different techniques. There4

are many data products from MODIS observations describing land (temperature, land5

cover), oceans (sea surface temperature, optical thickness) and atmosphere (water vapor,6

cloud product, atmospheric pro�les) that can be used for studies at different scales, local7

to global. In meteorological studies are very often used Land Surface Temperature (LST)8

data and images obtained from MODIS thermal bands and distributed by Land Processes9

Distributed Active Archive Center (LP DAAC FTP) of USGS (US Geological Survey).10

Additionally to this MODIS Level 2 or higher level data, there are also the MODIS Level 111

data that are distributed trough the LAADS portal hosted at Goddard Space Flight Center.12

The MODIS LST data are available on daily basis and have spatial resolutions of 1×1 km13

(Coll et al., 2009). The accuracy of MODIS LST is 1°K. However, some validations14

reported accuracy better then 1°K in clear sky conditions within the temperature range15

from -10°C to 50°C (Yoo et al., 2011). MODIS LST data and/or images are one of the16

mostly used and best documented publicly available RS products in the world. 17

3.3.5 NASA/Goddard's Space �ight Center Laboratory for Atmo- 18

sphere 19

Precipitation satellites are not able to estimate ground conditions as accurately as e.g. land20

surface temperature sensors (Mendelsohn et al., 2007). This can be overcome through21

combining the satellite with the rain gauge data. The international authority that gathers22

both sources of precipitation data is the Global Precipitation Climatology Project (GPCP),23

established at the Laboratory for Atmospheres at the NASA Goddard Space Flight Center.24

The aim of this project is merging the precipitation data taking advantage of the each data25

type. Rain Gauge data contributing to this project are available from German Weather26

Service's project GPCC. Satellite precipitation estimates project are computed from geo-27

stationary satellites (GOES — United States, Meteosat — Europe, GMS — Japan), and28

polar-orbiting satellites (NOAA). 29
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Set of precipitation estimates by Geostationary Satellite Precipitation Data Center (GPSPDC)1

is another standard resource of the RS data. Data from NASA Aqua and TIROS are also2

included in GPCP. Regarding temporal coverage daily precipitation data are available3

since 1996, while monthly series are available since 1979 in mmday. Precipitation data4

with a global spatial coverage is currently available only for coarse spatial resolutions5

of 1°×1° resolution for daily data and 2.5°×2.5° for monthly data. Monthly and daily6

data are freely available in a FORTRAN binary format with software for reading from7

NOAA's National Climate Data Center (NCDC), and from the German Weather Service10.8

An overview of the remote sensing system used to map precipitation is given byPrigent9

(2010).10

3.4 Environmental layers11

The environmental layers used for this thesis were provided from WorldGrids.org11 por-12

tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded13

and maintained by ISRIC (International Soil Reference and Information Center). The14

portal serves continues raster layers, for example, DEM, MODIS Terra products, various15

climatic, land cover and geological layers. Layers are thematically grouped in sections:16

• Climatic and meteorological images,17

• DEM–derived parameters,18

• MODIS products,19

• Land cover and land use,20

• Urbanization and Lights at night images,21

• Biodiversity and human impact maps,22

• Land, vegetation and water masks,23

• Harmonized World Soil Database images,24

10ftp://ftp.dwd.de/pub/data/
11http://www.worldgrids.org/doku.php
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• Various layers. 1

The environmental grids from the data repository are available at various resolutions from2

1 to 20 km. The short description of the most commonly used layers for this research is3

presented in further sections. 4

3.4.1 Global relief model (DEMSRE) 5

The environmental layers used for this research were provided from WorldGrids.org por-6

tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded7

and maintained by ISRIC (International Soil Reference and Information Center). The8

portal serves continues raster layers, for example, DEM, MODIS Terra products, various9

climatic, land cover and geological layers. Global relief model at 1km resolution was10

derived as combination of SRTM 30+ and ETOPO DEM at 1/120 arcdeegres resolution.11

The model is based on SRTM 30+ and ETOPO DEM, publicly available data sets. 12

Shuttle Radar Topography Mission (SRTM) is an international project managed by Na-13

tional Geospatial-Intelligence Agency (NGA), National Aeronautics and Space Adminis-14

tration (NASA), National Imagery and Mapping Agency (NIMA) and Italian and German15

space agency (Deutsche Zentrum fur Luft und Raumfahrt - DLR). SRTM for the �rst time16

provides a near global high quality DEM at resolution levels of 1 and 3 arc sec, covered17

land mass between 60°N and 57°S. The horizontal spacing is 1 arc sec; the elevation18

value is given in meters. WGS84 is used as horizontal and vertical datum. This means19

that ellipsoidal heights are provided. The DEM accuracy requirements are Âś16 m ab- 20

solute and Ấs6 m relative vertical accuracy (Rabus et al., 2003). For detail description 21

of DEM produced by SRTM seeRabus et al.(2003); Farr et al.(2007). SRTM 30+ is a 22

near-global digital elevation model (DEM) comprising a combination of SRTM data and23

U.S. Geological Survey's GTOPO30 data set. 24

ETOPO is a 1 arc-minute global relief model of Earth's surface that integrates land to-25

pography and ocean bathymetry. It was built from numerous global and regional data sets26

covering complete global topographic and bathymetric coverage. The detail description27

is provided in publicationAmante and Eakins(2009). 28
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DEMSRE comes with an accompanying processing script providing detailed instruction1

for layer reproduction. DEMSRE is a main source of many geomorphometric layers on2

the portal, such as slope, potential incoming solar radiation, topographic wetness index,3

etc. Figure 3.4 shows DEMSRE global Earth coverage.4

3.4.2 SAGA Wetness Index (TWISRE)5

The topographic wetness index (TWI), which combines local upslope contributing area6

and slope, is commonly used to quantify topographic control on hydrological processes7

(Sorensen et al., 2006), but also can be used as an indicator of cold air accumulation8

(Bader and Ruijten, 2008). Methods of computing this index differ primarily in the way9

the upslope contributing area is calculated. TWI is de�ned in the equation 3.1 :10

TWI = ln
�

A
tan(b)

�
(3.1)

where A (m2) being the contributing area, and tan(b) being the slope.11

SAGA GISdocumentation contains description of SAGA Wetness Index:12

“The `SAGA Wetness Index' is, as the name says, similar to the `Topographic Wetness13

Index' (TWI), but it is based on a modi�ed catchment area calculation (`Modi�ed Catch-14

ment Area'), which does not think of the �ow as very thin �lm. As result it predicts for15

cells situated in valley �oors with a small vertical distance to a channel a more realistic,16

higher potential soil moisture compared to the standard TWI calculation. "17

The process of computing the SAGA Wetness Index for global land areas is very time18

consuming, even if a strong PC con�guration is provided the computation takes several19

days. To achieve this, it is necessary to tile the DEM at continental level, re-project to20

equal area projection, compute 'SAGA Wetness Index' for each tile and build a mosaic21

for the global land mass (Figure 3.5). Majority of grid analyses and computation for this22

research was done in Sinusoidal projection. The result of distortion analysis and pixels23

omission process, in context of mapping global image data, suggests use of Sinusoidal24

projection in comparison to other equal area projections (Seong et al., 2002). The script25
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for layer production produced by Tomislav Hengl and Milan Kilibarda is available on the1

WorldGrids.org. 2

3.4.3 Potential incoming solar radiation derived inSAGA GIS (IN- 3

MSRE) 4

Potential incoming solar radiation is topo-climatic parameter which depends on few fac-5

tors, it is not just DEM derivative. Topo-climatology is the part of climatology which6

deals with impacts of land surface (i.e. topography) on climate (Boehner and Antonic, 7

2009). 8

Potential incoming solar variability depends on (Boehner and Antonic, 2009) : 9

“There are three major causes of spatial variability of radiation at the land surface: (1)10

orientation of the Earth relative to the sun, (2) clouds and other atmospheric inhomo-11

geneities and (3) topography. The �rst cause in�uences latitudinal gradient and seasons.12

The second cause is associated with local weather and climate. The third cause such as13

spatial variability in elevation, slope, aspect and shadowing, can create very strong local14

gradients in solar radiation. 15

One of the �rst articles about GIS modelled solar radiation is written byDubayah and Rich 16

(1995) as initial proposal of using GIS for computing solar radiation, the formulas and17

illustration are provided in publicationsHo�erka and Suri(2002); Boehner and Antonic 18

(2009). 19

Author calculated potential incoming solar radiation for 8-days intervals inSAGA GIS, 20

thus computing is very time consuming and for global land areas takes more than 2021

processing days. The processing steps were in general: 22

• re-projection of initial DEM (DEMSRE) in equal area Sinusoidal projection, 23

• creation of tiles across land mask, around 500 tiles, 24

• calculation of potential incoming solar radiation for 8 day period, 25

• mosaicking results. 26
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Finally, result of this computation contains 46 images at 1 km resolution. The script for1

computing is provided on WorldGrids.org, but only available at the moment on the portal2

is annual average (Figure 3.6) and standard deviation grid at resolution 1 km, or smaller.3

3.4.4 Distance from the sea coast line(DICSRE)4

Distance from the sea coast line (DICGSH) was derived using the Global Self-consistent,5

Hierarchical, High-resolution Shoreline Database (GSHHS) (Wessel and Smith, 1996).6

The coastline vector map was rasterized to the Robinson projection with three central7

meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast8

line has been derived, and then merged to create a complete and consistent distance to the9

coast line map in kilometers.10

3.5 Methods11

After identifying major publicly available sets and following the preliminary inspection12

of their temporal and geographical coverage and data formats, three clean and consistent13

data sets have been merged for purpose of testing: GSOD and ECA&D (station data) and14

time-series of MODIS Land Surface Temperature images. We run a number of standard15

spatial analysis operations in theRenvironment for statistical computing (R Development16

Core Team, 2012) to determine possible problems with using this data for spatio-temporal17

interpolation and time-series analysis.18

We focused on three important aspects of data quality:19

(a) representation of station data in geographical space and temporal coverage— as-20

sessed using kernel density analysis;21

(b) representation of station data in feature space— assessed using the MaxEnt anal-22

ysis;23

(c) suitability of data for spatio-temporal interpolation— assessed using cross-vali-24

dation of spatio-temporal prediction models;25
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3.5.1 Representation of station data in geographical space and tem-1

poral coverage 2

To assess temporal coverage ((a)) we plot change in number of stations and then try to3

explain differences and trends. To assess geographical representation we produced ker-4

nel density maps using theGaussiansmoothing kernel as implemented in thespatstat 5

package forR (Baddeley and Turner, 2006). Kernel density estimation of point process6

intensity requires an optimal bandwidth selection. To derive the optimal bandwidth we7

used algorithm based on cross validation as described inDiggle (2003, pp.115–118). The 8

obtained bandwidth was 70 km for the temperature and 40 km for the precipitation sta-9

tions. To provide comparable maps of density for two meteorological variables, we further10

derived and plotted only the relative density maps with values in the range[0;1]. 11

3.5.2 Representation of station data in feature space 12

To asses the feature space representation i.e. the sampling bias ((b)), we use theMax- 13

Ent analysis (Phillips et al., 2006). MaxEnt uses maximum entropy model, purposely14

developed to explain distribution of animal or plant species as a result of environmental15

conditions (Phillips et al., 2006), to derive a probability of occurrence of point patterns.16

Moreover, this technique could be successfully used to explain distribution of people in17

certain areas as well as to assess spatio-temporal dynamics of human populations as a18

function of environmental predictors (Bajat et al., 2011). MaxEnt is consider to be one 19

of the most robust methods to assess the feature space coverage (Elith et al., 2011). In 20

this paper we use it to assess the sampling preference i.e. feature space representations of21

meteorological station network. As`occurrences'we used records of mean temperature22

for year 2011 and precipitation for the same year respectively (GSOD and ECA data sets).23

MaxEntgenerate the receiver operating curve (ROC) and the area under the curve (AUC)24

which allows for evaluation of the model performance between occurrence of climate25

locations and their absence. The area under the curve (AUC) values can be interpreted26

as indicating the probability that, when a presence site and an absence site are drawn at27

random from the population, the �rst will have a higher predicted value than the second.28
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Models with an AUC value above 0.75 are considered assigni�cant (for more details refer1

to Elith et al.(2006)).2

As environmental predictors for theMaxEntanalysis we used the following �ve publicly3

available environmental layers:4

• DICGSH— distance from the sea coast line,5

• GLCESA— land cover classes based on the MERIS FR images (factor-type variable),6

• DEMSRE— global Relief Model based on SRTM 30+ and ETOPO DEM,7

• PDMGPW— gridded Population of the World, version 3 (GPWv3),8

• GACGEM— world accessibility map,9

Distance from the sea coast line (DICGSH) was derived using the Global Self-consistent,10

Hierarchical, High-resolution Shoreline Database (GSHHS) (Wessel and Smith, 1996).11

The coastline vector map was rasterized to the Robinson projection with three central12

meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast13

line has been derived, and then merged to create a complete and consistent distance to the14

coast line map in kilometers.15

The environmental grids listed above are available for download via the WorldGrids.org16

(http://www.worldgrids.org/doku.php ) data repository at various resolutions from17

1 to 20 km. In this case study we used the grids with spatial resolution of 0.05 degrees i.e.18

5 km when projected in the Robinson projection system (http://spatialreference.19

org/ref/esri/54030/ ).20

3.5.3 Suitability of data for spatio-temporal interpolation21

For assessing usability of point and RS data (8-day MODIS images) for spatio-temporal22

modeling ((c)), we �rst �t a spatio-temporal regression-kriging model for mean daily tem-23

peratures, then run cross-validation to detect possible outliers and critical areas. Within24

the regression-kriging framework, the regression and residual kriging parts are dealt with25
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separately, the regression part is used as trend surface and residuals are �t with a global1

space-time sum-metric variogram model. The interpolation surface is the sum of trend2

surface (regression part) and the residuals surface (spatio-temporal kriging prediction).3

As auxiliary predictor to model the spatio-temporal trend we used a time series of 8-day4

MODIS day-time LST images. Original MODIS LST were converted to degrees Celsius5

from Kelvins. Missing pixels in the original LST maps were replaced usingSAGA GIS 6

function“Close Gaps”. Close Gaps function uses splines as robust method for �lling the7

gaps in areas with sparse or irregularly spaced data points (Neteler, 2010), the missing 8

pixels �ltering from 8-day MODIS mosaics were performed because the predictor need9

to be known over the domain of interpolation, i.e. over the land mass area. The temporal10

dissaggregation from 8-day images to daily images is done by applying spline in temporal11

domain, by splining 8-day MODIS LST pixels to provide daily values. Thus, we provided12

daily values of predictor for global land mass area at 1 km spatial resolution. The linear13

regression for 2011 year were applied on the MODIS spline images. Figure 3.8 shows the14

plot of observation against the 8-day MODIS spline values. 15

The spatio-temporal regression-kriging method is described in detail inHengl et al.(2012) 16

andHeuvelink et al.(2012), they used sum-metric variogram structure for temperature17

modeling, as we in this paper. The sum-metric space-time variogram were �tted via the18

space-time kriging framework fromgstat package (Pebesma, 2004), the package that is 19

also capable of working with space-time class data (Pebesma, 2012). The sum-metric 20

covariance structure assumes that the component of variation can be explained by pure21

spatial variability (space variogram), the second part with pure time component (temporal22

variogram) and the third part is explained by joint variogram (spatio-temporal interaction),23

where the time component is multiplied by geometric anysotropy coef�cient. Finally,24

�tted variogram surface is described by 10 parameters. The prepared spatio-temporal25

point data set contained around 3 billion measurements of daily average temperature from26

8713 stations for the selected year 2011. 27

The cross-validation technique was performed by using“leave-one-station-out”proce- 28

dure. This takes neighborhood stations to predict the all values in temporal domain (36529

days in this case for each day in 2011) without using any observation from cross-validated30

station. Cross-validation predictions are than compared with actual observed values to31
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FIGURE 3.8: The station Novi Sad, Serbia (l = 19:850; f = 45:333) (above), gray solid
line: mean daily temperature observation in 2011; black dashed line: 8-day MODIS
LST values; red dashed line: MODIS LST spline (red); Station Swanbourne, Western

Australia (l = 115:767; f = � 31:950) (below).

derive the root mean square error (RSME). The RMSE was derived for station� day1

(Figure 3.19) and for each day of the year globally (Figure 3.17).2

Before model �tting, station data needed to be cleaned-up for duplicates and inconsisten-3

cies. All assumed duplicate stations (closer than 2 km) were removed from the analysis.4

Also, stations that have obvious artifacts (usually not visible in the original data) were5

iteratively removed by comparing the cross-validation versus the observed values. For6

example, 27 GSOD stations with large difference between cross validation and actual ob-7

served values for Canada are shown in Figure 3.9. These are assumed to be gross errors8

and were removed from �nal analysis.9
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FIGURE 3.9: Outliers and inconsistencies detected for station data from Canada. The
observed mean daily temperature (grey) and cross-validation prediction of temperature

(black line) in °C. Heading numbers refer to internal identi�er of stations.

3.6 Results 1

3.6.1 Temporal coverage 2

Change in annual number of available stations is illustrated separately for daily (Fig-3

ure 3.10, upper) and monthly (Figure 3.10, lower) data sets. As plots indicate, there are4

several major differences in these sets. ECA&D data set comprises some historical data5

back to 1800s while GSOD starts in 1890s. Maximum number of stations in GSOD is6
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more than three times larger than in ECA&D due to GSOD's global geographical cover-1

ages compared to ECA&D's European one. ECA&D number of station reached steady2

plateau from 1960s through 1990s when number of station started to drop down. GSOD3

number of stations per year had strong increase from 1940s to 2000 but then the number4

also declines.5

FIGURE 3.10: Number of stations per year with daily records in ECA&D (European
Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day) data sets
(above). Number of stations per year with monthly records in GHCN-M V3 (Global
Historical Climatology Network-Monthly) and CRUTEM4 (Climatic Research Unit land

stations) (below).

The reasons for decline in number of stations could be many. The development of com-6

puters and telecommunications are mainly responsible for the rise in number of stations7
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while reasons for the reduction in number are harder to explain. Ground measurements1

are expensive to maintain so at one moment it was suspected that automatic meteorologi-2

cal stations and remote sensed data (radars and satellites) could replace ground measure-3

ments. This technological shift is still on-going, so that the plots show a slight drop as4

there are less records for the last decade. Also the number of stations available in all5

global data sets is dependent on national data exchange policies, so sometimes just part6

of the national data are available. This is also subjected to change. For example ECA&D7

has been expanded in 2013 with Finnish and a number of Russian stations. 8

The number of stations with monthly temperature records per year are provided for GHCN-9

M v3 and CRUTEM4 data-sets. For selected meteorological element these numbers for10

global area (Figure 3.10, lower) are comparable with number of stations in European11

ECA&D data set even though the overall number of stations in GHCN is larger. This re-12

�ects in lower average global spatial density of GHCN set compared to European ECA&D13

(except in eastern US and some other smaller regions). 14

3.6.2 Geographical coverage 15

Geographic coverage analysed with Gaussian smoothing kernel is shown in Figure 3.11.16

The regions with average and higher than average station density values are coloured or-17

ange to red (Europe, North America, South and East Asia, coastal part of South America,18

Africa and Australia). Regions with lowest relative density and mostly zero density pix-19

els are coloured in white (< 0:1 or 10%). The later are the areas where spatio-temporal20

prediction models would possibly result in data extrapolation. 21

The results of the neighborhood analysis show that for 25% of global land areas the dis-22

tance to nearest station is> 200 km. Further analysis of station frequency counts for23

100 km×100 km blocks (about one decimal degree cells) shows that 72% of land areas24

contains no stations, 15.5% of land area has only one station per 10,000 km2, while only 25

12.5% of land areas is covered with more then one station per 10,000 km2. 26
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FIGURE 3.11: Relative density of stations for 2011: (above) estimated for the ECA&D
(European Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day)
daily temperature data set, (below) estimated for the GSOD and ECA&D daily precipi-

tation data set. Bandwidth used to derive kernel density:H=70 km.
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FIGURE 3.12: Relative station density compared to relative population density and land
areas arrangement depending on latitude. Density values are in the range[0;1] for the all

showed elements.

3.6.3 Feature space coverage 1

The results of cross-validation using 75% of records for training and 25% of records for2

validation in MaxEnt show that distribution of GSOD and ECA sets are fairly controlled3

by selected environmental layers (AUC= 0:84). This means that distribution of station4

locations could be explained with these covariates with an accuracy of 84%. The cur-5

rent distribution of stations locations is strongly controlled by all continuous predictor6
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layers (DICGSH, DEMSRE, PDMGPW, GACGEM). Even if each of this predictors is used sepa-1

rately, they explain about 80% of distribution individually. Obviously,DICGSH, DEMSRE,2

PDMGPW, GACGEMare highly cross-correlated, and highly correlated with the density of3

meteorological stations. The environmental layer that decreases the gain the most when4

omitted from the prediction isGLCESA(land cover map), which therefore appears to have5

the most information that is not present in the other layers.6

Figure 3.13 indicates that there is indeed a clear sampling preference for meteorological7

monitoring. As expected, most of Europe is densely covered and represented with meteo-8

rological stations (except Alps region), so are the South and East Asia and coasts of North9

and South America. On the other hand, the areas of Central Asia (Himalaya Range), An-10

des Range and Amazon Basin in South America, Central Australia, north coasts of Asia11

and North America, Central Australia and Sahara desert in Africa, as well as all of Green-12

land, Antarctic and Arctic poles suffer from a signi�cant misrepresentation in the feature13

space.14

The station clustering is also illustrated using histogram plots in Figure 3.14. This shows15

that there is a higher grouping of stations along the coast lines. Note also in Figure 3.1416

(upper) that some stations are located further from the coast line, which is not an artifact,17

but the consequence of the resolution of the covariate layers (5 km). Many meteorological18

stations are located on small islands (with area< 25 square kilometer) not mapped in the19

DICGSHmap. From Figure 3.14 (lower) it is also obvious that large mountain chains are20

globally under-represented in the meteorological networks.21

3.6.4 Spatio-temporal models for temperature22

The results of regression modeling show that time series of 8-day MODIS LST images23

explain 81% of the variability in mean daily temperature values for the year 2011. MODIS24

LST images are signi�cant estimators of the daily temperatures but with somewhat lower25

precision than indicated by e.g.Wan et al.(2004): the correlation plot in Figure 3.1526

indicates an average precision of� 5.3°C. Note also that we use the 8-day averages of27

MODIS LST images, hence somewhat higher error can be expected.28
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FIGURE 3.13: Sampling bias in feature space derived using the MaxEnt software and
standard covariates (distance from the sea coast line, land cover classes, elevation map,
population map, world accessibility map): (above) probability of station occurrence de-
rived for observed temperature data sets (European Climate Assessment & Dataset and
Global Surface Summary of Day; ECA&D and GSOD), (below) probability of station
occurrence derived for observed precipitation data sets (ECA&D and GSOD). White col-

ored areas indicate extrapolation areas. Spatial resolution of the maps is 5 km.
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FIGURE 3.14: Station clustering for observed temperature data sets (European Climate
Assessment & Dataset and Global Surface Summary of Day) visualized in feature space
(distance to the coast line and elevation). The histograms were derived by overlaying
stations and environmental layers. The points below the two histograms show actual me-
teorological stations. The red lines shows global relative density distribution of distance

from coast line and elevation.
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FIGURE 3.15: Scatter plot showing the general relationship between daily temperature
and 8-day MODIS LST images. The �tted regression line and the 1:1 line (dotted).

Figure 3.16 shows the space-time variogram for residuals �tted using automated �tting1

in gstat. The pure spatial component of the space-time variogram, showing the residual2

correlation at any time separation between two spatial point exists, pure spatial spherical3

variogram has the nugget of 3.22°C2, the sill of the 18.28°C2 is reached with the range 4

more than 6000 km. Thus, if it is known just spatial distance between two observations5

without knowing time separation the part of total covariance is known. The pure time6

component of variogram structure is zero, implying that if it is just known time separation7

between two points even part of total covariance is not known, implying that all tempo-8

ral variability is explained by space-time interaction components. The joint variogram,9

representing space-time interaction is modeled by spherical function with the parameters:10

nugget 1.8°C2, the sill 8.35°C2 and range 2349 km. The geometric anisotropy parameter11
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FIGURE 3.16: Fitted sum metric model (left) and sample variogriom (right) of linear
regression residuals of mean daily temperature observation on 8-day MODIS spline im-

ages. The variogram surface is presented in 2D (above) and 3D manner (below).

is 583 km/day, this allowing to scale time separation in spatial distance for purpose of1

calculating space-time joint components of covariance. Therefore, space-time correlation2

of mean daily temperature residuals on MODIS LST spline images modeled with sum-3

metric covariance structure contains 7 parameters describing correlation at any space-time4

distances.5

The results of cross-validation con�rm that the spatio-temporal prediction model of mean6
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FIGURE 3.17: Daily temporal variation for RMSE andR� squarefor year 2011.

daily air temperature can explain between 87.4–97.1% of variability in the observed val-1

ues, with an average of 92.5% (seeR� squarein Figure 3.17). Figure 3.17 further shows2

that average root mean square error per day (RMSE) varies from 2.5°C to 3.2°C with3

overall average 2.8. 4

Annual changes of RMSE andR� squarewith the largest errors during winter on southern5

hemisphere when the global range of minimum and maximum mean daily temperature6

on the global land mask is the highest. RMSE calculated for latitude bands shown in7
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FIGURE 3.18: Spatial variation of (RMSE) for different latitudes (aggregated per 1 de-
gree).

Figure 3.18 illustrates that[� 70� � 90]° latitudes have the highest RMSE, the same plot1

shows that for the latitude range[0;50]° global spatio-temporal model has the highest2

precision, in average less than 2°C, what is expected because the number of stations in3

this range is the highest (Figure 3.12).4

Spatial distribution of RMSE calculated per year for each station (Figure 3.19) indicates5

that there are several regions where model is critically inaccurate. In the map shown in6

Figure 3.19, 47 stations, 0.5% of total points involved in cross-validation have an RMSE7

above 6°C (with an average of 6.8°C), 10% of total points have an RMSE in range from 38
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to 6°C (with an average of 3.8°C). The most of the stations with RMSE higher then 3°C1

are located in Antarctica, mountains regions and in the sparsely populated areas with low2

station density coverage. Black circles in Figure 3.19 are points with high accuracy i.e.3

RMSE< 2 (63% of total points) and with an average of RMSE= 1.5°C. Finally, average4

RMSE for the global land mass of 2.8°C, but for USA and Europe the accuracy of interpo-5

lation by using this data set and spatio-temporal regression kriging model is less than 2°C6

in average. The interactive web map of the stations with RMSE produced withR package7

plotGoogleMaps(Kilibarda and Bajat, 2012), with cross-validating values against obser-8

vation is provide on thehttp://dailymeteo.org/WorldMap-RMSE-STRK-MeanT-on-MODIS.9

htm.10

3.7 Discussion and conclusions11

All the data required to produce WorldDailyMeteo images are basically ready to be used.12

The remaining issues are: how to �t global spatio-temporal models and run automated13

geostatistics, and how accurate can we expect to get? The preliminary results of this re-14

search indicate that, before the production of daily estimates of meteorological variables15

at 1 km resolution can become operational, a care needs to be taken to account for spatial,16

temporal and feature space clustering of the meteorological networks. The expected accu-17

racy probable can be better if more static and dynamic covariate layers are included, but18

sparsely covered areas in geographical and feature space still would be areas with double19

lower accuracy.20

Temporal coverage analysis of the publicly available meteorological station data sets in-21

dicates that the GSOD and ECA&D data sets together represent respectable source of22

meteorological data for spatial-temporal analysis at daily resolution (especially from year23

1960), however the distribution through time and space is unequal. What worries espe-24

cially is that there is a drop in the observation density in the last decade. Even more25

distinct clustering can be observed in geographical and feature spaces. Analysis of distri-26

bution of stations locations in feature space shows that the spatial distribution of the me-27

teorological network is distinctly controlled by environmental factors with an AUC=0:8428

(estimated using cross-validation), which means that most of the distribution of the sta-29

tions can be explained by population density and accessibility. Figure 3.14 also clearly30
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shows that the stations frequency is the highest near coast lines and at the lower eleva-1

tions. Thus, unequally station distribution in feature space coverage, proved by MaxEnt2

results, can lead to inaccurate prediction in higher elevation and sparse populated areas.3

For mean daily temperature measurements at stations we have further �tted a spatio-4

temporal model using the 8-day MODIS LST time series of images and got an average5

accuracy of about 2–3°C when assessed using cross-validation (which con�rms the results6

of some local studies byHengl et al.(2012), Heuvelink et al.(2012) andNeteler(2010)). 7

This is promising as it indicates that indeed highly accurate maps of daily temperatures8

could be produced at high spatial resolution using the global spatio-temporal models. Fig-9

ure 3.19 also shows that the outliers are distinctly grouped in areas poorly covered with10

meteorological stations. The second group of outliers we observed were in the moun-11

tain regions i.e. areas frequently covered with snow. This corresponds to the work of12

Neteler(2010) who experienced similar dif�culties of working with dynamic snow cover13

on mountain tops. All this indicates that the produced spatio-temporal models will have14

serious problems for all areas that have been under-sampled in geographical or feature15

space. 16

Figure 3.15 also indicates that temperatures from[� 10;50]°C range are much better cor-17

related with the MODIS LST images and hence easier to map than temperatures within18

this range. Similar results were reported, for example, byWan et al.(2004); Yoo et al. 19

(2011). Lack of stations in polar areas and in large mountain chains remains probably the20

most serious problem for global meteorological mapping (as illustrated in Figures 3.19,21

3.18). The current meteorological station networks (Figure 3.1, 3.3, 3.2) probably do not22

represent the true complexity of climate at higher elevations, deserts, tropical forests, that23

is in sparsely populated areas (25–50% of the land surface). Topography, arrangement24

and orientation of mountain ranges are the key climatic factors in land areas (Hartmann, 25

1994; Beniston, 2006), hence station networks should follow this complexity in order to26

allow for a truly global assessment. It is not realistic to expect that the density of the27

meteorological stations will change in the years to come, and that these geographical cov-28

erage gaps will be solved. What is more interesting to the research community is probably29

how to overcome these problems with using appropriate statistical methods and the higher30

precision remote sensing technologies. 31
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FIGURE 3.20: Mean daily temperatures for all stations in year 2011 (red), as compared
to the mean 8-day temperature estimated based on the MODIS LST product (black), and
the long-term sea surface daily temperatures obtained fromhttp://discover.itsc.

uah.edu/amsutemps/ (blue).

Remote sensing is the future of global meteorology, even if the original RS imagery is1

noisy and produces biased estimates. For example, surface temperatures estimated by2

MODIS LST product can contain signi�cant noise and artefacts. On the other hand, they3

can be used to get a more representative estimate of the global temperatures (`the com-4

plete picture'), which is impossible to achieve by using ground data only. Figure 3.20,5

showing differences between the global mean daily temperature from three sources, illus-6

trates what we mean by bias. There are two logical explanations of the differences in the7

three curves in Figure 3.20. First, the mean sea surface temperature is relatively constant8

with slightly higher values in March (2011); both MODIS LST mean temperature and9

the mean temperature at the stations follow the same pattern that re�ects the seasonality10

in the northern hemisphere as most of the land mass falls in the northern hemisphere.11

Second, meteorological stations do not cover land mass uniformly so that the mean can12
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not represent global mean temperature and therefore the values are in average somewhat1

higher than the MODIS LST temperatures. In general, accuracy of station's observations2

is higher than of the MODIS LST estimated values, but the station's observations provide3

a biased estimate of the global mean daily temperature because of clustering of points. If4

one would try to estimate global land temperature only based on the values on meteoro-5

logical stations that he/she would probably make a systematic error (under-estimation) of6

2-3°C. On the other hand, MODIS 8-day satellite images with 95% of coverage of land7

mask lack the �ne precision of the daily measurements, providing land surface tempera-8

ture. All this indicates that there is indeed a need for spatio-temporal regression-kriging9

methods that can produce calibrated images of daily air temperatures, so that also the10

global daily average can be estimated in an unbiased manner. 11

To conclude: the observed high temporal, spatial and feature space clustering of meteoro-12

logical stations potentially represent a limitation of these data sets that could complicate13

�tting of accurate global spatio-temporal models. This does not imply that no reliable14

models can be �tted using these data sets, but that sophisticated spatio-temporal tech-15

niques need to be used that can account for the data clustering, spatially if remote sens-16

ing and/or monthly images are not used as predictor. Spatio-temporal regression kriging17

model can provide the most realistic estimate of the uncertainty, so that also an unbiased18

estimates of the global and local land air temperature and other meteorological variables19

can be produced. The presented model can be used for calibration of 8-day MODIS LST20

images by using station observation resulting with daily global images of mean daily air21

temperature at 1 km scale. This would be the �rst global daily images at very high spatial22

and temporal resolution (1 km spatial and 1 day temporal resolution). 23
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Spatio-temporal interpolation of daily2

temperatures for global land areas at3

1 km resolution1
4

Around 9000 stations from merged GSOD and ECA&D daily meteorological data sets5

were used to build spatio-temporal geostatistical models and predict daily air tempera-6

ture at ground resolution of 1 km for the global land mass. Predictions were made for7

the mean, maximum and minimum temperature using spatio-temporal regression-kriging8

with a time series of MODIS 8 day images, topographic layers (DEM and TWI) and a geo-9

metrical temperature trend as covariates. The model and predictions were built for the year10

2011 only, but the same methodology can be extended for the whole range of the MODIS11

LST images (2001–today). The accuracy of predicting daily temperatures has been as-12

sessed using leave-one-out cross-validation; the standard approach is extended with block13

approach. The values were aggregated for blocks of land of size 500×500 km to account14

for geographical point clustering of station data. All computations were implemented in15

theR environment for statistical computing by combining functionality of thegstatpack-16

age (geostatistical modelling),rgdalandrasterpackages (raster data loading and analysis),17

andsnowfallpackage (cluster computing). The results show that the average accuracy for18

1Based on article: Kilibarda M, Hengl T, Gerard B.M. H, Benedikt G, Edzer P, Per�cec Tadíc M, Branislav
B (2013?) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution.in
review; Journal of Geophysical Research, D: Atmospheres
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predicting mean, maximum and minimum daily temperatures is RMSE= � 2°C for areas 1

densely covered with stations, and between� 2°C and� 4°C for areas with lower station 2

density. The lowest prediction accuracy was observed in highlands (> 1000 m) and in 3

Antarctica with a RMSE around 6°C. This automated geostatistical framework could be4

used to produce global archives of daily temperatures (new generation WorldClim repos-5

itory) and to feed various global environmental models. 6

4.1 Introduction 7

Records from near-surface weather stations are the foundation of climate research (Pe- 8

terson and Vose, 1997). These stations still provide the most accurate and most reliable9

measurements of weather. Ground station measurements are not only important because10

of their high accuracy, they are also the only available records of spatial and temporal11

variation of climatic variables before the �rst satellite based observations came available12

in the 1960s. 13

Station observations are the main source of input of spatial interpolation that predict cli-14

matic variables on raster grids, while some interpolation methods also make use of addi-15

tional, auxiliary information such as remotely sensed images and/or topographic layers.16

In-depth reviews of interpolation methods commonly used in meteorology and climatol-17

ogy are given byPrice et al.(2000), Jarvis and Stuart(2001), Tveito et al.(2006) and 18

Stahl et al.(2006), just to mention the most recent publications in the �eld. The literature,19

in general, shows that interpolation techniques used in meteorology and climatology are20

quite diverse: they range from nearest neighbour methods, splines, regression and kriging,21

to neural networks and machine learning techniques. 22

Hofstra et al.(2008) made a comparison of six interpolation methods for prediction of23

daily precipitation, mean, minimum and maximum temperature, and sea level pressure24

from station data in Europe, and compared anomalies interpolation relative to the long-25

term monthly mean (1960-1990). The result showed that global kriging on anomalies26

was the best overall performing method. Besides using ordinary kriging on anomalies27

for predicting daily values at regional scales, a method known as“regression-kriging” 28

(RK) (also known as“Kriging with External Drift” and/or“Universal kriging” ) has been 29
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widely recognized as a �exible and a well-performing technique for unbiased spatial pre-1

diction of meteorological and environmental variables (Carrera-Hernández and Gaskin,2

2007; Haylock et al., 2008; Hengl et al., 2012).3

To our knowledge, no group has previously attempted to interpolate daily values of mete-4

orological variables using spatio-temporal regression-kriging with time-series of remote5

sensing based covariates, at �ne resolution of 1 km. The challenges to achieve this are sig-6

ni�cant, both from a methodological and technological perspective. The global land mask7

contains about 149 million pixels at 1 km resolution, which means that predicting daily8

values for 10 years would result in about 4 TB of data. Fitting of geostatistical models9

with millions of point pairs, and predicting at such large grid stacks can only be achieved10

by intelligent programming that avoids memory limit problems and computations that11

take weeks or longer.12

In this study, we present an automated mapping framework for producing predictions of13

daily mean, minimum and maximum air temperatures using spatio-temporal regression-14

kriging implemented in theRenvironment for statistical computing via thegstat(Pebesma,15

2004) andstats(R Development Core Team, 2012) packages. As inputs we use a collec-16

tion of publicly available daily records from NCDC's Global Surface Summary of Day17

and European Climate Assessment & Dataset, and a time series of MODIS LST 8 day18

images and topographic layers as covariates. The research reported herein focuses on19

the year 2011 for practical purposes and assumes that the same methodology can be ex-20

tended for the whole range of MODIS LST images (2001–today). The input data sets and21

methods are described in Section 4.2. The results of model �tting, cross-validation and22

validation are presented in Section 4.3, whereas summary results are given in the �nal 4.423

“Discussions and conclusions”.24

4.2 Data and Methodology25

4.2.1 Merged global station data set26

GSOD and ECA&D daily meteorological data sets have been merged to produce a con-27

sistent global station data set. A large portion of the station data had missing values, but28
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all stations were used in the interpolation procedure. Even though the meteorological1

services responsible for collecting the data also perform at least basic quality control, a2

small portion of the stations from the merged data sets contained clear gross errors and3

needed to be cleaned. The gross errors were detected using the following procedure: an4

initial spatio-temporal model was �rst �tted using all data followed by analysis of cross-5

validation predictions at the station location. The high cross-validation root mean square6

errors (derived from yearly residuals at certain station) for a number of stations suggest7

that there could be some gross errors in the data. This was usually con�rmed with abrupt8

jumps in observation values in time series plots; thereby showing observations against9

cross-validation prediction. We decided to remove all stations that had cross-validation10

residual higher than� 15°C, as these clearly contain errors in the data set. After all data11

�ltering, the �nal set contained about 9000 stations from merged GSOD and ECA&D12

data sets. 13

4.2.2 Covariates: remote sensing images and DEM-derivatives 14

4.2.2.1 National Aeronautics and Space Administration (NASA) 15

The Moderate Resolution Imaging Spectroradiometer (MODIS) images of the Terra and16

Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving at-17

mospheric and oceanographic variables using different techniques. There are many data18

products from MODIS observations describing land (temperature, land cover), oceans19

(sea surface temperature, optical thickness) and atmosphere (water vapor, cloud product,20

atmospheric pro�les) that can be used for studies at different scales ranging from local to21

global. Land Surface Temperature (LST) data and images obtained from MODIS thermal22

bands that are distributed by the Land Processes Distributed Active Archive Center (LP23

DAAC FTP) of the US Geological Survey are very often used in meteorological studies24

(Coll et al., 2009). 25

In addition to the MODIS Level 2 or higher level data, there are also MODIS Level 126

data that are distributed trough the LAADS portal hosted at the Goddard Space Flight27

Center. The MODIS LST data are available on a daily basis and have spatial resolutions28

of 1×1 km (Coll et al., 2009). The nominal accuracy of the MODIS LST product is� 1°K. 29
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However, some validations reported accuracy statistics smaller better than 1°K in clear sky1

conditions within the temperature range of -10°C to 50°C (Yoo et al., 2011). MODIS LST2

data and/or images are one of the most often used and best documented publicly available3

remote sensing products in the world.4

In this work, we only use Level 3 MODIS LST 8 day composite images to improve spatial5

predictions of mean, minimum and maximum daily temperature despite the fact that daily6

day-time and night-time MODIS LST images are also available. Notably, the correlation7

with ground data would probably be more signi�cant if we would use day-time MODIS8

LST images for maximum temperature prediction and night-time images for minimum9

temperature prediction. However, day/night images contain many missing pixels that10

ultimately limit their usability for global mapping.11

The original 8 day MODIS LST images were converted from degrees Kelvin to Celsius.12

The original images still contained 0–15% of missing pixels due to clouds or other reasons13

which were replaced using theSAGA GISfunction “Close Gaps”. This function uses14

splines as a robust method for �lling gaps in areas with sparse or irregularly spaced data15

points (Neteler, 2010). Furthermore, the 8 day images were disaggregated in the time16

dimension through the use of splines for each pixel. As a result, the daily coverage was17

obtained.18

4.2.2.2 DEM derivatives19

The elevation data used in this study were obtained from the WorldGrids.org portal. The20

data set is derived as a combination of the publicly available SRTM 30+ and ETOPO data21

sets, and is commonly referred to as DEMSRE.22

The `SAGA Wetness Index'is based on a modi�ed catchment area calculation imple-23

mented inSAGA GIS(Böhner et al., 2008). The Global SAGA Wetness Index used in this24

paper was produced by Milan Kilibarda and Tomislav Hengl and the processing script is25

available via the WorldGrids.org data portal.26
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4.2.3 Spatio-temporal regression kriging 1

Consider the problem of describing the spatio-temporal process of a continuous variable2

Z. Z varying over space and time, e.g. temperature varies in space from one location to3

another and in time from one point in time to another. The statistical model of such a4

process is typically composed of the sum of a trend and a stochastic residual (Burrough, 5

1998; Heuvelink and Grif�th, 2010; Hengl et al., 2012): 6

Z(s;t) = m(s;t) + e0(s;t) + e00(s;t) (4.1)

wheres;t is the space-time continuum,m is the trend component,e0(s;t) is the spatio- 7

temporally correlated stochastic component ande00(s;t) is the uncorrelated noise. The 8

phenomenonZ is observed at a �nite set of points in space and time. An interpolation9

technique is required in order to predictZ at an unobserved location or time. Geostatistical10

interpolation techniques start by de�ning a model that describes the degree of variation of11

the variable of interest in space and time, then followed by characterizing its relationship12

with explanatory variables that are denoted as`covariates'. 13

The global trend ofZ can often be explained using covariates known over the spatio-14

temporal domain, e.g. part of the variation of temperature can be explained using climatic15

factors (static) such as latitude and elevation, TWI and time dependent predictors like16

day of year and space and time dependent MODIS LST. It is convenient to represent the17

relationship between the dependent variable and the covariates using a linear model. The18

linear trend model is given by: 19

m(s;t) =
p

å
i= 0

bi fi(s;t); (4.2)

where thebi are unknown regression coef�cients, thefi covariates that must be exhaus-20

tively known over the spatio-temporal domain, andp is the number of covariates. Covari-21

ate f0 is taken as unity, resulting inb0 representing the intercept. 22

The linear model for the mean daily temperature is given as a multiple linear regression23

on the covariate layers (described in section 4.2.2). In addition to these covariate layers,24
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we assume that the global daily temperature is a function of geometrical position of a1

particular location on Earth and day of the year. We call this a`geometrical temperature2

trend'. The geometrical temperature trend for the mean temperature was modelled as a3

function of the day of the year and latitude (f ):4

tgeom= 30:4cosf � 15:5(1� cosq) sinjf j; (4.3)

whereq is derived as:5

q = ( day� 18)
2p
365

+ 21� sgn(f )p: (4.4)

The number 18 represents the coldest day in the northern and warmest day in the southern6

hemisphere and was derived empirically by graphical inspection of mean daily temper-7

ature plots from stations in the northern and southern hemisphere. The sgn denotes the8

signum function that extracts the sign of a real number. Parameters 30.4°C and 15.5°C9

of the geometric temperature trend were calculated by least squares �tting on circa 4410

million daily temperature observations from 2000 to 2011. These two numbers are, in11

fact, similar to the mean yearly temperature on the Equator and the mean global Earth12

temperature.13

The linear model for the minimum daily temperature uses the same covariates as the14

linear multivariate model for mean daily temperature. The geometrical temperature trend15

for minimum daily temperature was:16

tgeom= 24:2cosf � 15:7(1� cosq) sinjf j; (4.5)

The geometrical temperature trend for maximum daily temperature was:17

tgeom= 37cosf � 15:4(1� cosq) sinjf j; (4.6)
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The parameters 24.2°C and 15.7°C in Eq.(4.5), and 37°C and 15.4°C in Eq.(4.6) were1

also derived by the method of least square estimation based on the 11 years of observation2

from 2000 to 2011. 3

In recent years, many covariate layers with �ne resolution have become available and4

regression models can often explain a signi�cant part of the observed variation. However,5

in practice, the trend cannot explain all variation even though predictors are spatially,6

temporally and spatio-temporally varying. The residuals of the regression model might7

show spatio-temporal dependencies, which suggests that a spatio-temporal variogram may8

be estimated from the residuals at observation locations and used to krige the residuals. To9

make this explicit, we write the variable of interest as a sum of the trend and space-time10

residual: 11

Z(s;t) = m(s;t) + V(s;t); (4.7)

whereV is a zero-mean stochastic residual. 12

To proceed with the estimation of the spatio-temporal covariance structure ofV, we as- 13

sume it to be stationary and spatially isotropic. In other words, we assume that the vari-14

ance ofV is constant and that the covariance ofV at points(s;t) and(s+ h;t + u) only 15

depend on their separation distance(h;u), whereh is the Euclidean distancejhj. These as- 16

sumptions might be hard to ful�l for the random �eldZ but are more likely to be realistic 17

for the residuals. The spatio-temporal covariances are usually described using a spatio-18

temporal variogram, which measures the average dissimilarity between data separated in19

the spatio-temporal domain using the distance vector(h;u) de�ned as: 20

g(h;u) =
1
2

E(V(s;t) � V(s+ h;t + u))2 (4.8)

whereE denotes mathematical expectation. 21

The residualV may be thought of as comprising three components: spatial, temporal, and22

spatio-temporal interaction (Heuvelink et al., 2012). The sum-metric variogram structure,23

that considers these three components as mutually independent, is de�ned as (Heuvelink 24

et al., 2012): 25
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g(h;u) = gS(h)+ gT(u)+ gST(
q

h2 + ( a � u)2); (4.9)

whereg(h;u) denotes the semi-variance ofV with h units of distance in space andu1

units of distance in time,gS;gT are purely spatial and temporal components, andgST is the2

space-time interaction component. The spatio-temporal anisotropy ratioa converts units3

of temporal separation (u) into spatial distances (h). The spatio-temporal sum-metric var-4

iogram model can be seen as a surface with ten parameters; three parameters for each5

variogram component (sill, nugget, range) and the spatio-temporal anisotropy parameter6

a . Semivariances (and covariances) can be estimated for any spatio-temporal separation7

distance(h;u) once these parameters are estimated from the observed residuals. In turn,8

these can be used in spatio-temporal kriging to compute the best linear unbiased predic-9

tor (i.e., with minimum expected mean squared error) for any space-time point whereV10

(andZ) was not observed. The formulas of kriging in the spatio-temporal domain do not11

differ fundamentally in a mathematical or statistical sense from those of spatial kriging12

(Heuvelink et al., 2012):13

V̂(s0; t0) = c0
Tc� 1V; (4.10)

wherec is then� n variance-covariance matrix of the residuals at then observation space-14

time points, as derived from the spatio-temporal variogram,c0 is a vector of covariances15

between the residuals at the observation and prediction points,T denotes matrix transpose,16

andV is a vector of residuals (see Eq. 4.7) at then observation points.17

The �nal prediction of variableZ at location(s0; t0) is de�ned as:18

ẑ(s0; t0) = m̂(s0; t0) + V̂(s0; t0): (4.11)

wherem̂(s0; t0) is the estimated multiple linear regression trend. The regression coef�-19

cients are estimated in the usual way, using where possible Generalized Least Squares20

or Ordinary Least Squares (Pinheiro and Bates, 2009). Note that `regression-kriging'21

speci�cally implies that the regression modelling and residual kriging parts are addressed22

separately: we �rst produced predictions for the regression part (see Eq. 4.2), followed by23
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extracting residuals for all observations and �nally �tting a global sum-metric variogram1

model. The residuals were then interpolated and added to the predicted trend. 2

Spatio-temporal regression-kriging has made a breakthrough in the past decade with the-3

oretical concepts and providing various examples of applications (Gething et al., 2007; 4

Heuvelink and Grif�th, 2010; Heuvelink et al., 2012; Gräler et al., 2011; Hengl et al., 5

2012). Here, we extend the spatio-temporal regression-kriging framework that combines6

ground observation together with MODIS 8 day images, as was presented in a Croatian7

case study (Hengl et al., 2012), to a global data set and hyper-resolution data. We imple-8

mented all the computing in theR environment for statistical computing (R Development 9

Core Team, 2012) by combining functionality ofgstatpackage (geostatistical modelling),10

rgdalandrasterpackages (raster data loading and analysis), andsnowfallpackage (cluster 11

computing). We used thegstat package (Pebesma, 2004) that is also capable of working12

with spatio-temporal data sets de�ned inspacetime package(Pebesma, 2012) for vari- 13

ogram model �tting. The sample variograms were estimated with spatial lags of 50 km14

and time lags of 1 day. Because this is a global point data set, all distances were calculated15

as great circle distances in the WGS84 coordinate reference system. 16

4.2.4 Accuracy assessment 17

Two approaches were applied for assessing the accuracy of the predictions made for the18

daily temperature of the global land surface as obtained with spatio-temporal regression-19

kriging. These were: (1) cross-validation (CV), and (2) comparison with GHCN-M20

monthly data. For validation using GHCN-M data, we predicted values at daily resolution21

and then aggregated these predictions to monthly averages. Stations from the GHCN-M22

dataset that were closer than 50 km to any station used in this study were excluded in23

order to avoid station overlap and to increase the independence of the validation data to24

obtain more objective results. 25

For cross-validation, we use the leave-one-out cross-validation method. This works as26

follows: the method predicts a complete annual time series of daily temperature at all sta-27

tions using only observations from neighbouring stations ( i.e. the 35 nearest observation28

were sampled for current date and the day before and after the current one, resulting in29

the collection of around 105 observations that exclude data from the target station itself).30
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The predicted values were compared with the actual observations of the target stations to1

derive cross-validation statistics. The �nal accuracy of the model is assessed using the2

root mean squared error (RMSE):3

RMSE=

s
1
m

�
m

å
j= 1

�
T̂(sj ; t j ) � T(sj ; t j )

� 2
(4.12)

whereT̂(sj ; t j ) � T(sj ; t j ) is the difference between the cross-validation prediction and the4

observed temperature at spatio-temporal location (sj ; t j ), andm is the number of obser-5

vations for the station. The derived RMSE per station were then exported to KML and6

HTML formats to allow for visual exploration of errors in space and time domains. These7

visualizations can be accessed via thehttp://dailymeteo.org website.8

Because stations are heavily clustered (Kilibarda et al., 2013c), the global RMSE mostly9

depends on the accuracy in areas with a high station density. In order to obtain a more10

objective measure of accuracy that accounts for this point clustering the block aggre-11

gated RMSE for 500 by 500 km blocks of land prepared in Sinusoidal equal area projec-12

tions is analysed. The regression-kriging cross-validation statistics were �rst calculated13

in the WGS84 coordinate reference system using geodetic line distances, and then were14

re-projected to Sinusoidal projection for the block aggregation.15

4.3 Results16

4.3.1 Mean daily temperature interpolation17

4.3.1.1 Linear regression for mean daily temperature18

Figure 4.1 shows the geometrical trend values against observed temperatures for two sam-19

ple stations. Surprisingly, the geometrical temperature trend already explains 75% of daily20

temperature variation with a standard error of� 5.7°C.21

Figure 4.2 shows the dissagregated MODIS LST 8 day layer (MODIS spline) against22

observed temperature for two stations. The linear regression model using only MODIS23
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FIGURE 4.1: Mean daily temperature observation in 2011 (gray solid line) and geo-
metrical temperature trend (black dashed line). PHILADEPLHIA, USA (l = � 75; f =

39:993) (top). BUNBURY, Western Australia (l = 115:65; f = � 33:35) (bottom).
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LST spline images explains 80% of the variability in mean daily temperature values for1

the year 2011. Thus, MODIS LST spline images are signi�cant estimators of the daily2

temperature with an average precision of� 5.2°C. Again, this precision is lower than the3

one reported byWan et al.(2004) because we use 8 day composites and not daily MODIS4

LST images in order to reach full land coverage.5

The DEM and TWI layers also appeared to be signi�cant covariate layers even though6

we expected that MODIS LST will account for the variation of temperature with eleva-7

tion. We suspect the main reason for some elevation dependency was left unexplained8

in MODIS LST is related with the fact that this is a cloud free product so it is likely9

to underestimate winter temperatures (due to strong radiative cooling in cloud free sit-10

uations) and overestimate summer temperatures (Van De Kerchove et al., 2013). As a11

consequence, during winter days/nights surface observed temperatures would be higher12

under the clouds due to suppressed radiative cooling and our MODIS LST gap-�lling pro-13

cedure would probably underestimate temperature in these areas. During summer, under14

the clouds in the mountains observed surface temperature would be lower, while over gap-15

�lling procedure would result in higher temperatures. Since this two processes are mainly16

elevation dependent this could be accounted for with DEM and TWI covariate layers.17

The �nal multiple linear model with four covariates explains 84.2% of the variation and18

associated standard deviation of� 4.6°C. Figure 4.2 shows plots of modelled against ob-19

served temperature for the same stations as used in previews �gures.20

Figure 4.3 presents the general relationship between the observed temperature and linear21

model on the full data set used for spatio-temporal modelling. Note that the residuals are22

in general normally distributed around the regression line and no heteroscedasticity can23

be observed.24

4.3.1.2 Spatio-temporal variogram model for mean daily temperature25

Â �nThe right-hand side of Figure 4.4 shows the 2D and 3D sample space-time variogram.26

The �tted model (ten variogram parameters described in Section 4.2.3 with the�t.StVariogram27

function ingstat) is shown in the left-hand side of Figure 4.4. Table 4.1 summarizes the28
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FIGURE 4.2: Mean daily temperature observation in 2011 (gray solid line) and multi-
variate linear model of mean daily temperature (red dashed line) on MODIS LST spline
(black dashed line), geometrical temperature trend (black dotted line), elevation and to-
pographic wetness index. PHILADEPLHIA, USA (l = � 75; f = 39:993) (top). BUN-

BURY, Western Australia (l = 115:65; f = � 33:35) (bottom).

parameter estimates of the sum-metric variogram model. Note that all variogram compo-1

nents were modelled as spherical functions. 2

The Figure 4.4 indicates that regression residuals have clear correlations both in space and3

time and therefore spatio-temporal kriging of residuals is certainly applicable. The �tted4
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FIGURE 4.3: Scatter plot showing the general relationship between mean daily tempera-
ture and multivariate linear model prediction of mean daily temperature. The dashed line

is the 1:1 relationship.

spatio-temporal variogram parameters of the mean daily temperature residuals show a sig-1

ni�cant purely spatial variogram component, while the purely temporal component is zero2

and temporal variability is only contained in the space-time interaction component. This3

suggests that the temporal pattern in mean temperature is probably already suf�ciently4

captured by the regression model. Current residuals are correlated with residuals from5

day after (or before) and correlation depends on space-time distance. But only temporal6

separation between any two stations (without knowing spatial distance) doesn't explain7
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FIGURE 4.4: Fitted sum-metric model (left) and sample variogriom (right) of residu-
als from multiple linear regression of mean daily temperature on MODIS, geometrical
temperature trend, elevation and topographic wetness index. The variogram surface is

presented in 2D (top) and 3D (bottom).
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TABLE 4.1: Parameters of the �tted sum-metric variogram model for mean daily tem-
perature regression residuals, each component (see Eq. 4.9) is modelled using a spherical

function.

Nugget Sill Range parameter Anisotropy ratio
spatial 1.934 14.13 5903 km

temporal 0 0 0 days
space-time 0.474 9.065 2054 km 497 km/day

even part of spatio-temporal correlation. Contrary, only spatial distance between two sta-1

tions (without knowing temporal separation) explain part of spatio-temporal correlation.2

The short distance variation (nugget effect) in both the purely spatial and spatio-temporal3

components indicates that the model can't give better precision than� 1:5°C globally (for4

interpolation at daily resolution). The range parameters are very large (especially pure5

spatial range) showing that the residuals are correlated within wide zones reaching sill af-6

ter 6000 km. Thus, the local neighbourhoods need to be selected in a way that re�ects the7

spatial and temporal ranges. Only few temporal instances will be selected while the spa-8

tial selection spans several hundred kilometres. This is captured by the spatio-temporal9

anisotropy as well suggesting that a station with a temporal lag of one day exhibits a10

similar correlation as a station about 500 km apart.11

4.3.1.3 Accuracy assessment: mean daily temperature12

An interpolated map of daily mean temperature for the �rst and second January of 201113

is shown in Figure 4.5, daily maps for the year 2011 at 1 km spatial resolution in GeoTiff14

format are available for download viahttp://www.dailymeteo.org . The mean daily15

temperature map of coterminous USA for the �rst 4 days in January 2011 is presented in16

Figure 4.6.17

The cross-validation results on the complete data set showed a RMSE=2.4°C for global18

land areas including Antarctica, with R-square of 96.6%. The block aggregated RMSE19

results shows that the average accuracy is a bit worse (RMSE= 2:8 , see also map Fig-20

ure 4.7). As mentioned previously, the global block aggregated RMSE gives a more21
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objective global measure of accuracy. Thus, the actual RMSE is half a degree larger than1

RMSE calculated as a simple mean from all stations. 2

The monthlyRMSE obtained from cross-validation of monthly aggregated observations3

with cross-validation prediction is 1.7°C. This is an important result because it indicates4

that the model can be used for monthly image production (aggregation of daily grid-5

ded data). The yearly RMSE is 1.4°C. The spatial distribution of RMSE calculated per6

station (yearly average of squared daily cross-validation residuals, which is a daily qual-7

ity measure) is shown in Figure 4.8. In this �gure, the stations with RMSE< 2°C rep- 8

resent 59% of the total number of stations (black dots), and 26% of stations have an9

RMSE between 2°C and 3°C. Figure 4.8 is also provided as an interactive map produced10

with the R packageplotGoogleMaps(Kilibarda and Bajat, 2012), and is available via 11

http://www.dailymeteo.org . 12

Observed and cross-validated values for two stations are shown in Figure 4.9. Considering13

the fact that cross-validation predictions are made using only 35 neighbouring stations (in14

spatial and 3 days in temporal domain) without any observation from the validation sta-15

tion, the spatio-temporal regression-kriging model is an accurate tool for �ltering missing16

values in time series of mean daily temperatures. 17

The spatial distribution of RMSE can also be aggregated in the spatial domain by region18

or country. The aggregated results show that the smallest RMSE=1°C is achieved in the19

Netherlands, whereas Europe on average performs with an RMSE=1.6°C. Other results20

for large countries and regions are Russia (c.a. 2.2°C), USA 1.8°C, South America 3.1°C,21

while Antarctica has the highest RMSE with 5.9°C. An interactive map of spatially ag-22

gregated RMSE at the country level is also available viahttp://www.dailymeteo.org . 23

The RMSE on the GHCN-M data is 1.5°C and spatial distribution of RMSE calculated per24

year (yearly average of squared monthly validation residuals) for each station is shown on25

Figure 4.10 (an interactive map is available athttp://www.dailymeteo.org ). This map 26

shows that 48% of predicted points have prediction accuracy smaller than 1°C. GHCN-27

M stations at a monthly resolution have an accuracy between 1 and 2°C for 40% of the28

points. 29
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FIGURE 4.9: Comparison of mean daily temperature observations in 2011 (gray solid
line) and space-time regression kriging cross-validation prediction of mean daily temper-
ature (black dashed line). PHILADEPLHIA, USA (l = � 75; f = 39:993) (top). BUN-

BURY, Western Australia (l = 115:65; f = � 33:35) (bottom).
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4.3.2 Minimum daily temperature interpolation1

4.3.2.1 Linear regression model for minimum daily temperature2

The geometrical temperature trend explains about 72% of the minimum daily temperature3

variations for 2011 with a standard error of� 6°C, Figure 4.11 shows geometrical trend4

against observation. The results of regression modelling based on MODIS LST spline5

images explains 70% of the variability in minimum daily temperature values for the year6

2011 with an average precision of� 6.3°C; thus performing somewhat worse than for7

mean temperature.8

DEM and TWI layers also showed to be highly signi�cant covariates for minimum daily9

temperature. The �nal linear model with four covariates explains 77% of the variation10

with a standard error of� 5.5°C. Figure 4.11 shows a plot of the modelled geometrical11

trend for minimum daily temperature and MODIS LST spline values against observed12

temperature on the same stations.13

4.3.2.2 Spatio-temporal variogram model for minimum daily temperature14

The spatio-temporal variogram is modeled in the same way as was described for mean15

daily temperature. The variogram for minimum daily temperature has similar parameters16

as the mean daily temperature (see Table 4.2 and Figure 4.12). Again, the pure spatial17

component exists and pure temporal one doesn't. The pure spatial component shows spa-18

tial dependence of regression residuals across the Globe (pure spatial range is 5725 km)19

at any time separation, whereas complete temporal variability of residuals is contained in20

the spatio-temporal interaction part of the variogram structure. The nugget parts of these21

components are around 3.5°C2, which is higher than in the mean temperature case and22

suggests that short range variability in space and time of minimum temperature regres-23

sion residuals is signi�cantly higher than for the mean temperature so extreme tempera-24

tures being harder to predict.25
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FIGURE 4.11: Minimum daily temperature observation in 2011 (gray solid line) and
multivariate linear model of minimum daily temperature (red dashed line) on MODIS
LST spline (black dashed line), geometrical temperature trend (black dot line), elevation
and topographic wetness index. PHILADEPLHIA, USA (l = � 75; f = 39:993) (top).

BUNBURY, Western Australia (l = 115:65; f = � 33:35) (bottom).

96



Chapter 4Spatio-temporal interpolation of daily temperatures

FIGURE 4.12: Fitted sum metric model (left) and sample variogriom (right) of residuals
from multiple regression of minimum daily temperature observation on MODIS, geomet-
rical temperature trend, elevation and topographic wetness index. The variogram surface

is presented in 2D (top) and 3D manner (bottom).
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TABLE 4.2: Parameters of the �tted sum-metric variogram model for minimum daily
temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-

ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 3.695 22.682 5725 km

temporal 0 0 0 days
space-time 1.67 9.457 1888 km 485 km/day

4.3.2.3 Accuracy assessment: minimum daily temperature 1

The results of cross-validation for minimum temperature produced a RMSE=2.7°C for2

global land areas including Antarctica, with R-square of 94.2%. Monthly RMSE ob-3

tained from the cross-validation of monthly aggregated observation and cross-validation4

prediction is 2°C, yearly RMSE is 1.7°C. The spatial distribution of RMSE calculated per5

station (yearly average of squared daily cross-validation residuals, daily quality measure)6

for each station is shown in Figure 4.13, where the stations with RMSE< 2°C are repre- 7

sented with 40% of the total number of stations (black dots), and 2°C< RMSE< 3°C with 8

35% (blue dots), 23% of points are with 3°C< RMSE< 6°C, and 200 stations are with 9

RMSE> 6°C. 10

The spatial distribution of RMSE also shows lower accuracy than predictions of the mean11

temperature in general. The aggregated results show that the lowest RMSE=1.4°C is12

achieved in the Netherlands, Europe without Russia (c.a. 2.7°C) an RMSE of around13

2.3°C, USA 2.3°C, South America 3.1°C, Antarctica has again the highest RMSE=4.7°C.14

4.3.3 Maximum daily temperature interpolation 15

4.3.3.1 Linear regression model for maximum daily temperature 16

The geometrical temperature trend in the linear model explains 75% of maximum daily17

temperature variation for 2011 with a standard error of� 6.6°C. Figure 4.14 shows the18
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geometrical trend compared against observation. The geometrical trend results are com-1

parable to the results of modelling the mean temperature and are hence better than the2

results for modelling the minimum daily temperature case. 3

The regression modelling only with MODIS LST spline images already explains 84.5%4

of the variability in maximum daily temperature values for the year 2011 with an average5

precision of� 5.2°C. MODIS LST 8 day images are the best predictor for the maximum6

daily temperature when compared to actual mean and minimum daily temperatures. DEM7

and TWI layers also were signi�cant covariate layers for the maximum daily temperature.8

The �nal linear model with four covariates explains 86.7% of variation with standard9

deviation of� 4.8°C, Figure 4.14 shows the modelled linear regression line, the geomet-10

rical trend for the maximum daily temperature and the MODIS LST spline values against11

observed temperature for the same stations. 12

4.3.3.2 Spatio-temporal variogram model for maximum daily temperature 13

Table 4.3 summarizes the parameters of the spatio-temporal variogram model, as in the14

previous variograms the components of variogram are spherical functions. Similar as15

for minimum daily temperature the nugget effect of pure spatial component is higher16

showing that this model can not achieve a better accuracy than the model for mean daily17

temperature. 18

TABLE 4.3: Parameters of the �tted sum-metric variogram model for minimum daily
temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-

ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 2.8722 8.314 4930 km

temporal 0 0 0 days
space-time 1.750 11.175 2117 km 527 km/day
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FIGURE 4.14: Maximum daily temperature observation in 2011 (gray solid line) and
multivariate linear model of maximum daily temperature (red dashed line) on MODIS
LST spline (black dashed line), geometrical temperature trend (black dotted line), ele-
vation and topographic wetness index. PHILADEPLHIA, USA (l = � 75; f = 39:993)

(top). BUNBURY, Western Australia (l = 115:65; f = � 33:35) (bottom).
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FIGURE 4.15: Fitted sum-metric model (left) and sample variogriom (right) of residuals
from multiple linear regression of maximum daily temperature on MODIS, geometrical
temperature trend, elevation and topographic wetness index. The variogram surface is

presented in 2D (above) and 3D (below).
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4.3.3.3 Accuracy assessment: maximum daily temperature1

Results of cross-validation for maximum daily temperature on the complete data set2

gave a RMSE= 2:6C for global land areas including Antarctica, with R-square 95.9%.3

Monthly RMSE obtained from cross-validation of monthly aggregation of observation4

and cross-validation prediction is 1.9°C, and yearly RMSE is 1.6°C. Spatial distribution5

of RMSE calculated per station (yearly average of squared daily cross-validation resid-6

uals, daily quality measure) for each station is shown in Figure 4.16, where the stations7

with RMSE< 2°C are represented with 41% of total number of stations (black dots), and8

2°C< RMSE< 3°C with 41% (blue dots), 16.6% of points are with 3°C< RMSE< 6°C,9

and 106 stations are with RMSE> 6°C.10

The spatial distribution of RMSE also shows lower accuracy than for mean daily tem-11

perature. The aggregated results show that the best RMSE=1.3°C is achieved in the12

Netherlands, Europe without Russia (ca. 2.7°C) achieves around 2.1°C, USA 2.1°C, South13

America 3.2°C, Antarctica has the highest RMSE=5°C.14

4.4 Discussion and Conclusions15

In this paper we have demonstrated how dense publicly available ground station data16

together with a time series of remote sensing images and covariates at 1 km resolution17

can be used to predict mean, minimum and maximum daily temperature for the global18

land mass in space and time. The obtained global models for mean, minimum and max-19

imum temperature were further used to produce gridded images of daily temperatures at20

very high spatial and temporal resolution. We achieved an average prediction accuracy21

of about 2–3°C for daily temperature prediction when assessed using cross-validation22

(which con�rms the results of some local studies byHengl et al.(2012), Heuvelink et al.23

(2012) andNeteler(2010)). This is promising as it indicates that highly accurate maps of24

daily temperatures can be produced at high spatial resolution using global spatio-temporal25

models. Figures 4.8, 4.13, 4.16 also show that the outliers are distinctly grouped in areas26

that are poorly covered with meteorological stations and in mountain regions, i.e. areas27

frequently covered with clouds or snow. This agrees with �ndings ofNeteler(2010), who28

experienced similar dif�culties in working with dynamic snow cover on mountain tops.29

103



Chapter 4Spatio-temporal interpolation of daily temperatures

F
IG

U
R

E
4

.1
6

:
M

ap
of

m
ax

im
um

da
ily

te
m

pe
ra

tu
re

cr
os

s-
va

lid
at

io
n

er
ro

rs
(R

M
S

E
)

av
er

ag
ed

pe
r

ye
ar

fo
r

ea
ch

st
at

io
n.

R
ed

ci
rc

le
s

in
di

ca
te

cr
os

s-
va

lid
at

io
n

ou
tli

er
s

w
ith

R
M

S
E>

6.
C

lu
st

er
s

of
re

d
ci

rc
le

s
in

di
ca

te
pr

ob
le

m
at

ic
ar

ea
s,

pa
rt

ly
pr

es
en

ce
of

gr
os

s
er

ro
r

in
ob

se
rv

at
io

n
tim

e
se

rie
s.

104



Chapter 4Spatio-temporal interpolation of daily temperatures

During the model �tting, we discovered that the GSOD point data sets still contain many1

artifacts and possible gross errors. We removed a small portion of obvious errors, but2

surely there is even more noise in this data set. It was beyond the scope of this study3

to identify and remove all errors. Station data �ltering should probably be performed by4

the organizations that collected the data because they have expert knowledge on the mea-5

surements and stations. In that context, our proposed methodology for cross-validation6

provides a tool to detect stations with potential errors in time series, and we recommend7

that responsible organizations use it to detect errors and clean up their data sets. Further-8

more, by overlaying the point data and WorldGrids.org covariates, we were able to detect9

stations with inaccurate locations. This is especially important for stations in mountainous10

regions, which proved to be very important for model building as the error of predicting11

temperature increases with elevation.12

It is worth noting that the presented global regression-kriging models can also be used to13

produce maps of associated uncertainty at very high spatio-temporal resolution in addi-14

tion to providing estimates of the values of target variables. Basically, by using the global15

models presented in this paper, one can get an unbiased prediction of daily air tempera-16

tures for any place on the global land mask (at support size of 1 km) and for any day of17

the year for the period from the beginning of the MODIS mission until today.18

The geometrical temperature trend (Eq.4.3) presented in this paper turned out to be a cru-19

cial covariate. Alone, it can explain more than 70% of the temperature variation. This20

indicates that a similar model without remote sensing images can be made for the daily21

temperature interpolation for the period when MODIS images were not available and22

would not perform much worse than a model that includes MODIS data as a covariate.23

The �tted spatio-temporal global models for mean, minimum and maximum daily temper-24

ature could be used as a tool for disaggregation of MODIS 8 day images to daily images25

and for the calibration of land surface temperatures (conversion to air temperature).26
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Chapter 5 1

Meteo package for automated 2

spatio-temporal mapping 3

This Chapter describes theR packagemeteothat is under development. The package4

purpose is to provide functionalities for the automated mapping of meteorological obser-5

vations using spatio-temporal regression kriging. The package contains regression and6

variogram models that were presented and described in Chapter 4. The models were �tted7

using publicly available data sets (see Chapter 3). Spatio-temporal regression kriging is8

implemented in a way that can be used for large amounts of data. Detection of outliers,9

which are based on iterative cross-validations, is also implemented in the package. In10

addition to the implemented methods, the package performance is presented through the11

case study of mapping mean daily temperatures in Serbia. 12

5.1 Introduction 13

The most powerfulR package available for geostatistical analysis isgstat, which was de- 14

veloped for applied geostatisticsPebesma(2004). Many spatial geostatistics techniques15

(including ordinary, universal kriging, block kriging, kriging in a local neighbourhood,16

variogram cloud diagnostics, variogram modelling, multivariable variogram modelling,17
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cokriging and simulation)are available to the broad community of geoscientists. The tech-1

niques of spatio-temporal variogram �tting and implementation of global spatio-temporal2

ordinary kriging has recently been developed. Spatio-temporal regression kriging predic-3

tion and cross validation have not been implemented ingstat, yet.4

The packagemeteoKilibarda et al.(2013b)1 has been implemented in theR environment5

for statistical computing (R Development Core Team, 2012). It combines functionali-6

ties of thegstat, rgdal (Bivand et al., 2013) and raster (Hijmans and van Etten, 2013)7

packages (raster data loading and analysis) andsnowfall(Knaus, 2013) package (cluster8

computing). This package provides an automated framework for various tasks including:9

spatio-temporal regression kriging interpolation of ground based observations interpola-10

tion and de-trended using covariates, e.g. satellites products and DEM derivatives. Global11

temperature models are stored in the package (see Chapter 4 for models details) such that12

the prediction (interpolation) can be performed without �tting spatio-temporal regression13

and variogram models.14

The automated spatio-temporal kriging interpolation procedure is a data driven approach15

designed for mapping with little or no human interaction.Hengl (2009) describes auto-16

mated mapping, as an evolving technique that encompasses the future of mapping frame-17

works:18

“We can conclude that an unavoidable trend in the evolution of spatial prediction models19

will be a development and use of fully-automated, robust, intelligent mapping systems.20

Systems that will be able to detect possible problems in the data, iteratively estimate the21

most reasonable model parameters, employ all possible explanatory and empirical data,22

and assist the user in generating the survey reports.”23

Themeteopackage endeavours in this direction and includes the additional paradigm of24

using a global model as the target meteorological/climatic variable. Currently, automated25

mapping with themeteopackage can be decomposed in chunks:26

1. de�ning input observations and covariates;27

2. use of pre-calculated global models;28

1https://r-forge.r-project.org/projects/meteo/
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3. detecting and/or removing outliers; 1

4. creation of �nal prediction (and its export to GIS formats); 2

5. cartographic visualisation of results and/or creation of web maps (e.g. by using3

R packageplotGoogleMaps(Kilibarda and Bajat, 2012) for automatic creation of 4

interactive web maps). 5

In addition,meteooffers the possibility of using user de�ned covariates, regressions and6

variograms; thereby giving more �exibility of using the package in a semi-automated7

approach. 8

5.2 R enviroment and related packages 9

5.2.1 R enviroment 10

As stated in the Introductory section of theR Language De�nition on-line manual (R 11

Development Core Team, 2012), R is a system for statistical computation and graphics,12

which provides, among other things, programming facilities, high-level graphics, inter-13

faces to other languages, and debugging facilities.R implements a language similar to14

the S language that was originally developed by John Chambers (Becker and Chambers, 15

1984). The main difference is in the license statement because,R is a free and open source16

software under the terms of the GNU General Public License in contrast to the S language.17

The syntax of theR language is analogous to the C programming language. However, a18

fully functional interpreter permits the creation of functions and calculations within an19

environment de�ned by a command line window or a graphical user interface (Grunsky, 20

2002). R is organized as a collection of packages designated for speci�c tasks. 21

The R package system has been one of the key factors in the overall success of theR 22

project (R Development Core Team, 2012). TheRcontains the base system which enables23

statistical computation, linear algebra computation, graphics creation, and other similar24

features. A package is a related set of functions, help, and data �les that have been bundled25

up together. Packages inR are similar to modules in Perl, libraries in C/C++, and classes26

108



Chapter 5Meteo package for automated spatio-temporal mapping

in Java. It is not necessary to install the speci�c packages if they do not part into the user's1

computing and analysing interests.2

The set of developed packages are especially interesting for themeteopackage. TheR3

developers have written the R packagespto extend R with classes and methods for spatial4

data (Pebesma and Bivand, 2005). Classes specify a structure and de�ne how spatial data5

are organised and stored. Methods are instances of functions specialised for a particular6

data class (Bivand et al., 2008). Another important package used in this study is thergdal7

package. This package uses functions of the Geospatial Data Abstraction Library to read8

and write GIS data with options of handling a coordinate referent system (CRS). This9

package allows the user to de�ne CRS for spatial object. CRS might be obtained directly10

from the data if data are imported from the GIS �le by thergdalpackage. Performing11

transformations among different CRSs is available using the PROJ4 library2, which is im-12

plemented in thergdalpackage. A very ef�cient tool for raster manipulation is theraster13

package (Hijmans and van Etten, 2013), which provides functionalities for reading, writ-14

ing, manipulating, analysing and modelling of a gridded spatial data. Packagesspacetime15

andgstatwill be brie�y described in further text.16

5.2.2 Package spacetime17

Spatio-temporal data have been used in meteorological/climatic mapping for a long time.18

However, they have not been de�ned as an object with structured spatial and temporal19

elements and bound together as a spatio-temporal data model. The examples of those20

data are: time series of weather measurements from ground stations in regions of interest,21

satellite images of weather, etc. Spatio-temporal data have mainly been used and analysed22

separately, whereby the spatial aspect is analysed �rst and the temporal aspect afterwards23

or reversed. Such data has not been included in an integral modelling approach (Bivand24

et al., 2008). The lack of GIS data models and software for storing, handling and analysing25

spatio-temporal data were the main reason for the described data processing approach26

outlined in this Chapter.27

2http://trac.osgeo.org/proj/
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Packagespacetimeprovides classes and methods for different types of spatio-temporal1

data that are implemented inR. Spatio-temporal data types implemented inspacetime, 2

include: space-time regular lattices, sparse lattices, irregular data, and simple trajectories3

(Pebesma, 2012). In addition, the utility functions for plotting data as map sequences (lat-4

tice or animation) or multiple time series and methods for spatial and temporal selection5

and subsetting and spatial and temporal overlay are provided in this package. 6

A STFDF-classis used in themeteopackage for storing, overlaying and manipulation of7

spatio-temporal data.STFDF-classis a data model referred to as a full space-time grid.8

It contains observation data (stored asdata.frameobjects that are presented in analogue9

form as a spreadsheet in Excel), spatial features (points, lines, polygons, grid cells) as10

sp objects and time information data and time as a vector. This data model (class) im-11

plies that each spatial location contains observations for each time instance. Therefore,12

the number of observations is a product of the number of locations and number of time13

instances. Unobserved space-time locations (e.g. missing observation on certain day at14

meteorological station) are stored as a missing valueNA in an observation table. This15

class is suitable for storing meteorological/climatic data from both ground stations and16

remote sensing data. 17

5.2.3 Package gstat 18

The gstat package provides a wide range of univariable and multivariable geostatistical19

functions for modelling, predicting and simulation, whereby the packagespprovides gen- 20

eral purpose classes and methods for de�ning, importing/exporting and visualizing spatial21

data (Pebesma, 2004). The package allows one to calculate sample variograms, �t valid22

models, show variograms, calculate (pseudo) cross-variograms, �t valid linear models,23

and calculate/�t directional variograms and variogram models (anisotropy coef�cients are24

not �tted automatically). 25

The development of thespacetimepackage has already started in 2010 and thegstatfunc- 26

tion has been adapted for spatio-temporal mapping (Pebesma, 2013). This package can 27

be used for spatio-temporal geostatistics, estimated sample spatio-temporal variograms,28

spatio-temporal variogram �tting and ordinary global spatio-temporal kriging. 29
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ThevariogramSTfunction calculates empirical spatio-temporal variograms using an ob-1

ject of STFDF-classas input data. The resulting variogram can be visualised as a sur-2

face (see Figure 5.1) or an image. Spatio-temporal model �tting is provided by the3

�t.StVariogramfunction. It �ts a spatio-temporal variogram model of a given type from4

a spatio-temporal sample variogram. Different variogram models can be de�ned using5

thevgmSTfunction. A variogram model (separable, product-sum, sum-metric, ect.) de-6

termines a structure of the space-time covariance model, e.g. the sum-metric structure7

is de�ned using the Equation 4.9 that contains pure spatial, pure temporal and spatio-8

temporal components.9

FIGURE 5.1: Spatio-temporal sample (experimental) variogram surface.

A function krigeSTprovides the particular implementation of global spatio-temporal or-10

dinary kriging. At the moment,krigeSTdoes not support block kriging or kriging in a11

local neighbourhood and it does not provide simulation.12
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The prediction over a large area with lots of spatio-temporal observations cannot be per-1

formed using the generickrigeSTfunction because of the intensity of computation efforts.2

The alternative solution could be: 3

• dividing area of interest in smaller parts (tiles), as well as observations points; 4

• usekrigeSTfor prediction and ; 5

• mosaic back tiles to area of interpolation. 6

Spatio-temporal regression kriging usinggstat also must be performed separately: the7

�rst step isto produce predictions for the regression part using the regression function, the8

second part involves extracting residuals for all observations and �nally �tting a global9

sum-metric variogram model. The residuals then should be interpolated and added to the10

predicted trend. For large areas and lots of observations, the prediction of residuals using11

ordinary kriging needs to be completed tile by tile. Themeteopackage automates the12

procedure for regression kriging prediction over large areas. 13

5.3 Development of meteo package 14

Themeteopackage contains several functions that aim to �t table data to spatio-temporal15

objects. Such �tting is necessary for acquiring a spatio-temporal kriging prediction. The16

spatio-temporal regression kriging function (pred.strk) is the most important part of the17

package. This function can perform predictions fully based on thekrigeSTfunction with- 18

out any simpli�cation of the kriging procedure. The use of this function for “large data”19

sets (even few hundreds of observations) need to be performed with tilling and simpli�ed20

local spatio-temporal kriging with a fast neighbouring searching algorithm implemented21

in meteo. 22

5.3.1 Simpli�ed searching algorithm for spatio-temporal kriging 23

Fast spatio-temporal regression kriging implemented inmeteoapplies a tiling procedure 24

for prediction. The area is divided into tiles (smaller parts, see Figure 5.2)by the tiling25

112



Chapter 5Meteo package for automated spatio-temporal mapping

function, which is implemented in themeteopackage. For each tile, the nearest spatio-1

temporal observations are selected according to distance from tile's centroids. Subse-2

quently, spatio-temporal regression kriging estimates values within each tile on the base3

of nearest selected observations. Thus, within each tile, all estimates are calculated by4

using global kriging from previously selected observations. The procedure differs from5

traditional kriging in a local neighbourhood approach (which uses the neighbours obser-6

vations while searching for an algorithm for each location) in that the number of spatial7

searches for nearest observations is reduced.8

Figure 5.3 shows a tiling and searching algorithm in a graphical manner. For this ex-9

planatory example, ten nearest spatial locations are selected for the each tile.Tiles i; j10

are coloured in black and green and contain around 4,000 unmeasured locations points11

(regular grid at 1 km). The predictor function at any location fromtile i uses 10 nearest12

observations in the space domain, and only two of these ten observations are not used in13

thetile j. In other words,tile j, uses 8 common observations for both tiles.14

After tiling and selection of the nearest spatial locations, a prediction is performed for15

all target temporal instances. Accordingly, the procedure spares time spent in spatial16

searching because the prediction is performed for each of the time instances in a row and17

is based on the initial neighbourhood selections. Therefore, the full advantage of this18

approach is evident when the prediction is performed for longer periods of time (e.g. for19

month or year period). For example, the reduced number of local searches ( just for one20

tile containingnpoints) for a spatio-temporal prediction that is completed for a one year21

period, is de�ned as:22

nred = npoints� ntimes (5.1)

wherenred is a number reduced searches,ntimes is a number of time instances of the23

target spatio-temporal prediction andnpoints is a number of spatial locations in one tile.24

The number of tiles should be de�ned and depend on multiple criteria, e.g. observation25

density over an area of interpolation, the number of points for prediction, the number of26

nearest observations that should be used for kriging, and target savings in computation27

etc.28
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FIGURE 5.2: Plot of tiles over domain of interpolation over with observations.

The automated selection of an optimal number of tiles within the domain of interpolation1

is still open for question. For example, the Figure 5.3 depicts an area that is divided into2

56 tiles for the territory of Serbia. Figure 5.2 shows all tiles and observations over tiles.3

It is clear that many tiles `share' nearest observations and therefore potential artefacts4

in the edge line appear mostly due to the presence of outliers in observations or when5

observations are heavily clustered. Themeteopackage offers option for double tiling 6

(two different networks of tiles) followed by averaging the results of predictions derived7
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FIGURE 5.3: Plot of tiles together with accompaning observations used for spatio-
temporal regression kriging.

from different tiling systems to avoid artefacts.1

5.3.2 Outliers detection based on cross-validation2

During the model �tting (in Chapter 3 and Chapter 5), it was discovered that the GSOD3

point data set still contain many artefacts and possible gross errors. The small portion4
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of obvious errors was removed based on the comparison of a cross-validation prediction1

with the observations. The example of outliers detected by cross-validation is given in2

Figure 5.4. Stations with RMSE averaged per year from daily residuals higher than 15°C3

are selected as potential outliers. Visual inspection shows that most of selected stations4

are obvious outliers, but the fact is that they also increase hardly RMSE of neighbours.5

FIGURE 5.4: Exapmle of outliers detected based on cross-validation. Point labels show
RMSE averaged per year from daily residuals. Map presents only sample of potential

outliers from GSOD data set in 2011.

The outliers' detection algorithm �rstly performs cross-validation and detects the station6

with the highest residual. If the residual is higher than thea priori de�ned threshold value, 7

the station is removed from the dataset and new cross-validation is performed. Again, the8

station with the highest residual is compared against the threshold value and the iterative9

process is repeated while no more residuals exceed the de�ned threshold. 10

The described method is implemented in themeteopackage (as part of thepred.strkfunc- 11

tion) and the package can perform detection and removal of outliers based on the de�ned12
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threshold. This method should be described in detail and should be tested with simulated1

and real data in further work.2

5.4 Case study: Automated mapping mean daily temper-3

ature in Serbia4

A collection of stations from GSOD and ECA&D data sets descried in Section 3.2 were5

used for mapping the mean daily temperatures in Serbia from 2011-07-05 to 2011-07-08.6

Observation data (for July 2011) are stored in themeteopackage as table data (data.frame)7

for the purpose of demo examples. Corresponding spatial information are stored in the8

package as the same class. A functionmeteo2STFDFcreates spatio-temporal objects9

from two data tables. The �rst table must contain at least three columns (attributes): time,10

station id and observation. The second table with station information must at least contain:11

station id and coordinates.12

data(dtempc)13

data(stations)14

temp<- meteo2STFDF(dtempc,stations)15

Covariates also need to be transformed into spatio-temporalSTFDF-classobjects. Co-16

variates for Serbia (2011-07-05 to 2011-07-08) are stored in the package and contain two17

dynamic covariates (geometrical temperature trend, splined MODIS LST, see Chapter 4)18

and two static covariates DEM and TWI. Figure 5.5 shows a spatio-temporal plot of the19

splined MODIS LST over the domain of interpolation.20

The geometrical-temperature trend is shown on Figure 5.6. Static covariates are shown in21

Figure 5.7.22

Static and dynamic covariates used in this example were stored as one object of theSTFDF-23

classand was namedregdata. The following command produces spatio-temporal regres-24

sion kriging prediction for the period between 2011-07-05 and 2011-07-08.25

res= pred.strk(temp, newdata= regdata[,1:4], threshold.res=10 )26

117



Chapter 5Meteo package for automated spatio-temporal mapping

FIGURE 5.5: Splined MODIS LST 8-day images in Serbia (2011-07-05 to 2011-07-08).

Thetempobject contains spatio-temporal observations andregdatade�nes covariates and 1

the frame for prediction. The prediction has been estimated for each spatio-temporal2
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FIGURE 5.6: Geometrical-temperature trend in Serbia (2011-07-05 to 2011-07-08).

points de�ned in theregdataspace-time grid. The global regression model �tted and de-1

scribed in Chapter 4 is presented as a variogram model for mean temperature and was2

119



Chapter 5Meteo package for automated spatio-temporal mapping

FIGURE 5.7: (left) Digital elevation model. (right) SAGA topographic wetness index

speci�ed in the function as a default setting. The threshold value was speci�ed with an1

argumentthreshold.res. 2

The resulting objectresis a list of particular results: 3

• an object ofSTFDF-classwith column contains prediction of mean daily teperature;4

• cross validation information for points used in prediction; 5

• removed locations as spatial object, showing spatial locations of removed stations;6

• removed locations with observations as an object ofSTFDF-class. 7

The prediction of mean daily temperature (Figure 5.8) was produced based only on the8

observations of 27 stations and the trend part was computed using covariates previously9

described that uses a regression model within the function. The total number of 27 stations10

was selected from the 35 stations that were available in the pool. A total of 8 stations were11

removed by function as outliers that were determined based on the de�ned threshold and12

iterative cross-validation process described in Section 5.3.2. 13
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FIGURE 5.8: Prediction of mean daily temperature for Serbia (from 2011-07-05 to 2011-
07-08) produced by automated mapping.

Detected outliers are showed in the spatio-temporal plot shown in Figure 5.9 and the1

multi-panel time series plot. The plot shows 7 out of 8 outliers because the station name2

“BELGRADE(OBSERVATORY)” contains measurement showing� 47°C temperature3

that is obviously an error and would cause thevaluesaxis to be incorrectly scaled on4

the plot.5
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FIGURE 5.9: Outliers detected using detection based on cross-validation.

The detected outliers were removed but could be analysed individually. For example,1

the �rst station from the Figure 5.9 entitled “NIS” is obtained from the GSOD data set2

and the same station obtained from the ECA&D data set has around 15°C lower mean3

daily temperatures( see Figure 5.10). The lower temperatures from ECA&D are more4

correlated with covariates than the rest of the used observations. Therefore, the station5

from GSOD that was from the same location was detected as an outlier and presented6

residuals around 15°C, see Figure 5.9. 7
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5.5 Discussion and conclusion 1

The mapping framework described in this Chapter enables the use of spatio-temporal2

regression kriging for meteorological mapping. The Implementation of a fast searching3

algorithm provides an advantage in computing when completing interpolations over a4

large spatio-temporal grid. The advantage is especially noticeable if the grid of points5

contains larger time series (e.g. predictions made for the area of interpolation over a year6

period where each location contains around 365 observations). 7

The automated mapping framework presented herein is still under development and a lot8

of functionalities need to be implemented in the future. There are still many open ques-9

tions related to a) an optimal number of tiles for the domain of interpolation, b) the choice10

of an optimal threshold for the detection of outliers, and c) incorporating a function for11

downloading ground station observations from data providers. Likewise, the develop-12

ment of procedures for downloading and mosaicking remote sensing imagery and their13

organisation in an appropriate space-time object would be useful for many meteo/climatic14

applications. 15

Filtering missing pixels in MODIS LST 8-day images through the use of spatial splines16

also needs to be implemented in the package. Similarly, temporal disaggregation from17

8-day images to daily images using splines (in the temporal domain) might be offered as18

an automated procedure. 19

Automated mapping using a global model incorporated in the mapping framework is a20

new approach in the automated mapping �eld. The global model should be iteratively21

improved with increasing availability (and/or quality) of observations both from ground22

stations and/or from remote sensing data. Therefore, global modelling of processes (that23

can be modelled with spatio-temporal kriging) could be performed similarly by storing24

the global model within automated mapping frameworks. 25
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Spatio-temporal visualisation of2

meteorological data using3

plotGoogleMaps1
4

Google Maps are increasingly used for communication throughout many map-based ser-5

vices and are often embedded on third-party websites via the Google Maps API. The main6

objective of this study is to develop a solution for the easy creation of an interactive web7

map, with a base map supplied by Google, where all map elements and additional func-8

tionalities are handled by just one line of code. The present solution for the automatic9

creation of a complete web map is the R package that is based on the Google Maps API,10

plotGoogleMaps. This tool provides a new interactive plot device for handling the geo-11

graphic data for web browsers. It also offers a complete map in the HTML format, which12

has become a regular medium for cartographic communication. HTML as a multimedia13

medium gives new possibilities in the visualisation of spatial and spatio-temporal data.14

The toolplotGoogleMapsis developed in the R software language and is designed for the15

automatic creation of web maps. This chapter discussesplotGoogleMapsapplications in16

meteorological spatial and spatio-temporal mapping.17

1Mostly based on article: Kilibarda M, Branislav B (2012) plotGoogleMaps: The R-based web-mapping
tool for thematic spatial data,Geomatica, 2012, 66, 37-49
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6.1 Introduction 1

Although the Internet has been in existencesince the late 60's, the widespread use of the2

World Wide Web (Web)was estabished in the mid-90â�AŹs and shortly after has become a3

foremost medium for cartographers (Peterson, 2007). The real tipping point in the usage 4

of geographic information on the Web was the year 2005. In June 2005, Google released5

the Google Maps Application Programming Interface (API), which allows a combination6

of geographic information from a variety of sources and formats. One of the most im-7

portant capabilities of the API is the generation of mashup maps, which is the product8

of the combination of geographic data from one source with a map from another source9

(Miller , 2006; Haklay et al., 2008; Gartner, 2009). The mashup maps are easy to create10

and can be implemented in any web page for free and without any technical speci�cation11

and requirements whatsoever, thereby resulting in an increased web mapping popularity.12

This progress, together with the popularity of web mapping and its application, is clari�ed13

by Haklay (Haklay et al., 2008): 14

“These rapid developments in web mapping and geographic information use are enabled15

and facilitated by global trends in the way that individuals and communities use the In-16

ternet and new technologies to create, develop, share and use information (including ge-17

ographic information), through innovative, often collaborative, applications.” 18

This change in direction of Web philosophy from communication media to contribution19

media is named Web 2.0. The Web 2.0 term and concept was �rst coined and described20

by Tim O'Reilly in 20052 and later in publication (O'Reilly, 2007). 21

The collaborative nature of the Web 2.0 environment allows data production to be shared22

among many individuals (Feick and Deparday, 2010). Goodchild(2007) described the 23

term `Web Mapping 2.0” as an important part of the Web 2.0 concept. Integration and vi-24

sualization of different geographic information on base maps (such as Google Maps/Earth,25

Virtual Earth, or Yahoo Map), is the core of `Web Mapping 2.0'. The most signi�cant part26

of Web Mapping 2.0 corresponds to Google Maps/Earth services. Google Earth/Maps is27

2http://oreilly.com/web2/archive/what-is-web-20.html

126



Chapter 6Spatio-temporal visualisation of meteorological data using plotGoogleMaps

ground-breaking software that excelled in at least �ve categories: availability of applica-1

tion, high quality background maps, single coordinate system, web-based data sharing,2

popular interface and availability of API services (Hengl, 2009).3

Google Maps API has encouraged a considerable number of users, with intermediate4

and advanced programming knowledge, to build their own applications using Google5

Maps data as visualization interfaces (Gibin et al., 2008). According to BuiltWith Trends6

statistics3 the number of Google Maps websites usage was over 800,000 and, comprised7

mainly of thematic cartography.8

A thematic map displays the spatial pattern of social or physical phenomena such as pop-9

ulation density, life expectancy or climate change. Thematic mapping has a long history10

in geography and one important part of presenting thematic data is the provision of high11

quality base maps that allow integration into the Google Map interface through the Google12

Maps API. The London Pro�ler (Gibin et al., 2008) presents geographic information as13

a series of choropleth maps on top of Google Maps. This example is an exception from14

most mashups because they mostly display spatial point data (push pins).15

The existing solution of using a Google Maps image as a background for plotting spatial16

data is the general concept of theRgoogleMapsR package (Loecher, 2013) that is based17

on Google Static Maps API. The Google Static Maps API4 allows the embedding of a18

Google Maps image in the user's webpage without requiring JavaScript or any dynamic19

page loading. This package provides static maps without interactive tools such as data20

pan or zoom control and with a constrained quality of the Google background map. The21

maximum zoom level, provided by Google Static Maps API, concurs with the maximum22

size limitation of 640 x 640 pixels.23

The other package with similar functionalities, which provides an interface between the24

R and the Google Visualisation API, is called thegoogleVis(Gesmann and de Castillo,25

2011). The Google Visualisation API offers interactive charts that can be embedded into26

web pages. The googleVis package contains options to produce map mashups based on27

Google Maps API. The input data for the package is the data frame with marked columns28

3http://trends.builtwith.com/websitelist/Google-Maps
4https://developers.google.com/maps/documentation/staticmaps/
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that are related to location information. This is a typical package used for handling spatial1

data and their visualization. 2

The objective ofplotGoogleMaps(Kilibarda, 2013) is to provide a solution for the easy 3

creation of an interactive web map, with a base map supplied by Google, where all map4

elements and additional functionalities are handled by just one line of code. The ob-5

tained result is an interactive map rendered in a web browser. The automatic creation of6

a complete web map, which is based on the Google Maps API (the HTML �le with CSS7

styling and Java Script functionality) , is provided by the R packageplotGoogleMaps. 8

The package provides a solution to create and visualize vector and raster data, to map9

features, plot choroplet maps, and include proportional symbols. The version of package10

2.0 is extended to accommodate the visualisation of spatio-temporal classes in the form of11

afull space-time grid (STFDF) and the visualization of unstructured spatio-temporal data12

(STIDF), for more datails seePebesma(2012). The growing popularity of the R language13

was the driving force behind the development of theplotGoogleMapstool, particularly 14

among academic and expert communities and especially in the �eld of spatial data analy-15

ses. The goal of the presented work is to adopt and apply map design principles in order16

to create mashups and to focus on the minimization of coding and scripting. This would17

enable the creation of mashups based on Google Maps without any Internet programming18

knowledge. Thus, the creation of web maps becomes a plot facility for R users. The19

web maps created byplotGoogleMapspackage could be used as a temporary result for20

spatial visualization (spatio-temporal) generated on local machines or published on any21

web page. The next section contains a brief description of theoretical and technical back-22

ground for the development of theplotGoogleMapspackage, Web 2.0 and AJAX, Google23

Maps API. In addition to this section, there is a description of package functionalities and24

an explanation of how these functions were programmed. Details concerning the source25

code and instructions on how to get this package are also included. The paper continues26

with examples of practical package applications in meteorological/climatic mapping.27
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6.2 Package plotGoogleMaps and underling web technolo-1

gies2

6.2.1 Web 2.0 and AJAX3

Best(2006) de�ned the main characteristics of Web 2.0, and in a few words are listed as: a4

rich user experience, user participation, dynamic content, metadata (tagging, as semantic5

enrichment), web standards (e.g. W3C5 recommendations) and scalability. Examples of6

Web 2.0 applications embrace social networking sites, video sharing, wikis, blogs, etc.7

The Web 2.0 concept is based on the AJAX technology.8

Asynchronous JavaScript and XML, or shorter, AJAX (Schutta and Asleson, 2005) is the9

name given to a set of modern web application development technologies that were pre-10

viously known as the dynamic HTML (DHTML) and remote scripting. The fact that this11

web application has a similar speed to standard desktop applications makes up the core12

bene�t of this technology. Traditional web pages, created in HTML, were static, non �ex-13

ible, and hardly adopted for any dynamic content. AJAX, on the other hand, as the base of14

Web 2.0 concept, was built for use in dynamic, interactive, and ef�cient web pages with15

high performance. Web pages without AJAX were slow; user interaction with the website16

required signi�cant web server-side resources such that the server needed to send a com-17

plete web page if just one part of the web page was changed and sent back to the user. If18

the user drew a point on the web map, the server would send back the whole redrawn map19

with the new point icluded. AJAX brings a new concept such that the user interaction20

is left to a user's computer, which works only with a changeable part of the web page.21

Therefore, even if the user operates with one point only, it would not be necessary to re-22

draw the whole map again. AJAX-based geographical applications signi�cantly improve23

the usability of web mapping (Skarlatidou and Haklay, 2006; Haklay and Za�ri, 2007;24

Haklay et al., 2008; Kilibarda et al., 2010). Apart from AJAX, APIs have also in�uenced25

web mapping strongly. API is a set of routines, protocols, and tools for building software26

applications. The most popular web mapping APIs are: Google Maps API, Yahoo! Maps27

API, Microsoft Virtual Earth API, AOL MapQuest API (Gartner, 2009).28

5urlhttp://www.w3.org/
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6.2.2 Google Maps API 1

Google Maps API is a set of prede�ned JavaScript classes that are designed for embed-2

ding the Google Maps site into an external website. The resut of this process is such that3

additional geographical data could be overlaid over a basic Google Map. These results are4

possible to realize even if the creator is not an expert in web programming, although basic5

knowledge in JavaScript programming language, XML, Ajax and XHTML is required.6

Google Maps API, compared to the relative complexity of Open Geospatial Consortium7

(OGC) standards, is much easier for implementation. Google Maps API provides map-8

ping functionality and high-resolution background data, but map mashups implementation9

still requires some web programming knowledge. It enables a combination of geographic10

information from a variety of sources and formats. GIS data objects, such as vectors,11

points, polylines, polygons or raster are represented in the mashups as Google Maps API12

Java Script objects. For that reason, it is necessary to transform the GIS data into Java13

Script objects that are appropriate to Google Maps API. These objects could be carto-14

graphically represented with point symbols, (although with some limitation) . Polylines15

and polygonâ�AŹs line representations could be de�ned with outline width, color, trans-16

parency and �ll color for the polygon area. Transforming the GIS data into Google Maps17

API objects and de�ning a cartographic representation for every single object is time18

consuming and rather dif�cult, especially for someone who has no experience in web19

programming. The developed R package,plotGoogleMaps, offers an easy creation of20

mashups as local �les or �les ready to be published on the Web. 21

6.2.3 Development of plotGoogleMaps 22

The newly developed R package,plotGoogleMaps, based on AJAX and Google Maps API23

service, produces HTML �le map mashups (web maps) with Google Map high-resolution24

background data and additional data layers. The �rst version of the package was devel-25

oped in 2010 and the current 2.0 version was published in 2013 (Kilibarda, 2013). 26

The package depends on two packages for spatial and spatio-temporal data handling,27

sp (Pebesma and Bivand, 2005; Bivand et al., 2008) and spacetime(Pebesma, 2012). 28
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Another package signi�cant for the automatic cartographic re-projection withinplot-1

GoogleMapsis rgdalR package (Bivand et al., 2013). These sets of developed packages2

are especially interesting for geoscientists. The R developers have written the R package3

sp to extend R with classes and methods for spatial data (Pebesma and Bivand, 2005).4

Classes specify a structure and deï�n �Ane how spatial data are organized and stored. Meth-5

ods are instances of functions, specialized for a particular data class (Bivand et al., 2008).6

The packagergdalprovides functionalities for importing and exporting the most popular7

formats of GIS data in R. This package uses functions of the Geospatial Data Abstraction8

Library 6 to read and write the GIS data and includes options for handling a coordinate9

referent system (CRS). With thergdal package, users can optionally de�ne a CRS or10

inherit it from the input data as well as perform data transformations between different11

CRSs using the PROJ4 library7, implemented as part ofrgdal. The imported GIS data are12

converted intospobjects and are used for handling the vector and raster (grid) data in R.13

These functionalities enable the use of a very large amount of the GIS data format as an14

input for theplotGoogleMaps, previously read viargdal. Input data,spor spacetimeob-15

ject with de�ned CRS, is the only mandatory argument in theplotGoogleMapsfunctions.16

Hence, different GIS formats of input data are read in R and are afterwards based on a17

prede�ned visualization method; those data are mapped as web map (Figure 6.1).18

The plotGoogleMapscontains functionalities from PROJ4 library, which performs co-19

ordinate transformations from source CRS to WGS84 CRS that is used for spatial data20

handling by Google Maps. Google Maps API allows for additional spatial data handling,21

in the form of XML, KML, and GeoRSS, but some visualization functionalities, as well22

as interaction with attribute data in the form of Google Maps APIInfoWindowobject, and23

similar, are dif�cult to be controlled. Another solution is to use the data in the form of24

prede�ned JavaScript classes of vector data primitives; point, line and polygon data and25

raster overlay. This approach is also implemented inplotGoogleMaps. It means that ev-26

ery single primitive is separated from the spatial object and its geometry is translated into27

a JavaScript object. Attribute data for every single feature is converted into a JavaScript28

InfoWindowobject; its activation is available by clicking on the related feature on the29

produced web map. Additional visualization options supported by Google Maps API ob-30

jects such as outline width, color, and transparency can be speci�ed inplotGoogleMaps31

6http://www.gdal.org/
7http://trac.osgeo.org/proj/
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FIGURE 6.1: Simpli�ed work�ow for web map production by using plotGoogleMaps.

functions. The visualization of mandatory parameters is easy to set and is achieved by1

using optional arguments inplotGoogleMapsfunctions. Therefore, plotGoogleMaps 2

writes object arguments in every JavaScript object and in the �nal HTML �le. Google3

Maps API provides the majority of Google Maps utilities including pan, zoom, back-4

ground layer control, and scale bar. Map utilities are controlled by optional arguments in5

plotGoogleMapsfunctions. Similarly, map width, background color, layer name, legend6

name, default background map, etc., can be set by using optional arguments in theplot- 7

GoogleMapsfunction. Some advanced utilities for interactive controls of additional lay-8

ers are provided by defaults inplotGoogleMapsincluding: layer appearance, line width, 9

transparency, and legend colors display control. Spatial data, with visualization parame-10

ters and utilities, are written in the HTML �le with JavaScript and CSS elements. Thus,11

in theRlanguage,plotGoogleMapswith only one function, and with few arguments, may12

produce many lines of codes in few languages for Web programming (Figure 6.2). 13

The map mushup (6.2- right bottom window) is produced by the R command: 14

> plotGoogleMaps(meuse, filename=' myMap.htm' ) 15

The command contains two arguments: (1) the �rst is the set of spatial data, named Meuse,16

that contains 155 points with 12 soil properties in the form of attributes,(2) the second is17
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FIGURE 6.2: Plotting vector point data. Just one line of R code substitutes many lines of
HTML with JavaScript and CSS code.

an optional argument with a �le name of the output map mashup. This function contains1

many optional arguments. For example, the description of the function arguments may be2

provided by using the “help” function in R or can be found on the package web page8 or3

in the reference manual. The same web page contains the package source; the source code4

is open and available under the GPL license. Technical details about the used solutions in5

the package could be obtained from the source code.6

Generally, the idea of package implementation is denoted as the automatic production7

of HTML map mashups using spatial or spatio-temporal data objects. The R command8

used in the previous example produces an HTML �le from the Meuse data. The output9

map also contains CSS elements and JavaScript scripts. The control of CSS elements is10

available through the use of optional function arguments in order to set the dimensions of11

8http://cran.r-project.org/web/packages/plotGoogleMaps/index.html
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a map area. Since the optional arguments are not set in this example, the resulting HTML1

�le contains default CSS styling settings. The rest of the produced HTML is JavaScript2

that contains Google Maps API and a set of JavaScript functionalities related to layer3

control options. The Meuse data was transformed from native CRS to WGS 84 and every4

single point was translated to a Google Maps Marker object, i.e. JavaScript object, used in5

Google Maps API. The base map is set, by default, to be a Google hybrid map where the6

initial zoom and central points of the base map depend on the Meuse bounding box. The7

attribute data, for every single point separately, are converted togoogle.maps.InfoWindow 8

objects, with an associatedlistener function included to handle the click event on the9

marker. 10

The next section contains examples focusing on the package application in meteorologi-11

cal/climatic visualisation. 12

6.3 Implementation and applications 13

The functionalities of the package that are used for the production of web maps of cli-14

matic spatial and spatio-temporal data are presented through the following case studies -15

examples. The applications illustrated in this paper pertain to different studies concerning16

spatial and spatio-temporal data analysis. 17

6.3.1 Spatio-temporal visualisation of climatic variables 18

The packageplotGoogleMapsplots spatial objects ofspandspacetimeclasses over Google19

Maps using very simple syntax and only one or a few lines of R code. Figure 4.8 shows20

results of an accuracy assessment presented in Chapter 4. The map of mean daily temper-21

ature cross-validation errors (RMSE) is averaged per year for each station. Daily residuals22

should be very interesting, but the traditional way to represent daily residuals associated23

with a multi-panel plot (365 plots for year 2011) and space-time cross section plot (e.g.,24

space on thex-axis and time on they-axis) or animated plot. The traditional approach25

for daily residual visualisation is cumbersome to be both informative and intuitive at the26

same time. Thanks to the multimedia nature of the HTML, the packageplotGoogleMaps 27
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uses traditional spatial plots together with a time series multivariate plot implemented in1

zoo(Zeileis and Grothendieck, 2005) package, see Figure 6.3.2

FIGURE 6.3: RMSE map. Space-time regression kriging of mean daily temperature
observations on 8-day on MODIS 8 day images, topographic layers (DEM and TWI) and

a geometrical temperature trend;http://dailymeteo.org/

In multi-panel (lattice) plots, panels share x- and y-axis, a common legend, and the strip3

above the panel indicates what the panel is about (Bivand et al., 2008). Similar, plot is4

implemented inplotGoogleMaps, as well, giving the possibility to visually compare data5

from few time instances. The interactive nature of the produced map provides an oppor-6

tunity to inspect additional attributes by opening more than onegoogle.maps.InfoWindow7

simultaneously. A Multi-panel plot of temperature data in Serbia for 2011-07-05 and8

2011-07-06 is provided as a web map. The map showed in Figure 6.4 is produced simply9

with the following code:10

> stplotGoogleMaps(MeanTemp,zcol=' tempc' , mapTypeId=' ROADMAP' ,w=' 49%' ,h= ' 100%' )11

A similar line of code produces the spatio-temporal visualisation of predicted mean tem-12

peratures in Serbia for 2011-07-05 and 2011-07-06. The additional interactive control13

utilities: layer appearance, transparency line width, and legend colors display can be set14

by adding additional arguments toplotGoogleMapsplotting functions. The color cod-15

ing system for map design inR is supported byRColorBrewerpackage (Brewer et al.,16
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FIGURE 6.4: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05 and 2011-07-06.

2003). It provides palettes for drawing nice maps. This package was derived from the1

ColorBrewer websitehttp://colorbrewer2.org/ . ColorBrewer is an online tool that 2

helps chose a colour palette according to the number of data classes and the nature of data3

(matched with sequential, diverging and qualitative schemes). The colors obtained from4

RColorBrewerare used for the color scheme in Figure 6.5. 5

blues=colorRampPalette(brewer.pal(9, "PuBu")[c(8,5,2)] , space = "Lab") 6

reds=colorRampPalette(brewer.pal(9, "YlOrRd")[c(2,5,8)] , space = "Lab") 7

stplotGoogleMaps(Prediction, w= ' 49%' , h= ' 100%' , colPalette= c(blues(7),reds(7))) 8

Quantitative point symbols, such as proportional symbols of varying sizes that are used9

to symbolize totals at a point, are available in theplotGoogleMaps. The most frequently 10

used shapes are circles, however squares and triangles are also possible solutions offered11

by theplotGoogleMapsfunction. A spatial plot with proportional symbols is presented in12

Figure 6.6. 13
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FIGURE 6.5: Mean daily temperature images for Serbia for 2011-07-05 and 2011-07-06.

FIGURE 6.6: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05. Proportional symbols.

6.3.2 Real-time visualisation of meteorological observations1

The package can be implemented for the visualisation of meteorological observations in2

real-time. The example of using the package for this purpose is illustrated in the presen-3

tation of meteorological data in Catalonia (Spain), see websitehttp://meteo4u.com/ .4
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Figure 6.7 shows a temperature map where Google Maps markers are represented as num-1

bers that indicate actual temperatures in near real-time, which were obtained from a few2

different sources. The map mushup (Figure 6.7) shows detailed station information in the3

form of a`tooltip' window. Detailed information are also available as Google Maps API4

JavaScript object,google.maps.InfoWindow, appearing after the user clicks on a speci�c5

station point. As a result, the obtained map mushup is interactive, intuitive and functional6

thanks to underlying Google Maps API and prede�ned JavaScript functions created by7

plotGoogleMaps. The map creation could be automated using the R server and maps are8

changed as data are updated. 9

FIGURE 6.7: Plotting temperature data usingplotGoogleMaps. Map mushup is availible
onhttp://meteo4u.com/ .

The main function in the packagevectorsSPcreates a radius vector from point data in10

form of SpatialLinesDataFrameclass depending on radius and azimuth. This function11

is very appropriate for mapping wind speed and wind direction observation. Figure 6.812

shows a real life application of the automated visualisation of wind observations. 13
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FIGURE 6.8: Plotting wind observation by using proprortional symbols depending on
wind speed. The orientation of the radius vectors depends on wind direction. Map

mushup is availible onhttp://meteo4u.com/ .

6.3.3 Spatial visualisation of rainfall trends in Serbia1

The spatial pattern of annual, seasonal and monthly rainfall trends in Serbia are ex-2

amined byLuković et al. (2013). The study used data from 63 weather stations be-3

tween the period of 1961–2009. Precipitation trends are depicted with different col-4

ors in Figure 6.9 (positive trends are blue and negativetrends are red) and are overlaid5

with proportional bubble symbols presenting the trend values of each considered station.6

The bubbles outlined with black circles in the maps represent stations with statistically7

signi�cant trends at the con�dence level of 97.5 %. The web maps are available on8

http://www.grf.bg.ac.rs/~bajat/Trends.htm .9

Kilibarda et al.(2013c,a) useplotGoogleMapsfor scienti�c communication and visuali-10

sation in meteo/climatic mapping, seehttp://dailymeteo.org/ .11
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FIGURE 6.9: Spatial distribution of rainfall trends in Serbia from 1961 to 2009, annual
map. The bubbles with blackoutlined circles represent stations with signi�cant positive
and negative trends at the con�dence level of 97.5 %. The web map is availible on

http://www.grf.bg.ac.rs/~bajat/Trends.htm .

6.4 Discussion and Conclusions 1

The plotGoogleMapsis a free and open source software solution for the simple creation of2

rich interactive web maps. In this case,plotGoogleMapsuses the web browser as a plot-3

ting device instead of the default R graphic device. Therefore, it offers more advantages4

when compared to the classical R plotting device environment. For an example, signi�-5

cant advantages include high quality of background Google layers for better abstractions6

of geographical reality, spatial data exploration functionality and map interactivity (nav-7

igation control, pan, zoom, attribute info windows, etc). The packageplotGoogleMaps 8

is a tool that can be used for plotting meteorological/climatic spatial and spatio-temporal9

data for internal use or for website. 10

This package promotes the creation of interactive maps in user friendly environments11

where a map is stored in the HTML format. Map sharing with non GIS map users is12

easier and it is not necessary to use the GIS software. Sharing is simply achieved using13

aweb browser and the map remains interactive and simpler than in professional software.14

Also, R users can use this package instead of standard plot functions because it provides15
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a faster preview of the mapped data in relation to geographic reality provided by Google1

Maps.2

Google Maps API is not suitable for handling large amounts of data and consequently3

plotGoogleMapshas the same constraint. One of the possible alternativeopen-source4

solutions might be the combination of a server side software (e.g. Geoserver) and a client5

side software (e.g. Openlayers), according to OGC standards9. This solution requires6

more speci�c GIS knowledge and a greater understanding of software and standards for7

establishing a mapping framework. The implementation of automatic web map creation8

would have more requirements and depend more on server software components.9

9http://www.opengeospatial.org/standards
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Discussion and conclusion 2

This work was conducted in part thanks to organizations such as the national Meteorolog-3

ical Services and WMO, National Aeronautics and Space Administration (NASA), Na-4

tional Climatic Data Center (NCDC), European Climate Assessment and Dataset Project5

(ECA&D), Global Precipitation Climatology Centre (GPCC), European Organisation for6

the Exploitation of Meteorological Satellites (EUMETSAT), and the United States Na-7

tional Oceanic and Atmospheric Administration (NOAA). The meteorological data pro-8

vided by these organizations is available to the public and to the research community.9

The spatio-temporal models were based on publicly available ground observations to-10

gether with publicly available time series of atmospheric and surface re�ectance images11

(MODIS, Meteosat, GOES, GMS). Such data can be used to produce a new generation12

of detailed daily global maps of meteorological variables. Even though the positions of13

meteorological stations are representative to describe the weather and climate in some14

neighbourhood, the global geographical or feature space coverage is not representative15

from the point of view of spatio-temporal statistics requirements or sampling strategies16

(Heuvelink et al., 2012). 17

Global spatio-temporal analysis of publicly available data sets (a collection of GSOD18

and ECA&D) shows that the observed high temporal, spatial and feature space clustering19

of meteorological stations potentially represent a limitation of these data sets and could20

further complicate the �tting of accurate global spatio-temporal models. This implies21

that sophisticated spatio-temporal techniques need to be used that can account for the22
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data clustering. The use of remote sensing and/or monthly images as covariates is one1

solution to overcome clustering issues. The spatio-temporal regression kriging model2

uses covariates for de-trending and is followed by the interpolation of regression residuals3

. This interpolation step uses the covariance model integrally in space and time through the4

incorporation of a spatio-temporal variogram. The applied covariance model in this thesis5

takes into account pure spatial, temporal and spatio-temporal components of variability.6

Such treatment can provide the most realistic estimate of the uncertainty so that unbiased7

estimates of the global and local land air temperature and other meteorological variables8

can be also be produced.9

The presented model can be used for calibration of 8-day MODIS LST images by inte-10

grating station observations together with geometrical temperature trends, elevations and11

the topographic wetness index. The result of this treatment would afford the �rst global12

daily air temperature images at very high spatial and temporal resolution (1 km spatial and13

1 day temporal resolution). The geometrical temperature trend (Eq. 4.3) presented in this14

thesis could be a crucial covariate for real-time mapping or for temperature interpolation15

for the dates before MODIS LST images has been launched.16

Furthermore, globally �tted models of daily temperatures could be used for regional or lo-17

cal studies, e.g. where a limited number of ground observations are available so that some18

referent global model of spatio-temporal variability is required. The models described in19

this thesis can be obtained by installing themeteopackage that has been mostly created20

and maintained by the author.21

Clearly, the presented computational framework could be used to produce a global archive22

of the mean, minimum and maximum temperature images. The daily maps of temperature23

could also serve as raster �les in a similar fashion as climate layers from the WorldClim24

project (Hijmans et al., 2005). This would require HUGE data storage and serving capac-25

ities considering the amount of output pixels (10 years by 365 days by 3 meteorological26

variables plus uncertainty maps). The service should also offer Web GIS functionalities27

implemented through OGC standards.28

This study discovers that the GSOD point data sets still contain many artefacts and pos-29

sible gross errors. Therefore, the mapping accuracy can be improved by �ltering station30
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observations. Concerning the number of stations, this procedure should be done by us-1

ing some automated method. One of the main objectives for the further development of2

the meteopackage will be incorporation of an automated and tested algorithm for the3

detection of outliers. 4

A future plan is to use the publicly available data sets shown in this thesis to model and5

interpolate daily meteorological variables such as: precipitation, wind speed, snow depth,6

meteorological indicators etc. at the spatial resolution of 1 km and temporal support of7

1 day. WordDailyMeteo could be extended to offer all meteorological variables contained8

in publicly available data sets. 9

Presented approach in this thesis could be also used for climatic mapping. Figure 7.110

shows general climatic-mapping scheme based on spatio-temporal daily mapping in con-11

trast to classical climatic mapping approach. Classical approach assumes aggregation of12

meteorological measurements to climatic variable and than spatial modelling and predic-13

tion. WorldDailyMeteo approach, is based on the aggregation of daily maps, archiving14

and offering daily weather images but also offering monthly, yearly or other climatic15

global maps at very high spatial resolution. The climatic maps would be based on daily16

spatial estimates, therefore, all daily measurements even from stations with time series17

covering short period are incorporated into �nal climatic estimate. 18

What would WorldDailyMeteo offer that other services do not provide: 19

1. WorldDailyMeteo maps would be of high spatial detail (1 km), high temporal reso-20

lution (1 day; 10 years of maps) and with a global coverage; 21

2. WorldDailyMeteo predictions would be based on using state of the art geostatistical22

methods (linear or GLM-based spatio-temporal regression-kriging with time series23

of predictors - MODIS and similar RS images); 24

3. All target meteorological variables would be mapped using automated mapping25

frameworks with a single global model for each target meteorological variable; 26

4. All target meteorological maps could be aggregated to climatic maps, at very vari-27

ous temporal support (monthly, yearly, etc); 28
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FIGURE 7.1: A general spatio-temporal prediction framework. (Path#1) Classical cli-
matic mapping approch. (Path#2) Daily mapping and climatic aggregation, WorldDaily-

Meteo approch.

5. The produced time series (10 years of daily images) of the target meteorological1

parameters could be analysed using time-series / Fourier analysis algorithms. We2

could extract global, regional and local components of dynamics of meteorological3

variables (per pixel);4

Very high spatio-temporal resolution dataset offered from WordDailyMeteo, based on5

cleaned publicly available data, could be used for analysing extremes of climate, in en-6

vironmental modelling, precise agriculture, hydrological modelling, terrestrial biospheric7

modelling, ect.8
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E. Schapire, R., SoberÃşn, J., Williams, S., S. Wisz, M., and E. Zimmermann, N.

(2006). Novel methods improve prediction of species' distributions from occurrence

data.Ecography, 29(2):129–151.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A

statistical explanation of maxent for ecologists.Divers. Distrib., 17(1):43–57.

Environment and Natural Resources (2001). FAOCLIM 2: world-wide agroclimatic data.

Working paper no. 5 (cd-rom), FAO, Rome.

149



Bibliography

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller,

M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M.,

Oskin, M., Burbank, D., and Alsdorf, D. (2007). The shuttle radar topography mission.

Reviews of Geophysics, 45(2):n/a–n/a.

Feick, R. and Deparday, V. (2010). Evaluating selected visualisation methods for explor-

ing vgi. Geomatica, 64(4):427–437.

Feidas, H., Makrogiannis, T., and Bora-Senta, E. (2004). Trend analysis of air temperature

time series in greece and their relationship with circulation using surface and satellite

data: 1955–2001.Theoretical and Applied Climatology, 79:185–208.

Frei, C. and Schaer, C. (1998). A precipitation climatology of the Alps from high-

resolution rain-gauge observations.International Journal of Climatology, 18(8):873–

900.

Gartner, G. (2009). Applying web mapping 2.0 to cartographic heritage.e-Perimetron,

4(4):234–239.

Gesmann, M. and de Castillo, D. (2011). Using the google visualisation api with r.The R

Journal, 3(2):40–44.

Gething, P., Atkinson, P., Noor, A., Gikandi, P., Hay, S., and Nixon, M. (2007). A local

space–time kriging approach applied to a national outpatient malaria data set.Comput-

ers & geosciences, 33(10):1337–1350.

Gibin, M., Singleton, A., Milton, R., Mateos, P., and Longley, P. (2008). An exploratory

cartographic visualisation of London through the Google Maps API.Applied Spatial

Analysis and Policy, 1(2):85–97.

Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography.Geo-

Journal, 69(4):211–221.

Gräler, B., Gerharz, L., and Pebesma, E. (2011). Spatio-temporal analysis and interpola-

tion of PM10 measurements in Europe.ETC/ACM Technical Paper, 10.

Grunsky, E. (2002). R: a data analysis and statistical programming environment–an

emerging tool for the geosciences.Computers & Geosciences, 28(10):1219–1222.

150



Bibliography

Haklay, M., Singleton, A., and Parker, C. (2008). Web mapping 2.0: The neogeography

of the geoweb.Geography Compass, 2(6):2011–2039.

Haklay, M. and Za�ri, A., editors (2007).Usability engineering for GIS�U Learning

from a snapshot. Presented at the 23rd International Cartographic Congress, Moscow,

Russia, 4�U10 August 2007.

Hartkamp, A. D., De Beurs, K., Stein, A., and White, J. W. (1999).Interpolation tech-

niques for climate variables. CIMMYT Mexico, DF.

Hartmann, D. (1994).Global physical climatology. Academic Press, San Diego.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.

(2008). A european daily high-resolution gridded data set of surface temperature and
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