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NIKOLA HAJDIN AS A PERSONALITY, SCIENTIST,
TEACHER AND ENGINEER

Academician Nikola Hajdin belongs to the first generation of students who
enrolled in the Civil Engineering Faculty of Belgrade University after the Second World
War, in 1945. The University had been closed for four years, and the first post—war
generation, with an accumulated thirst for science, eagerly assimilated the knowledge so
amply delivered to them by their professors, who had likewise long been deprived of
their chairs. For my generation, which immediately followed them, the 1945 generation
represented an ideal which attracted and inspired many of us to devote ourselves to our
studies in the same way. A large number of very good civil engineers and several
university professors emerged from that generation. This special emotional relationship,
based on admiration, towards the 1945 generation has faded out in time. However, when
Nikola Hajdin is concerned, and in view of his professional and scientific opus, this
relationship has with time grown into a completely conscious insight that he is a
particularly creative and special figure: his values are completely personal ones which
far exceed the average of this generation, and which truly inspired us younger students.

There is an old saying that any truth is perfectly simple. It seems to me that this
can be applied in many ways to academician Nikola Hajdin. Having discovered his
professional interest in the field of civil engineering structures, he pursues his path of
truth as scientist, professor and structural engineer, achieving a balanced relationship
between the three aspects of his activity, synthesizing them into a harmonic whole. The
way in which he thinks is perfectly simple — direct and crystal clear. Hence the way in
which he creates looks as easy as a game. Sharp-sighted in everyday life, he is also this
in his professional solutions which are original, imaginative and unexpected in their
wittiness.

Nikola Hajdin published his first scientific paper, "Torsion of a Triangular Tube”
when he was still a student.

The two works that followed (nos. 2 and 3), together with his first paper repre-
sented a contribution in the field of Mathematical Theory of Elasticity. However, it soon



became clear that life is much richer in questions than in answers in the domain of exact
solutions. Thus, as early as 1956, Nikola Hajdin turmed his interest to the field of
numerical solutions. In his doctoral thesis, “A Method for the Numerical Solution of
Boundary Value Problems and its Application to Some Problems of the Theory of
Elasticity”, which he successfully defended in 1956 at Civil Engineering Faculty in
Belgrade, Hajdin provides a witty numerical solution based on the integral formulation
of equilibrium equations, largely applied to the theory of one— and two— dimensional
problems. This method has been used and quoted in the works of over 40 authors in
various parts in the world. His numerical analysis actually came at the very timely
moment, on the eve of the expansion of computer techniques.

When one examines the scientific opus of academician Hajdin, one can notice a
sort of loyalty towards fields once taken up; he has occasionally returned to them as if
they were old friends to whom he always had something to impart. We first encounter
the shell as a subject in his paper no. 2, written in 1952. It appears again in paper no. 6
(in 1958) and then, with intervals, there follows a series of papers devoted to plates and
shells as well as to the application of numerical analysis of arch dams (papers nos. 7, 9,
11, 14, 16, 23, 31, 73). Thus, arch dams have been appearing for years as a
preoccupation of academician Hajdin as a structural engineer. Dams were also the first
major structures in which Hajdin's numerical procedure was widely applied, as it was on
the basis of this procedure that the biggest dams in Yugoslavia: Gran¢arevo,Mratinje and
GlaZnja were analysed and constructed. However, as we shall see later, first place in
academician Hajdin's opus belongs to bridges.

As a designer, Hajdin chose steel as his favourite material. Perhaps this is
somehow secretly connected with his previous friendship with the Theory of Elasticity.
And obviously - where steel structures are present, there is the problem of buckling, or
in general, the problem of behaviour in critical and post—critical domains (papers nos.
10, 12, 43, 49, 54, 57, 76, 94), as well as the problem of thin-walled beams. The
problem of torsion, broached in his first, student paper, treated within the framework of
St. Venant's theory, emerged ten or more years later as a problem of warping torsion,
within the Theory of Thin-Walled Beams.

The Theory of Thin-Walled Beams, side by side with his contribution in the
domain of numerical analysis of deformable systems, represents another major scientific
field to which academician Hajdin made a great contribution. The majority of his papers
belongs to this field (nos. 17, 18, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 34, 38, 39, 42,
48, 55, 58, 62, 74, 83, 87, 88, 103, 104, 105, 107, 111). In this part of his opus, two
exceptionally valuable monographs (nos. 36 and 47) written together with Dr. CF.
Kollbrunner, should be emphasised:“Diinnwandige Stibe, Band 1: Stibe mit
undeformierbaren Querschnitten”(1972) and “Diinnwandige Stibe, Band 2: Stibe mit
deformierbaren Querschnitten. Nichtelastisches Verhalten dilnnwandiger Stibe”(1975).
These two monographs, the result of two decades of collaboration of the authors,
provide a full picture of the knowledge embodied in the Theory of Thin-Walled Beams
at the time. '




Through the Theory of Thin-Walled Beams, other current preoccupations of
academician Hajdin are refracted: non-elastic behaviour (the second volume of the
monograph) and non-linear relations (paper no. 83). Girders with curvilinear axis have
appeared as well (nos. 30, 32, 88). Physically more complex states and behaviours and
their analytical modelling in an acceptable form in the engineering sense, were subjects
of other papers: in paper no. 30 the effects of creep and shrinkage of concrete are
considered: plasticity and ultimate limit state appeared in his papers nos. 33, 48, 53, 87,
99, 10S; other publications dealing with ultimate limit state (no. S1.), elastoplastic
behaviour (nos. 62, 103), interaction of soil and structure (nos. 84, 101), composite
structures (nos. 40, 58, 100), vibrations of elastic systems and wind effects on structures
(nos. 45, 55, 60, 95) followed.

In the recent years, two exceptional structures have been created as a result of
Hajdin's design activity: the railway bridge over the Sava river in Belgrade, with a span
of 254 m, completed in 1979 (designed together with Professor Jevtovi¢) represented
the first use of the system known as “cable—stayed bridge” for what was solely a railway
bridge. Then, the Novi Sad Bridge, with a span of 351 m had at the time of its
completion in 1981, the longest span in the system with cables in a single vertical
plane.

It would be wrong to think that bridges did not preoccupy academician Hajdin
until he reached full maturity in his structural engineering work. On the contrary, even
as a young designer, he was awarded first prize in the anonymous competitions for
designing bridges over the river Tisa near Zablje and the river Sava near Orasje, which
were later constructed according to his designs.

The railway bridge over the Sava and the Novi Sad Bridge combine imagination
and experience on the one hand |and very rigorous theoretical and experimental research
and investigation on the other. In connection with the system of cable-stayed bridges,
academician Hajdin solved a series of theoretical problems and published his views in
over 20 papers and briefings given at congresses (papers nos.56, 60, 61, 64, 65, 66, 68,
70,71,72,78, 78, 81, 82, 85, 86, 89, 90, 91, 92, 93, 96, 100, 109). The first of the above
mentioned works was given at Tenth Congress of the International Association for
Bridge and Structural Engineering held in Tokyo in 1976. The paper no. 75, prepared
together with Dr. C.F. Kollbrunner and B. Stipani¢; “A Contribution to the Analysis of
Cable-Stayed Bridges” was published in Ziirich in 1980 and later translated into
Japanese and printed in the Japanese magazine “Steel Bridges” at the request of its
editors (no. 85).

A particular page in the professional and personal life and work of academician
Hajdin is dedicated to his sojourn in Ziirich and his long-lasting cooperation and
friendships there, especially with Dr.C.F. Kollbrunner. This has resulted in more than 20
publications, a number of which are monographs in character. In 1977, the two scientist
together wrote an article under the title: Zwanzig Jahre der Zusammenarbeit (no. 59).

Surveying the titles of his publications, it occurs to one, that the numerous origi-
nal theoretical research works of academician Hajdin have almost always been induced
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by questions arising from practical problems in his work as a designer. There is no doubt
that these new, daring solutions, so characteristic of his structures, could not have been
accomplished without extensive previous theoretical and experimental research. Herein
lies the explanation of the fact that all his theoretical considerations, regardless of how
complex they are, have always been brought to the utmost possible level of applicabili-
ty. His papers on thin-walled structures and bridges have been used and quoted in
several hundred Yugoslav papers and in more than 80 papers in foreign literature.

One should not fail to point out another of academician Hajdin's attributes — his
openness to cooperation and his communicativeness in contacts with collaborators. This,
coupled with his attitude towards the future of the profession, confirmed his particutar
ability as a “teacher”. And truly, wherever he goes, academician Hajdin can always meet
his students: among masters of science, doctors of philosophy, assistants and lecturers in
civil engineering faculties, in the design bureaus of large consulting organizations, on
building sites. Sharing his meditations, his dilemmas and the possible ways out of them
with capable young people, introducing them to his own work, he finds contentment in
following their development and, accordingly, in the continuation of his ideas through
their work.

And when I say that academician Hajdin achieves satisfaction in the harmony of
his creation, then I have in mind all the facts I have been considering.

Natalija Naerlovi¢ — Veljkovic



CONGRATULATIONS FROM SWITZERLAND

After completing his doctoral work in 1956, the young Dr. N. Hajdin was
looking for a position in a foreiygn country to broaden his academic as well
as his practical experience. At that time Yugoslavia started to normalize
its relations with the Western Countries. Mr. Hajdin found a position as
structural engineer with the steel fabricators AG Konrad Zschokke, Dottin-
gen, Switzerland, during 1958-59. Within a short time he impressed the
director of Zschokke, Dr. C.F. Kollbrunner, with his profound theoretical
knowledge of structural analysis and design.

Dr. Kollbrunner was an impressive and imposing personality in many ways,
firstly by his physical frame and his voice and then by his almost legendary
fame as an innovative and inspiring officer in the Swiss Army. He had also
gained a scientific reputation for his research work on structural stability
of steel structures and in the field of soil mechanics and foundation
engineering. He had a good eye for young talents. Many young engineers have
been discovered, supported and proioted by him.

This first contact between the two led to a very fruitful scientific col-
laboration. In a review entitled 'Zwanzig Jahre der Zusammenarbeit' (Twenty
Years of Collaboration), published in 1977, 20 publications co-authored by
Kollbrunner and Hajdin within a periode of 20 years (1958-77) with a total
of about 2000 pages are listed.

During 1963 Mr. Hajdin, by now an associate professor at the University of
Belgrad, was invited by the Technical Commission of the Swiss Steel Fabrica-
tors as a visiting scientist to do research work in the field of thin-walled
steel members. Out of professional contacts with colleagues at the Swiss
Federal Institute of Technology Ziirich, a continuing cooperation was initi-
ated. During the summer semesters of 1971 and 1973 Professor Hajdin was a
visiting professor lecturing on the subject of "Thin-walled Members". More
recently he presented a lecture on the design and erection of the cable-
stayed railway bridge in Relgrad for which he was the chief designer.

These professional contacts, social relations and personal friendships be-
tween Professor Hajdin and his Swiss colleagues at the Swiss Federal Insti-
tute of Technology have grown.

On the occasion of your 65th Birthday we express to you, dear Nikola, our

sincere thanks and appreciation for your valuable academic contributions and
your warm friendship. With our best wishes for the years ahead of you, yours

Ziirich, April 4, 1988 Bruno Thiirlimann



NIKOLA HAJDIN - A PERSONAL TRIBUTE
TO A FRIEND AND TEACHER

A teacher affects eternity; he can never
tell where his influence stops.
Henry Adams.

Somebody once stated that every engineer is a closet physicist. I often won-
der to what extent is that true in my case. No doubt, however, in the case of
Nikola Hajdin. The man is exactly what he wants to be - perfectly at ease with
himself. No trace of any doubt in himself, a picture of self confidence. A
twinkle in his eye and a smile always ready to stretch his 1ips.

A consummate professional, a man who wears many hats and yet a straightfor-
ward person. Most of all a warm human being, a friend if I ever had one. And
that is exactly why I do not intend to write about those magnificent bridges
spanning mighty rivers, about those high dams, 1ist his papers and books or name
all of us who are proud to call ourselves his students. All of these are a mat-
ter of record for all of us to see and admire. There are psople better with
words and anything I can say will add 1ittle to those facts.

Getting long in teeth myself, a hesitant but frequent traveler, I was fortu-
nate to rub elbows with people whose names you would recognize. If the truth is
to be served some of them were better mathematicians, some knew more about
arcane and esoteric continuum theories. Yet the more of them I get to know in a
strange way the better Sef, as we call him, looks. Neither the time nor the
physical distance were able to subtract from the impression of him I carried and
cherished for three decades.

Being a closet physicist and amateur psychologist myself I sometimes wonder
about the roots of my admiration and attachment to §er. and the basis for the
high regard I have for the man who we honor with this volume. Am I impressed by
these magnificent bridges, and Springer-Verlag books? Of course I am. But that
is not all. This most renaissance man I happen to know is not only an engineer
and a scientist. He is also a teacher, an educator, a focal point for 'the young
people aspiring to fulfill their ambitions and live up to their potential. And
he did all of that with little or no help. He was not backed by a modern lad,
institute, an army of technicians and graduate students. To paraphrase our
greatest poet he is a lion who came out of a little bush. More than that he
transformed the bush into a forest.




He acoomplished all of it with a flair that the nature sparingly bestows to
chosen few. Well, this suffices to explain the the respect for his accomplish-
ment. But, as you guessed by now, I truly love the man. He is my friend. He
taught me more then plates and shells. He was there to help, to share his time,
to discuss a myriad of things a young man, as I was then, wants to know. His
friendship showed no limits and I always felt wiser, better, calmer and more
content after talking to him. Infrequently we had difference in opinions and
even disagreements and I found that a friendship means not to have to say that I
was sorry.

The picture of §ef. which I in an admittedly personal and perhaps biased way,
painted would be incomplete without mentioning his wife Milena and son Rade.
They are undoubtely one of the significant sources of his strength. As strong
as he is I doubt that he would have reached as far as he did if it was not for
their unreserved support. They understood his devotion to his job and shared
his time with the rest of us without complaint. In a way this is then my trib-
ute to them as well.

Thank you my friend. This 1ittle tribute does not even begin to show how much
you did for so many of us. You are a significant part of our lives and you will
live in our students and hopefully in theirs as well. Even though, as I under-
stand, you plan to retire at the end of this year knowing you as well as I do
this will have little effect on your activities. You will still be here to
teach, advise and design. May you enjoy many more years as much as we enjoyed
our association with you.

Dusan Krajcinovic
Chicago, May 1988
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VERSUCHE ZUR REIBERMUEDUNG EINBETONIERTER SPANNKABEL

Prof. Dr. Bruno Thiirlimann und J. Oertle, dipl. Bauing. ETH
Eidgendssische Technische Hochschule Ziirich (ETH)

ZUSAMMENFASSUNG

Die Ermiidungsfestigkeit von Spannkabeln aus Litzen oder parallelen Drihten wird
in entscheidendem Masse durch die Art des Hiillrohrmaterials mitbestimmt. Die
Verwendung von Kunststoff anstelle von Stahl fiihrte annihernd zu einer Verdoppe-
Tung der ertriglichen Spannungsschwingbreite. Ebenso fijhrt eine Reduktion der
zwischen Spanndraht und Hiillrohr herrschenden Querpressung zu einer erhohten
Ermidungsfestigkeit. Dies kann durch eine Begrenzung der Kabelkriinmung und/oder
durch eine giinstige Formgebung der Hiillrohrwandung erreicht werden. Weiterfiih-
rende Detailuntersuchungen und theoretische Ueberlegungen zum Phénomen Reibermii—
dung sowie deren Bedeutung fiir teilweise vorgespannte Betontragwerke werden
demndchst versffentlicht ?12].

1. Einleitung

Bauteile mit voller Vorspannung weisen in der Regel eine hohe Sicherheit gegen
Ermiidungsversagen der Spannstihle auf. Ein Nachweis der Dauerfestigkeit ist
ausser in Verankerungsbereichen und bei Koppelstellen von Spanngliedern im
allgemeinen nicht erforderlich [1]. Da die Bemessung Zugspannungen im Beton
ausschliesst, iiberschreiten die aus Schwingbelastung entstehenden Spannungs-
schwingbreiten der Spann- und Bewehrungsstahle den Bereich von ac = 50 N/mmz im
allgemeinen nicht und sind somit, verglichen mit ihren Dauerfestigkeiten, klein.
Demgegeniiber konnen bei teilweiser Vorspannung bereits unter Gebrauchslasten
Risse auftreten. Dadurch werden die Spannungsschwingbreiten der Spann- und
Bewehrungsstihle bedeutend grésser. Sogar voll vorgespannte Bauwerke kénnen
infolge unvorhergesehener Umstiande (Setzungen, Schwinden, Temperatureinwirkun-
gen, etc.) an kritischen Stellen Risse aufweisen. Die Spannungsverhaltnisse in
der Umgebung des Betonrisses sind dann mit denjenigen in teilweise vorgespannten
Bauteilen vergleichbar.

Friiher beschrinkte sich die Forschungstatigkeit meist auf experimentelle Unter-
suchungen schwingend beanspruchter, teilweise vorgespannter Triger, die im
Spannbettverfahren hergestellt worden waren und deshalb gerade verlaufende



Spannglieder hatten. Erst zu Beginn der achtziger Jahre kamen systematische
Untersuchungen an teilweise vorgespannten Trigern, deren Spannglieder gekriimmt
gefilhrt waren und der Verbund nachtriglich hergestellt wurde, hinzu [2, 3, 4].

Das Institut fiir Baustatik und Konstruktion der ETH Ziirich forscht seit Jahren
auf diesem Gebiet. In verschiedenen Publikationen wurde iiber Teilprojekte wie
Schubbewehrung [5], Ermiidungsfestigkeit nackter Stahle [6], Einfluss der Linge
von Spanngliedern [7] sowie Ermiidungsverhalten teilweise vorgespannter Trager
[2, 8] berichtet. Im Jahre 1981 wurde eine Versuchsserie von 15 Balken von je
6.7 m Lange begonnen. Bereits die ersten Versuche zeigten vollig iiberraschend,
dass das Ermiidungsverhalten einbetonierter, injizierter Spannglieder wesentlich
ungiinstiger ist als dasjenige nackter Proben von Spanndrihten und -litzen.
Ursache dieses unerwarteten Verhaltens ist hauptsiachlich die Reibermiidung,
welcher bisher beim Spannbeton keine Beachtung geschenkt worden war. Ein Riss im
Trédger hat zur Folge, dass in dessen unmittelbarer Umgebung kleine Relativver-
schiebungen zwischen dem Spannkabel und dem Hiillrohr auftreten. Ist das Spann-
kabel in diesem Bereich noch gekriimmt, so entstehen durch die Umlenkkrifte
bedeutende Querpressungen und entsprechende Reibkrafte an den Kontaktstellen
zwischen dem Spannkabel und den Rippen des Hiillrohrs. Die dabei erzeugte Reibung
filhrt zu einer friihzeitigen Ermiidung. Dieses Phanomen ist im Maschinenbau schon
linger bekannt [9, 10]. .

2. Zielsetzung

Um die Reibermiidung in Kabeln teilweise vorgespannter Betontriger genauer
abkliren zu konnen, wurde eine neue Versuchsanlage entwickelt (Bild la). Dabei
wurde darauf geachtet, dass im Kleinkorper der Bereich um den Riss der Risszone
im teilweise vorgespannten Bauteil, in der Ermiidungsbriiche auftreten, moglichst
gut entsprach. Im weiteren wurden iibersichtliche statische Verhaltnisse an-
gestrebt, damit der Kraftverlauf eindeutig feststand (Bild 1b). Die Kleinkorper
sollten nicht zu gross und geometrisch einfach geformt sein, um deren Herstel-
lung und Priifung zu erleichtern, ganz besonders, weil eine grossere Anzahl
Kleinkorperversuche geplant wurde, um eine gewisse statistische Absicherung der
Versuchsresultate zu erreichen.

8i1d la: Versuchsanlage
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Bild 1b: Schema des Kleinkdrpers und seiner Belastung

Nach Abschluss der Versuche an Kleinkdrpern wurde aufgrund der gewonnenen
Erkenntnisse eine begrenzte Anzahl Balkenversuche durchgefiihrt, um neu zu
entwickelnde Bemessungskriterien iiberpriifen zu kdnnen.

3. Versuchsdurchfiihrung an Kleinksrpern

Der im Bild 1b dargestellte Kleinkorper wies eine Lange von 1200 mm und einen
Querschnitt von 200 x 350 mm auf. Ein nachtridglich eingegossenes Stahldruckge-
lenk legte den inneren Hebelarm zwischen den Druck- und Zugresultierenden ein-
deutig fest, so dass die Spannungen im Spannstahl exakt bestimmt werden konnten.
Das Hiillrohr wurde wéhrend der Betonierphase mit Hilfe eines kreisformig vor-
gebogenen Fiihrungsrohres, welches spater beim Ausschalen herausgezogen werden
konnte, fixiert. Dadurch war der Kriinmungsradius - und somit die Querpressung -
des Spannkabels definiert. Das Vorspannen der Kleinkérper erfolgte iiber einen
Verankerungskopf mit je drei Schrauben. Die entstehende Vorspannkraft konnte auf
beiden Seiten iiber je eine Kraftmessdose kontrolliert werden. Die freie Aufhén-
gung des Priifsystems stellte sicher, dass keine Zwingungen auftreten konnten und
somit alle auf die Rissregion einwirkenden Krifte genau bekannt waren.

Die Kleinkérper mit Einzellitze @ 0.6" oder mit fiinf Paralleldrihten § 7 mm
wurden in der Regel solange gepriift, bis drei Briiche im Spannglied erfolgt
waren. Nach einem Drahtbruch wurden beide Kraftgrenzen derart reduziert, dass
die Priifung des restlichen Kabelquerschnittes bei konstanter Spannungsschwing-
breite und konstantem Spannungsniveau durchgefiihrt werden konnte. Wiirde der
Schwingversuch ohne Riicksicht auf erfolgte Drahtbriiche mit konstant gehaltenen
Kraftgrenzen gefahren, hitte dies nach jedem Bruch eine sprungartige Erhdhung
der Spannungen im verbleibenden Kabelquerschnitt zur Folge.

1



4. Ergebnisse der Kleinkdrperversuche

Bei den Darstellungen der Spannungsschwingbreite iiber der Lastspielzahl (Bilder
2 bis 5, 8, 9) ist speziell zu beachten, dass die Lastspielzahl auf der Abszisse
nicht wie iiblich im logarithmischen Massstab, sondern im linearen Massstab
aufgetragen ist. Bei logarithmischer Auftragung treten die Aenderungen und
Vorginge zu Beginn der Lebensdauer besonders deutlich hervor. In bezug auf das
Ermiidungsverhalten von Spannstihlen gilt jedoch das Interesse in gleicher Weise
der gesamten Lebensdauer.

Bei den Versuchen mit Stahlhiillrohr und einer Litze (Bild 2) ging der Ermiidungs-
anriss der zuerst gebrochenen Drihte regelmdssig von den Kontaktstellen zwischen
einem Aussendraht und einer Rippe des Hiillrohrs aus. Die folgenden Drahtbriiche
hingegen wurden an Kontaktstellen zwischen Aussen— und Zentraldraht erzeugt.
Demgegeniiber erfolgte bei Versuchen mit Kunststoffhiillrohr der Ermiidungsanriss
der gebrochenen Litzendrihte ohne Ausnahme zwischen Aussen— und Zentraldraht
(Bild 3). Der Einfluss der Art des Reibpartners ist beachtlich, wenn man die
Ermiidungsfestigkeit der Kleinkorper mit Stahlhiillrohr (Bild 2) mit derjenigen
der Kleinkdrper mit Kunststoffhiillrohr (Bild 3) vergleicht.

Soonmunguactwingbrelte
1»[-/--1

Stontuiirone 307 36

3004

I

' ——
o0 .
A ~{ Versuchaabliruch
4
° H Y 3 . s . H . ’ 0 W o, o2 Wt

Bild 2: Kleinkdrperversuche

Bei den Versuchen mit fiinf Paralleldrihten ging es besonders darum, den Einfluss
der Gruppenwirkung so gut als moglich zu beurteilen, um Basiswerte in bezug auf
die Ermiidungsfestigkeit fiir die geplanten Balkenversuche erarbeiten zu konnep.
Aus geometrischen und versuchstechnischen Griinden konnten Spannglieder aus mehr
als finf Einzeldrihten nicht gepriift werden.
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Bi1d 4: Kleinkdrperversuche
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Eine grossere Anzahl Versuche mit Stahlhiillrohr (Bild 4) sollte die Abschitzung
der unteren Grenze der Ermiidungsfestigkeit erlauben. Die Ergebnisse der Versuche
mit Kunststoffhiillrohr sind im Bild 5 dargestellt. Entsprechend den Versuchen
mit Einzellitze ist auch hier im Vergleich zu den Versuchen mit Stahlhiillrohr
mit der Verwendung eines Kunststoffhiillrohres eine wesentliche Erhséhung der
Ermiidungsfestigkeit zu verzeichnen. Bei simtlichen Versuchen war keine Kontakt-
stelle zwischen dem Spannglied und dem Kunststoffhiillrohr durchgerieben. Um die
Phiénomena beim Durchreibevorgang wihrend des Vorspannens kennenzulernen, wurden
1mfAnschzusi an die Kleinkorperversuche entsprechende Durchreibeversuche durch-
gefiihrt [12].
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Bild 5: Kleinkorperversuche

5. Versuchsdurchfiihrung an Balken

Da die Resultate der neuen Balkenversuche mit denjenigen aus [2] vergleichbar
sein sollten, wurden die gleichen geometrischen Abmessungen und die gleiche
Bewehrung gewdhlt. Bild 6 zeigt die Dimensionen und weitere Details der Beweh-
rung. Um ortliche Knickstellen in der Spanngliedfiihrung zu verhindern, wurde das
Hiillrohr in Abstinden von 50 mm an ein Stiitzblech mit exaktem Kriinmungsradius
von r = 3500 mm befestigt.

Die Belastungsanordnung fiir alle Balken ist im Bild 7 dargestellt. Der Balken
war statisch bestimmt gelagert, und die sussere Belastung wurde iiber Stahlquer-
trager in den Balken eingeleitet. Die Kolbenkrifte wurden mit Kraftmessdosen
kontrolliert. Um dynamische Einfliisse klein halten zu kénnen, wurde die Bela-
stungsfrequenz auf 5 Hz festgelegt. Zur Verhinderung eines sprungartigen Anstei-
gens des Spannungsniveaus und der Spannungsschwingbreite nach Drahtbriichen im
restlichen Querschnitt wurden die obere Kraftgrenze wegkontrolliert und die
untere Kraftgrenze kraftkontrolliert gesteuert.
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Bi1ld 7: Balkenversuche; Belastungsanordnung

Die mit einem Personal Computer (PC) erfassten Werte der Dehnungsmessungen an
der Betonoberflache liessen es zu, die Lastspielzahl bei einem Drahtbruch
nachtriaglich zu bestimmen. Die automatische Ueberwachung der Spitzenwerte er-
laubte auch bei Litzenversuchen, Drahtbriiche értlich festzulegen und deren
Lastspielzahl bei Bruch anzugeben.

Im Balken C1 wurde in Trégermitte ein Trennblech eingebaut, um Zugspannungen im
Beton zu vermeiden. Es zeigte sich, dass die totalen Vorspannverluste infolge
von Reibung, Schwinden, Kriechen und Relaxation etwa 15Z betrugen. Mit der Hohe
des gewdhlten Vorspanniveaus und der Grésse der gewidhlten Spannungsschwingbreite
ergaben sich stets Belastungen, die iiber dem Dekompressionsniveau lagen. Damit
konnte der Einfluss einer Ungenauigkeit in der Bestimmung des Vorspannverlustes
auf die Berechnung der Spannungsschwingbreite praktisch vernachlassigbar klein
gehalten werden [12]. Wird hingegen beim Schwingen das Dekompressionsniveau
durchfahren [2], so wird die Spannungsschwingbreite sehr stark von diesem Niveau
und damit von den meistens nur ungenau bekannten Vorspannverlusten abhdngig.

6. Ergebnisse der Balkenversuche

Aus der Darstellung der Versuchsergebnisse in den Bildern 8 und 9 geht hervor,
dass der erste Drahtbruch bei simtlichen Versuchen erst wiahrend der zweiten oder
dritten Laststufe erfolgte. Vergleicht man die Bruchlastspielzahlen mit den
entsprechenden Werten der Kleinkdrperversuche, so stellt man fest, dass die
Versuchsresultate sowohl bei Verwendung von Stahl- als auch von Kunststoffhiill-
rohren gut iibereinstimmen. Die in [11] in bezug auf Kleinkdrper gemachten
Aussagen, wonach im Ermiidungsverhalten einbetonierter Spannglieder aus Litzen
oder parallelen Driahten keine ausgepriagten Unterschiede auftreten, bestatigten
sich auch in den Balkenversuchen.

Wie bei den Kleinkdrperversuchen mit injiziertem Kunststoffhiillrohr traten auch
hier keine durchgeriebenen Stellen in der Hiillrohrwandung auf. Im weiteren fiel
auf, dass beide Spannglieder mit Kunststoffhiillrohr am Spannstahl einen geringe-
ren Abrieb an den Kontaktstellen aufwiesen als diejenigen mit Stahlhiillrohr.
Beim Spannglied des Balkens C4 mit neuentwickeltem Kunststoffhiillrohr [12] waren
auf der gesamten Linge des Kabels an der Oberflache nur kleine Spuren von
Reibrost sichtbar.
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Bild 9: Balkenversuche
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ZWE! BEITRAGE ZUR STABILITATSTHEORIE IM STAHLBAU

PIERRE DUBAS

BAUSTATIK UND STAHLBAU
EIDG. TECHNISCHE HOCHSCHULE ZURICH
CH-8093 ZURICH, SCHWEIZ

ZUSAMMENFASSUNG

Fir die Bemessung von Stiben unter Druck und einachsiger Biegung werden oft Interak-
tionsformeln verwendet. Die Ergebnisse einiger dieser Formeln werden mit Resultaten verglichen,
die mit der Fliesszonenmethode 2. Ordnung gewonnen worden sind.

Im zweiten Teil des Aufsatzes werden Versuche an Blechtrédger vorgestellt, mit denen die
Interaktion zwischen steifenloser Krafteinleitung und Gesamtbiegung untersucht worden ist.

1. BEMESSUNG VON STABEN UNTER DRUCK UND EINACHSIGER BIEGUNG

1.1 Einleitung

Bei Stében unter Druck und einachsiger Biegung sind die Einflisse 2. Ordnung zu beriick-
sichtigen: die seitlichen Auslenkungen bedingen eine Vergrésserung der Exzentrizitdt der Druck-
kraft und somit eine Zunahme der Biegemomente.

Bei einer rein elastischen Betrachtung ist das Problem einfach zu l6sen, hingt doch die
Biegesteifigkeit El nicht von der H6he der Schnittkrafte ab. Wenn man die geometrischen
Imperfektionen in der Form passend gew&hliter Anfangsauslenkungen einfihrt, liefert dieses
Verfahren meistens auf der sicheren Seite liegende Ergebnisse. In Wirklichkeit kompensieren
sich, mindestens teilweise, zwei gegenteilige Einflisse: die EinfGhrung eines idealelastischen-
idealplastischen Materialverhaltens ist an sich zu optimistisch, weil dabei die Wirkung der
Eigenspannungen auf die Biegesteifigkeit vernachlissigt wird; auf der anderen Seite wird die
Grenzlast dem Erreichen der Fliessgrenze am meistbeanspruchten Rand gleichgesetzt, d.h. die
Querschnittsplastifizierungen werden vernachlassigt.
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Will man diese plastischen Reserven mobilisieren, so ist der Einfluss der Hhe der Schnitt-
krafte und der Eigenspannungen auf die Biegesteifigkeit einzuschliessen. In diesem Rahmen fihrt
die Fliesszonenmethode 2. Ordnung, wie sie im nichsten Abschnitt kurz erlautert wird, zur best-
moglichen Simulation der physikalischen Wirklichkeit. Fir die Konstruktionspraxis ist dieses
Verfahren allerdings zu aufwendig, so dass in der Regel mehr oder weniger genaue Interaktions-
formeln zwischen der Normalkraft und dem Biegemoment verwendet werden. Die Ergebnisse der
Fliesszonenmethode 2. Ordnung sollen mit einigen solchen Interaktionsformein verglichen werden.

1.2 Durchgefiihrie Untersuchungen mit der Fliesszonenmethode 2, Ordnung

Gegenstand der in [1] vertffentlichten Untersuchungen ist ein beidseitig gelenkig gelagerter
Stab unter Druck und einachsiger Biegung. Die Aussermittigkeit e ist an beiden Stabenden gleich
gross, so dass die primaren Momente N-.e (ber die Lange konstant verlaufen. Biegedrlll-
knicken Ist ausgeschlossen. Als Erganzung wurde auch der Fall einer gleichmissig verteilten
Querlast untersucht.

Fur die bei der Anwendung der Fliesszonenmethode 2. Ordnung benitzten Grundlagen kann
auf [2] hingewiesen werden. Zur lllustration zeigt Bild 1 interaktionsdiagramme zwischen den
Biegemomenten, bezogen auf das plastische Moment M, fir die Biegung eines HEA 200 um die
schwache Achse, und den relativen Biegesteifigkeiten TgI/EI . Die Normalkraft, ebenfalls auf Npj
bezogen, erscheint als Parameter.

Die angenommenen Anfangsausienkungen verlaufen sinusférmig, mit einer Ordinate von
2/1000 in Stabmitte. Die Computerberechnungen wurden inkrementell und mit Gleichgewichts-
iterationen an Staben verschiedener Schiankheit, alle mit dem Querschnitt HEA 200 durchgefihrt.

Als Materialkennwerte gelten eine Fliessgrenze fy = 235 N/mm2 sowie ein E-Modul von 210
kN/mm2-

N
101 Ny
/

0 02 04 06 08 10
Bild 1 : Interaktionsdiagramme M-Tg mit N als Parameter (HEA 200).

Da die Ergebnisse aller durchgefiihrten Berechnungen tabellarisch in [1] wiedergegeben
sind, werden in Bild 2 die Resultate in graphischer Form als Interaktionsdiagramme zwischen der
Traglast N und dem dazugehérigen Moment M bei der Erschépfung der Tragfahigkeit dargestellt.
Dabet? ist das Moment.M als N-e definiert. Es handelt sich somit nicht um das tatséchlich vor-



kommende maximale Moment in Stabmitte, sondern um einen Bezugswert 1. Ordnung, wie er in den
Interaktionsformeln bendtzt wird. Die Traglast N ist auf die Knicklast NK des planmassig
zentrisch gedriickten Stabes bezogen, die mit dem gleichen Programm ermittelt worden ist.

i A
T

Xiy€02 (Ng=Ny) Xia€02 (N=Ny)

o571 051

—I—sﬁwu Achse

HEA200

0 05 T 10 0 05 10
(a) (b)

Bild 2a und b:  Interaktionsdiagramme N-M fiir zweiseitig gelagerte, exzentrisch beanspruchte
Stdbe aus HEA 200; Exzentrizitat e = M/N = konstant.

Bild 2a bezieht sich auf die Biegung eines Profiles HEA 200 um die schwache Achse, Bild 2b
auf die Biegung des gleichen Querschnittes um die starke Achse. Als Parameter erscheint in beiden
Fallen die bezogene Schiankheit Xx,y oder AK,x . Gegeniiber der ebenfalls dargestellten plasti-
schen Interaktion fiir Stabe mit verschwindender Schlankheit sind die N-M Kurven durch ihren
konkaven Verlauf gekennzeichnet, der auf die Wirkung des Verformungseinflusses zuriickzufiihren
ist.

Zudem ist ein deutlicher Unterschied zwischen der Biegung um die schwache Achse nach Bild
2a und derjenigen um die starke Achse nach Bild 2b festzustellen. Im ersten Fall Gibersteigt das
Verhaltnis des plastischen Momentes Mp) zum Fliessmoment W.fy einen Wert von 1,5 . Zudem
verringert sich das plastische Moment kaum, solange die Normalkraft von der Steg- und Hohi-
kehlenflache aufgenommen werden kann. Dieses giinstige Verhalten im plastischen Bereich ist nur
mittels einer betréchtlichen Spannungsumlagerung moéglich, die erst bei grésseren Dehnungen ein-
treten kann und somit eine erhebliche Verminderung der Biegesteifigkeit bewirkt. Besonders bei
schlanken St#ben fiihrt dies zu einer deutlichen Zunahme der Auslenkungen und somit der Einfliisse
" 2. Ordnung. Bei der Biegung um die starke Achse sind dagegen die plastischen Reserven kleiner,
und die Spannungsumlagerung spielt eine kleinere Rolle: fiir alle betrachteten Schiankheiten liegen
hier die Interaktionskurven nahe beieinander.

1.3 Mdgliche Interaktionsformein

Im Entwurf 1983 zum EUROCODE 3 (Stahlbauten) wurde eine Interaktionsformel folgender
Form aufgenommen (vgl. dazu [3])

N 1 M ; Npi (1)
—_— <1 mit Ng= xg- N und Ng = —
Nk * T- (N/No) (Ne/Np) Ma KT R T s

K

_Bild 3 zeigt die Ergebnisse entsprechender Vergleichsuntersuchungen, dargestelit in der Form

21



N(Interaktionsformel)/N(FE-Berechnung)

wobei N als "ertragbare” Last (Interaktionsformel genau erfillt) bzw. als Traglast zu verstehen
ist. Ein Verhdltnis grésser als "1" bedeutet, dass die Interaktionsformel (1) zu hohe, auf der un-
sicheren Seite liegende Ergebnisse liefert. Im Bild sind fir die Biegung um die schwache Achse

folgende Varianten berlcksichtigt:

- elastischer Nachweis nach Formel (1), mit MR = W.fy (Fliessmoment)

- plastischer Nachweis nach Formel (1), mit MR = Mp} (piastisches Moment)
- elastischer Nachweis mit M = 1,1-N-e

- plastischer Nachweis mit M = 1,1-N-e

Die Momentenverteilungszahl ® = 1,1 deckt ndherungsweise den Unterschied zwischen dem Ver-
grosserungsfaktor 2. Ordnung 1/(1-N/Ngr) , der fir eine sinusférmige Verteilung der primaren
Momente gilt, und dem fiir konstante Momente einzusetzenden genaueren Faktor der Form
(1+0,25-N/Ngr)/(1-N/N¢p).

N (interaktion)

R s x'(.y
15 20 25 30

o
=1
ot

Bild 3 :  Vergleich der Ergebnisse der Formel (1) mit den FE-Berechnungen, bei Biegung um
die schwache Achse: maximale Abweichungen fir die betrachteten Exzentrizititen e .

Mit zunehmender Schlankheit liefern alle Varianten der Interaktionsformel (1) gréssere,
auf der unsicheren Seite liegende Abweichungen gegeniiber den Ergebnissen der Fliesszonenmethode
2. Ordnung. Bei hohen Schlankheiten fihrt nur die letzte Variante, d.h. der elastische Nachweis mit
o= 1,1 , zu noch vertretbaren Fehlern in der Gréssenordnung von 5 %. Dieses Verfahren ist al-
lerdings fiir gedrungene Stabe konservativ.

Fur die Biegung um die starke Achse liegen aus den vorher erwihnten Griinden giinstigere
Verhiltnisse vor, so dass auf eine Wiedergabe des entsprachenden Bildes verzichtet werden kann.

Um die Ergebnisse der Interaktionsformel (1) zu verbessern, ist der Biegewlderstand MR

in Funktion der Schlankheit auszudricken. Aufgrund umfangreicher Untersuchungen haben wir in
[1] vorgeschlagen, folgenden Verlauf anzunehmen:
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MR = 1,12:Mp| for ix s 0,75
MR = 1,12:Mp - (1,12:Mp| - My)(XK-0,75)/1,25 for 075 < AK< 20 (2
MR = My- W'fy for ‘iK 2 2,0

Gleichung (2) entspricht einer linearen Interpolation, im Schlankheitsbereich 0,75 bis 2,0 ,
zwischen dem Wert 1,12:Mp| und dem Fliessmoment My . Der Ausdruck 1,12-Mp| wird in
zahlreichen Vorschriften als Bezugsgrésse fir die Interaktion zwischen Zug/Druck und Biegung
1. Ordnung von |-Querschnitten um die starke Achse verwendet. Es handelt sich dabei um eine
linearisierte N&herung fur die in Bild 2b gezeigte Interaktionskurve beim Grenzfall Nk — Np| .
Fir die Biegung um die schwache Achse liegt diese Annahme auf der sicheren Seite.

Bild 4 zeigt die extremen Abweichungen - fir die betrachteten Exzentrizitditen e - zwischer
den Resultaten der Interaktionsformel (1), ausgewertet mit den Werten MR nach GI. (2), und der
Ergebnissen der FE-Berechnungen. Dabei wurde der Knickwiderstand NK bzw. der Knickbeiwert
xK mit dem gleichen Computerprogramm ermittelt; diese xk-Werte stimmen fir die schwache
Achse sehr gut mit denjenigen aus der europdischen Knickspannungskurve "c" Gberein, wihrend-
dem fir die starke Achse die Kurve "b" zu kleine Werte liefert (sie entspricht dem Knicken eines
Querschnittes PE 160 um die schwache Achse). Zudem wurde als Moment M der Ausdruck
1,1-N-e, d.h. © = 1,1 eingefihrt.

Das vorgeschlagene Verfahren fihrt zu einer befriedigenden Ubereinstimmung der Inter-
aktionsformel mit der genauen Lésung. Die Einfiihrung eines von der Schlankheit abhangigen
Biegewiderstandes stellt allerdings eine gewisse Komplikation dar. Zudem verliert die Methode an
Ubersichtlichkeit.

N (Formein 1+2) N (Formeln 1+2)
" N (FE - Berechnungen) . N (FE-Berechnungen)
" A | B e Ty M
e I NG22
|
/

Q9+ 091 —I— starke Achss

I schwache Achse

(a) (b)

Bild 4: Vergleich der Ergebnisse der Formel (1), ausgewertet mit den Biegewiderstanden nach
Gl. (2), mit den FE-Berechnungen: maximale und minimale Abweichungen fiir die be-
trachteten Exzentrizititen e .

In neueren Entwirfen zum EUROCODE 3 (vgl. z.B. [4]) sowie in der Normvorlage zur DIN
18800, Teil 2, wurde versucht, durch Einschrénkungen bei der Anwendung des plastischen
Nachweises nach Formel (1) mit MR = Mp| , zu hohe Abweichungen bei schlanken Staben zu ver-
meiden. Wir wollen auf dieses Vorgehen nicht naher eintreten und auf die entsprechenden
Bemerkungen in [1] hinweisen.

Im Rahmen der in Angriff genommenen Revision der Schweizer Norm SIA 161/1979 wurde
folgende verbliiffend genaue und zugleich einfache Naherung vorgeschlagen. Gegeniiber Forrpel 1)
wird im Nenner des Vergrésserungsfaktors die Korrektur Nk/Np| weggelassen, zudem auch bei
konstanten Momenten © zu 1,0 gesetzt, und die Interaktion somit in folgender Form geschrieben,
die im ganzen Schlankheitsbereich guiltig ist:
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N 1 N-e

— e — T <1 3a
Nk T-N/Ng My (3a)

schwache Achse

mt Ng =

L Z

N 1 N-e
starke Achse — t— <1 (3b)
Nk 1-N/Ne 1,12 My

Bild 5 zeigt den Vergleich der Ergebnisse dieser Formel mit den Resultaten der FE-
Berechnungen. Grenzverhéltnisse hther als 1,0 bedeuten auch hier, dass das Naherungsverfahren
Ergebnisse auf der unsicheren Seite liefert. Es handelt sich aber um wenige Prozente, wobei fir
die schwache Achse die Abweichungen kleiner sind als nach Bild 4a. Zudem ist zu beriicksichtigen,
dass bei einer Beanspruchung auf Druck mit Biegung alle Variablen, d.h. N und e auf der Last-
seite, sowie die Grenzmomente Mp auf der Widerstandsseite gleichzeitig ihren Extremwert
annehmen mossen. Weiterhin ist stillschweigend vorausgesetzt, dass die anfangliche Auslenkung
und die Aussermittigkeit e sich immer addieren. Durch diese Annahmen ergibt sich eine kleinere
Auftretenswahrscheinlichkeit fir die Erschdpfung des Tragwiderstandes als beim gelenkig ge-
lagerten Knickstab.

N (Formel 3a) N (Formel 3b)
N(FE- Berechnungen) N (FE-Berechnungen)

A«

WY 1 W
1.01 Ws 10 + 3
| \%\\\LM

09t | ol 23 —I— starke Achse
| schwache Achse

(a) (b)

Bild 5: Vergleich der Ergebnisse der Formeln (3a) und (3b) mit den FE-Berechnungen:
maximale und minimale Abwseichungen fUr die betrachteten Exzentrizititen e .

Fir die Bemessung fihren die unten aufgefihrten Formeln zu einer direkten Lésung.

- Exzentrizitdt e bekannt, gesucht die "ertragbare” Normalkraft N :

. . -2
N_p-./p- ‘2 mup.‘_z""‘_°+xk+L und xg = Nk, OK (4)
Nk Xk A 2. %y \KK° Mg Xk Np 1y
- N bekannt, zugehtriges Moment M bzw. Exzentrizitdt e = M/N  gesucht:
M . N d_ T
LIS TR\ R | L . 5
< NK)( & Q (5)

Dabei ist fur die schwache Achse MR = Mp| , fir die starke Achse MR = 1,12:Mp einzu-
setzen.

Schliesslich soll erw&hnt werden, dass der Formelaufbau der Gleichung (3) dem bekannten

PERRY-ROBERTSON-Typ entspricht. Ahnliche Interaktionsformein werden seit langerer Zeit
haupts#chlich in Nordamerika verwendet (vgl. z.B. [5]).
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2. INTERAKTION ZWISCHEN EINZELLASTEN UND GESAMTBIEGUNG BEI
DUNNWANDIGEN BLECHTRAGERN

2.1 Problemstellung

In zahlreichen Fallen sind gréssere Druckkrafte steifenlos in den Steg eines dinnwandigen
Blechtrégers einzufihren. Falls in der gleichen Zone hohe Biegebeanspruchungen auftreten, ist
deren Einfluss auf den Grenzwiderstand fir die rippenlose Krafteinleitung zu bericksichtigen. Als
Beispiel fir eine solche Interaktion kénnen die Verhaltnisse Uber dem massgebenden Pfeiler beim
Langseinschieben einer Vollwandbriicke erwéhnt werden: hier treten gleichzeitig hohe Auflager-
dricke und Biegemomente auf, die in der Nahe des Biegewiderstandes liegen. Ahnliche Bedingungen
sind bei Kranbahntragern anzutreffen, allerdings mit dem wesentlichen Unterschied, dass hier
wegen der zahlreichen Lastwechsel der Ermiidungsnachweis massgebend ist. Die Ergebnisse der
anschliessend beschriebenen Versuche, bei denen schon vor dem Erreichen des Tragwiderstandes
grossere Plastifizierungen und bleibende Verformungen zu beobachten waren, dirfen daher bei
Kranbahntragern oder anderen einer wiederholten Krafteinleitung ausgesetzten Elementen nicht
verwendet werden.

2.2 Durchgefihrte Versuche
Am Institut fir Baustatik und Stahlbau der Eidg. Techn. Hochschule Zirich sind Inter-
aktionsversuche durchgefiihrt worden. Zudem wird das Problem mit Hilfe der FE-Methode

untersucht. Anschliessend sollen die Ergebnisse der experimentelien Forschung kurz vorgestelit
werden.

Bild 6 zeigt die Hauptabmessungen der ersten drei Trager sowie die Belastungsanordnung.
Die zwei etwa im Drittel der Spannweite wirkenden Lasten werden mit Quersteifen eingeleitet und
bestimmen, zugleich mit der zentralen Kraft F, die Hohe der Biegemomente. For jeden Trager
wurden folgende sechs Tragversuche durchgefiihrt:

4
- Interaktion einer Einzellast F in Tragermitte mit hohen Biegemomenten, wobei fur jeden der
drei Trager eine andere Kombination gewéhit wurde.

- Bestimmung des Biegewiderstandes, ohne Kraft F . Zu diesem Zwecke wurde der Trager
umgedreht, so dass der im ersten Versuch als Druckgurt wirkende Flansch dann auf Zug bean-
sprucht war. Die eingetretenen plastischen Verformungen wirkten sich daher nicht nachteilig
aus. Auf alle Fille wurde bei allen Versuchen der Biegewiderstand durch das Fliessen des Druck-
gurtes, gefolgt von &rtlichen Kipp- oder Beulverformungen, eingeleitet.

- Vier Versuche fur die Endfelder des Tragers. Die hier vorkommenden Biegemomente (Spann-
weite 1800 mm) sind so klein, dass die Traglast den Grenzwiderstand Fy fir die rippenlose
Krafteinleitung ohne Gesamtbiegung darstelit.

150-10 150-8 150-8
F
990-4 990-4 990- ( |
X -
1800, | 2400 _| 100
150-10 150-8 150-8 l:iemTL__j
1A 2A 3A

Bild 6: Tréagerquerschnitte und Versuchsanordnung fir die Untersuchung der Interaktion
zwischen Querlast und Hauptbiegung.



For die Hauptversuche sind #hnliche Querschnitte gew#hit worden. Die Abmessungen sind in
der Tabelle 1 zusammengefasst.

Trager VT1 \'AL- \AK] VT4 \AE) VAL
Steg 1000-4 10004 1000-5 1000-5 8005 800-5
Flansche 150-8 100-12 15012 150-12 150-8 150-12

Tabelle 1: Querschnitte der Versuchstrager VT1 - VT6.

Die Stegschlankheit variiert somit zwischen 160 und 250 und ist fr die heute in der Schweiz
gebauten Vollwandtriager ohne Langssteifen reprasentativ. Zudem wurden vier langsversteifte
Trager untersucht, auf die hier nicht eingegangen wird.

Gegeniiber Bild 6 sind die LAngsabmessungen leicht gedndert und betragen jetzt 1760+
2480+1760 mm. Zudem wurde der Biegewiderstand My nicht fir jeden Versuchstrager be—
stimmt, so dass mehr Interaktionspunkte gewonnen werden konnten. Der Wert My wurde dann
rechnerisch ermittelt, wobei die zahlreichen durchgefithrien Biegeversuche eine Kalibrierung des
Berechnungsverfahrens erlaubten. Fir diese Versuche kann zudem auf [6] hingewiesen werden. In
dieser Versffentlichung sind einige experimentelle Ergebnisse mit verschiedenen Bemessungsver-
fahren verglichen.

Die gemessenen Versuchswerte Fy fur die rippenlose Krafteinleitung bei vernachléssig-
barer Gesamtbiegung zeigen zudem, dass die untenstehende in der Schweizer Norm SIA 161/1979
angegebene Formel (43) auf der sicheren Seite liegende Ergebnisse liefert

2
Fu = 05151, f\/ 15:—' - Korrekturbeiwerte (6)
y lw

mit tw = Stegstarke und t;f = Flanschdicke.

Im Durchschnitt betragt der experimentell bestimmte Faktor rund 0,65 statt 0,5. Je nach
Trager erreicht die Fliessgrenze des Steges Werte fy,w 2zwischen 290 und 360 N/mm2, wihrend
fur die Flansche die Streckgrenzenwerte fy,f zwischen 275 und 325 N/mm?2 variieren.

Bei den reinen Krilppelnversuchen, praktisch ohne Hauptbiegung, ist die Hohe der sich un-
mittelbar unterhalb des Druckflansches bildenden Beule klein und Obersteigt fur die vorliegenden
Versuchstrager kaum 50 mm. Gleichzeitig wirkende Biegemomente, genauer gesagt die dazugehd-
rigen Langsdruckspannungen im oberen Stegbereich fithren zu einer deutlichen Vergrésserung der
Beulabmessungen und zu einer entsprechenden Reduktion des Tragwiderstandes F gegenuber Fy .
Es wurde bereits in [7] darauf hingewiesen, dass bei einer rippenlosen Krafteinleitung der obere
Stegbereich - zusammen mit dem Flansch - als eine Art Verteilungstrger wirkt, so dass weiter
unten nur méssige vertikale Druckspannungen auftreten. Man kann sich vorstellen, dass diese
Wirkung durch die gleichzeitig wirkenden Biegedruckspannungen beeintrachtigt ist.
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2.3 Interaktionsdiagramm

Die Hauptergebnisse der durchgefihrten Versuche sind in Bild 7 graphisch zusammenge-
fasst. Es handelt sich um die Beziehung zwischen dem Tragwiderstand F im Interaktionsfall, be-
zogen auf den jeweiligen Mittelwert F, der Versuche mit vernachlissigbarer Biegung, und dem
gleichzeitig wirkenden Biegemoment M in Tragermitte, bezogen auf den Biegewiderstand My bei
einer Lasteinleitung Ober Quersteifen nach Bild 6 .

“F/Fu

051

(0] + -
(o] 05 10

Bild 7: Interaktionsdiagramm zwischen der rippenios eingeleiteten Querlast F und dem
Biegemoment M im gleichen Querschnitt.

Die mit einem Kreuz bezeichneten Werte gelten fiir eine Krafteinleitung durch eine
Einzellast, mit einer Lastangriffslange von 40 mm. Bei den mit einem Punkt dargesteliten Ver—
suchen wurden zwei Lasten (Lastangriffslange jeweils 40 mm, Zwischenlinge 200 mm) oder vier
Lasten (Lastangriffslinge jeweils 40 mm, Zwischenldngen jeweils 200 mm) eingefthrt. Diese
Versuchsanordnung entspricht der beim Einschieben von Briicken anzutreffenden Belastung durch
Rolienbatterien. Durch diese mehrfache Belastung erniedrigt sich die Grosse des Tragwiderstandes
F oder Fy pro Lastpunkt, wihrend die Gesamtlast selbstversténdlich h&her ist. Die vorher er-
wahnte Wirkung des oberen Tr#gerteils als Verteilbalken erklart qualitativ diesen Tatbestand.

Bild 7 zeigt, dass die Interaktion nicht sehr ausgeprégt ist, besonders wenn mehrere Lasten
F gleichzeitig wirken. Alle Ergebnisse liegen zudem zwischen den in Bild wiedergegebenen Inter—
aktionskurven. Die obere wurde in [8] aufgrund einer beschrankten Anzahl von Versuchswerten
vorgeschlagen und entspricht der Gleichung

215
o]

Die untere wurde unter anderem von ROBERTS [9] eingefiihrt

1
2]2
F M
e[r-(a] e
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Diese Formel (8) kann aus einer veraligemeinerten von KARMANSschen Beziehung der Form (vgl.
(1o0])

Fu"‘/ch_'Fy (9)

abgeleitet werden. Dabei nimmt man an, dass die Quetschlast Fy linear vom Flanschbiege-
widerstand Mp| f abhangt. Dieses plastische Flanschmoment, das fir die &riliche Verteilung der
Einzellast F mobilisiert wird, ist durch die Flanschnormalkraft aus dem Biegemoment des
Tragers im Rahmen der plastischen Interaktion zwischen einem Biegemoment und einer Normal-
kraft fir den rechteckigen Flanschquerschnitt im Verhaltnis 1 - (N/Np|)2 abzumindern.

Schliiesslich soll ausdriicklich festgehalten werden, dass bei den Versuchen eine Verdrehung
des Druckflansches im Krafteinleitungsbereich durch die Biegesteifigkeit der Pressekolben prak-
tisch behindert war. In dieser Zone war der Steg somit eingespannt. In den meisten Anwendungen
ist eine solche Drehbehinderung durch die Art der Krafteinleitung - z.B. durch breite Rollen bei
Batterien fir das Laéngseinschieben von Briicken - ebenfalls gew&hrleistet. FOr eine gelenkige
Krafteinleitung, d.h. wenn sich der Flansch und der daran geschweisste Steg im Bereich der
Krafteinleitung frei verdrehen kénnen, ergeben sich deutlich geringere Tragwiderstande F , die
durch die Gblichen Bemessungsformelin nicht mehr abgedeckt werden.
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LOCAL DAMAGE EFFECTS IN CYLINDERS STIFFENED BY RINGS AND STRINGERS

B.F. Ronalds and P.J. Dowling
Department of Civil Engineering, Imperial College of Science and Technology
London, SW7 2BU, UK.

SYNOPSIS

Analytical techniques are outlined which have been developed to complement damage tests
on orthogonally stiffened cylindrical shells. The extent of damage caused by characteristic
quantities ,of kinetic energy in an accidental impact, and its effect on the strength of
orthogonally stiffened shells under compressive loading, are both addressed.

Experimentally, lateral loading was applied across the stringers through a wedge-shaped
indenter. A mechanism approach is used to model the damage development, including the
deepening of the dent centre and its spread along the member length. The equations
demonstrate the influence of heavier stringers and rings at closer spacing in reducing the
damage. The residual compressive strength may be simply estimated by neglecting the
damaged material. The results are related to the likely intact capacity of shells with
imperfections satisfying recommended tolerances.

NOTATION

A;  cross sectional area of cylinder

b stringer spacing = oR

ecc  eccentricity of axial load application from cylinder centre
j stringer number

n nondimensionalized membrane force in stringer beam = N/Np
Np; cylinder squash force = oyA,

P 4m compressive load capacity of damaged cylinder

s number of stringers around circumference

sp number of stringers in dent

t shell thickness

o angle between adjacent stringers = 2ux/s

Om compressive strength of intact shell

oy Yyield stress (tensile or compressive)

") angle to stringer j from dent centre = ja

¢c angle to edge of dent at cross section under load

¢r angle to edge of dent at ring frame cross section



INTRODUCTION

The Department of Energy and the Science and Engineering Research Council have jointly
sponsored several projects investigating the consequences of local damage in stiffened
cylindrical shells. This paper describes results from part of that programme of research,
involving tests on orthogonally stiffened cylinders. The models were in the slenderness
range 190 ¢ R/t ¢ 267, the upper value being limited economically by the size of
fabrication apparatus and existing testing rigs. The shells had twenty or forty longitudinal
stiffeners (stringers) and were either one or three bays in length. The model numbers
and other dimensions are given in Table 2.

As in other experimental programmes [1,2]) the shells were damaged through a
wedge-shaped indenter aligned parallel to the rings. The lateral load was applied slowly,
avoiding any dynamic effects. Inertia forces may be neglected in modelling collisions
when the duration of impact is much greater than the period of vibration of the structure
[3). De Oliveira [4) and Jones [S] have demonstrated this to be true for components of
typical offshore structures. However strain rate effects might be of some importance in
impacts, by elevating the yield stress and reducing the fracture strain [3).

The residual strength in the presence of the dent was determined by compression tests.
Analyses have been developed for both denting and compression aspects of the testwork
and these are outlined in the following sections.

DENTING ANALYSIS

The dent formation during lateral loading has been modelled by simplifying the stiffened
shell to a series of longitudinal beams carried by ring frames. Each longitudinal beam is
treated as a plastic mechanism with several modes of response. These modes are
illustrated in Fig. 1, with a line of symmetry assumed at the load application point. The
load is supported by reactions at the ring frames and is transferred there by - bending
moment and membrane force in the beam. The tension is generated by the beam
stretching to accommodate lateral deflection.

In the first mechanism mode the deflections are contained by the two nearest rings; the
dent thus deepens and widens but does not spread longitudinally in this phase. When the
load is large enough these two rings begin to deflect and the dent grows in length to
extend over three bays. The hogging plastic hinge M), moves to the new boundary and
the moment M, at the intermediate ring unloads elastically as the ring deflects. Because
the mechanism rotates only at the centre and ends the ring deflects at two-thirds of the
rate of the central deflection. For the three bay dents tested in this programme the next
phase of behaviour (mode 3) occurs when M, becomes a sagging plastic hinge -M,. The
entire central bay is then a sagging hinge and its inclination to the horizontal remains
constant throughout further loading.

If the beam had more than three bays mode 2 might be terminated by either of two
occurrences. One possibility is a sagging hinge at the inner ring, mentioned above, and
the other is the collapse of the next ring frame (mode 2a). Both modes 3 and 2a are
likely to be followed by mode 3a where M, = -M; and two ring frames are deflecting.
The configurations of further modes depend on the failure of additional rings and the
formation of sagging hinges at their locations.

Equations describing the shapes of the mechanisms and the values of forces and moments
as the dent develops are given in Ref. [6]. Because of the importance of membrane
effects in these tests an estimate of the lateral load relationship with deflection may be
made very simply by putting the tension force N at yield. The resulting equations are
linear and are listed in Table 1.
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Table 1 Denting mechanism modes for three bay dent

The behaviour of the entire shell is the sum of the individual beam responses. Results
for one of the three bay models tested are given in 2 .

stiffened, having only twenty stringers and a resulting panel slenderness of b/t = 84.
Thus two types of longitudinal beam element chosen. The stringers were assumed to
act with an effective width of shell giving b/t = 30. Between the stringer beams the
shell was considered to be made up of thin rectangular strips. The response is insensitive
to the exact width of stringer beam and so the b, value chosen is not important.

g

Relationships between the ring deflection and the
showing the various modes of behaviour. Positions
- and stringer 1 (p = a) are plotted, where ¢ is the angle
centre-line. Fig. 2 shows the membrane force in the stringer beams, nondimensionalized
with respect to the yield force. The theoretical curves are plotted for particular values of
. This is a measure of the restraint against
the mechanism [6] and is represented by a spring in Fig. 1. A value y = 0.5 means
that the total stiffness at the supports is equal to the axial stiffness of the beam.
two

|
:
?
g
¢

The experimental damage load response of the shell is compared with
curves in Fig. 4. The thicker line takes account of the gradual build up
tension in the dented beams and its effect on the moment capacity of the plastic hinges.
The membrane solution, combining the simple equations in Table 1, is

thinner broken line.

If the test models had been more than three bays in length the damage would have
extended axially as successive ring frames deflected. The predicted shape of the dent
zone in a longer forty stringer shell with the geometry of Cylinder 3B2 is illustrated in
Fig. 5. This is compared with the idealized deflections of the actual three bay model.
Although the central cross section under the indenter is flat, the light ring frames assume
a curved shape as dictated by the deforming stringer beams.

Fig. 5 indicates that the curve of the ring frames extends beyond the longitudinal edge of
the dent zone. At the end of the denting tests, when the lateral load was removed,
residual outward deflections of up to &8/t = 3.7 were measured in this “undamaged”
material. The bulge was localized and typically the deflections became very slightly
inward within an angle of about 3x/20 from the dent edge [7].

COMPRESSIVE STRESSES ADJACENT TO DENT

The damage spreads circumferentially as it deepens and Fig. 2 shows that membrane
tension forces begin to develop in each stringer when the dent edge reaches it. The
tension in the dent pulls in the adjacent ring frames and so longitudinal compressive
stresses are induced in the undamaged material further around the dent. The axial
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rigidity of the undamaged material restrains the inward movement of the rings and thus
allows the membrane tension to develop. When the stringers are attached to sturdy rings
compressive stresses develop from the beginning of the denting process [8] because the
rings pull in relatively uniformly. However the light intermediate rings in the series 3B
models could distort locally and so the development of compressive stresses beyond the
dent was delayed in the inner bay until material immediately adjacent began to deflect
laterally and pull in (Fig. 2(b)).

The .compressive stresses grow parabolically with dent depth [8], in the form
ny=-25a - wp) w

This relationship is drawn in Fig. 2(b) using a best fit value of vy« = 0.95. The ve
values used in Eqn.(1) are always close to unity. For axially stiff supports the amount of
pull-in is small and thus the compressive stresses develop gradually.  Axially flexible
supports cause the tension to develop very slowly and thus little equilibrating compression
is generated. This is achieved by the ends pulling in nonuniformly, with larger movement
near the centre of the dent and little beyond. The insertion of a small e value in
Eqn.(1) would predict the rapid attainment of compressive yield which would not occur in
practice.

In Fig. 2 the growth of compressive stresses is seen to diminish at higher dent depths,
invalidating the parabolic representation. This behaviour was only observed in the longer
dents and is attributed to the development of outward bulging (Fig. 5) which relieves the
longitudinal compressive strain. Bulging was restricted in the short dents by the proximity
of strong rings [8). The compressive stresses introduce the possibility of buckling at the
edges of the dent which will affect the lateral stiffness under damage loading. While a
reduced rate of compression development could delay buckling, the benefits may be
counteracted by the radial deflections and additional surface strains produced by the bulge

.

The. stresses in the undamaged material around the dent may also be presented in a
different form. The tension forces in the dent pull the ends of the shell inward and
causé a reacting stress distribution in the undamaged arc.  These stresses may be
computed very simply if the ends are assumed to remain planar, as shown in Fig. 6.
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Here 5, Aje and I, define the centroid, cross sectional area and second moment of area,
respectively, of the arc of undamaged material [9].

Eqn.(2) is plotted in Fig. 7 for various positions around the circumference of Cylinder
3B2. The readings of longitudinal strain gauges at ¢ = jr and » in the centre bay
compare very well with the predictions. At p = 4+/20, just outside the dent, strain
gauges were placed in both inner and outer bays, with the results plotted in Fig. 7(b).
This is the same position as the ¢ = 2o results in Fig. 2. The inner and outer bays
behave differently [6] because the compression strains are modified by the movement of
the intermediate ring frame, as discussed above. However the average strain over the
three bays is very close to the simple prediction.

An effective strain was also computed at the dent ceatre (p = O0) from the longitudinal
movement of the ends, which was measured with displacement transducers. The measured
pull-in here is larger than predicted (Fig. 7(a)). This indicates some inward flexural and
shear deformation of the end rings in the dent zone, superimposed on the planar
displacement. Extremely rigid supports would be needed to prevent nonlinear pull-in.

Fig. 7 shows, finally, that the rate of pull-in increases at larger dent depths, because both
the total tension force in the dent increases and the arc of resisting material diminishes.
This is the reason why the effective stiffness  at the ends of the dented beam elements
is smaller at higher o values in Fig. 2.

COMPRESSIVE STRENGTH ANALYSIS

The application of simple analytical techniques continued in assessing .the loss of axial
strength caused by the local damage. The large radial deflections of the beam strips in
the dent ensured that they had very little longitudinal stiffness under compressive loading.
The damaged zone was therefore neglected and the undamaged arc of material was
assumed to provide all the stiffness and strength. The asymmetry of the arc meant that
the effective material was stressed nonuniformly, with the maximum stresses found adjacent
to the dent. Collapse was computed to occur when these critical stresses reached the
compressive capacity of the geometry [9].

The intact strengths of the models were determined from tests undertaken by other
researchers [10,11] and by finite element analysis. Results are given in column 4 of Table
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CYL. SLENDERNESS INTACT STRENCTH DAMACED STRENGTH DENT DEPTH
L/R b/t ow/%yC Pan/Npe 8po/t
Model DnV
Imperfect ions Theory Test
3A3 0.33 30 1.0 0.96 0.79 0.86 9.8
1A2 0.42 60 0.96 0.69 0.77 0.76 8.9
3Bl 0.60 42 1.0 0.81 0.90 12.4
3B2 0.60 42 1.0 0.7% 0.79 20.7
3B3 0.60 84 0.79 0.49 0.59 0.57 21.6
3B4 0.60 84 0.79 0.49 0.54 0.53 28.3
1B 1.08 40 1.0 0.67 0.59 26.5
1B2 1.08 80 0.79 0.78 0.55 0.46 26.4

Table 2 Compression test results

2. The Table also compares the damaged strengths predicted using these intact capacities
with the experimentally observed values.  With the exception of Cylinders 1B the
correlation supports the simple analysis.

The numerical analysis of the undamaged shells modelled one stringer beam and was
therefore suitable for geometries failing in a local panel mode. The approach was
developed and validated by Agelidis [10] and the mesh used is shown in Fig. 8. Initial
imperfections sympathetic to the buckling mode were incorporated into the mesh, using the
largest magnitude measured on the undamaged cylinder.

For models failing in a local mode the .predicted strength for a panel contsining the
- maximum imperfection complying with the tolerances of the DnV Buckling Analysis Notes
[12] is also listed in Table 2 (column 5). These imperfection amplitudes were computed
using the approach of Agelidis [10]. Being in the range 0.26 ¢ &1t ¢ 0.84 they were
larger than the imperfections contained in the models.

\'6\ Arrows represent restroned
% dejress of freecom olong
mode’ bouncones

Fig. 8 Finite element mesh of stringer beam (from [10])
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For Cylinders 1A2, 3B3 and 3B4, comparison of columns 4 and 5 in Table 2 indicates a
strong imperfection sensitivity in the assumed mode. The DnV imperfection tolerance
produces a significantly lower strength than the maximum magnitude of imperfection
actually measured in the model. Cylinder 1B2 is also affected by imperfection amplitude:
the predicted strength of a perfect model is op/oyc = 0.96. However the maximum
measured imperfection was only slightly smaller than the tolerance for this geometry and
so the additional strength reduction is slight. The similarity of the two strength values for
Cylinder 3A3 occurs, in contrast, because imperfections are not important for this stocky
model.

A curious observation for Cylinders 1A2, 3B3 and 3B4 is that their strengths when
damaged are larger than the predicted intact capacities when the shells contain the largest
imperfections specified by DnV [12). This is despite the dents being of the order of
thirty times deeper than the recommended tolerances. The edge of the dent has tight
circumferential curvature which stiffens its response under compressive loading.
Additionally the significant outward bulge beyond the dent in the longer models is not
sympathetic with the preferred modes of buckling of the shell. Thus this part of the
cylinder can support high stresses, and considering it to be fully intact in the effective
section analysis gives realistic strength estimates.

Very much smaller imperfections in critical buckling modes may, however, reduce the
strength markedly, as noted above. It appears, in fact, that the small inward deflection
adjacent to the outward bulge next to the dent was very important in the compression
tests of series 1B and 3B. This inward imperfection was compatible with a general
buckling mode in the stringer stiffened bay and grew to form such a buckle during loading
[7). The presence of this secondary imperfection may explain the larger strength
reductions found in the damaged Cylinders 1B, although further studies are necessary to
confirm this.

In Fig. 9 the effective section analysis is compared with two shell tests having similar dent
sizes. The stronger response curve is for Cylinder 3B2, a forty stringer model. This
model was 5% stronger than predicted due its ability to redistribute stress after first yield
occurs adjacent to the dent. The other model is geometrically similar to Cylinder 3B2
but has only twenty stringers. Being more slender the intact shell material collapsed at
lower load and with little possibility of stress redistribution. The residual compressive
strengths of all the damaged shells tested in this Department of Energy/SERC Programme
are plotted in Fig. 10 and compare quite well with the effective section analysis.

CONCLUSIONS

Damage tests on orthogonally stiffened cylindrical shells have furnished useful information
on the consequences of accidental impact. Using the experimental data simple,
approximate analyses have been developed and calibrated. Plastic mechanism techniques
were used to model the lateral loading process, taking account of both bending and
membrane action in the dented material. This enabled a relationship between impact
energy and extent of damage to be quantified. The manner in which different stiffening
geometries affect the energy absorbing capability has been studied [14]. Where high axial
restraint is provided at the ends of the dent, membrane effects dominate and the response
equations are greatly simplified.

The damage weakens the compressive response of the shells because the dent carries very
little axial stress. An analysis has been developed which considers material outside the
dent to be fully effective and thus the residual dent depth is the only parameter required
to estimate the strength loss. This approach gives good agreement with experimental data
for most of the geometries tested. It appears, however, that small radial imperfections
circumferentially remote from the dent, but produced during lateral loading, may have an
additional affect on the compressive response of the most slender shells.

39



1 1
= Cyl. 382
o Cyl. 383
v arip
Z / x .
E( / = =
R %50 * =
g o5 - e, -
et ,: ®e o o
.g >
< o ° )
(- =
° t 3
(-]
° t
0 0002 000z

Central end shortening, A,/L,

Fig. 9 Compression loading response

£
o
c
=
0
©
=]
2 et s Ret.
e & 0045 - 0086 40
a - 20
x 00 8 M3 — ecc/R=0
° - om —-—— 005
o “ o {2 - 010
1
0 0.06 012

Central dent depth, 8,/R

Fig. 10 Residual compressive strength of damaged shells



ACKNOWLEDGEMENTS

The authors wish to thank the Department of Energy and the Science and Engineering
Research Council for their financial support. The finite element analyses discussed in this
paper were undertaken using the program FINAS which was developed by Dr. U. Trueb
and Dr. D.N. Bates.

REFERENCES

1.

10.

11.

12.

13.

14,

ONOUFRIOU A., HARDING J.E. and DOWLING P.J., 'Impact damage on ring
stiffened cylinders'. Stability of Plate and Shell Structures, Proc. Int. Collog.,
Ghent, ed Dubas P. and Vandepitte D., 493 (1987)

WALKER A.C. and McCALL S. ‘Combined loading of damaged cylinders’. Univ.
of Surrey (1986)

JONES N., ‘'Structural aspects of ship collisions'. Structural Crashworthiness, 1st.
Int. Symp., Liverpool, ed. Jones N. and Wierzbicki T., 308 (1983)

DE OLIVEIRA J.G., 'Simple methods of estimating the energy absorption
capability of steel tubular members used in offshore structures’. Report SK/RSO,
Division of Marine Structures, Norwegian Institute of Technology, Trondheim (1979)

JONES N., Written discussion on ‘Tanker structural analysis for minor collisions’.
McDermott J.F. et al, Trans. SNAME, New York, 82, 408 (1974)

RONALDS B.F. and DOWLING P.J., ‘A denting mechanism for orthogonally
stiffened cylinders'. Int. J. Mech. Sci., 29, 743 (1987)

RONALDS B.F. and DOWLING P.J., 'Collision resistance of orthogonally stiffened
shell structures'. Proc. Int. Conf. Steel Structures, Yugoslavia, ed. Hajdin N. et al,
I, 555 (1986) also J. Construct. Steel Research, 9, 179 (1988)

RONALDS B.F. and DOWLING P.J., ‘Finite deformations of stringer stiffened
plates and shells under knife edge loading'. Proc. Sth. Int. OMAE Symp., Tokyo,
ed. Chung J.S. et al, I, 323 (1986)

RONALDS B.F. and DOWLING P.J., 'Residual compressive strength of damaged
orthogonally stiffened cylinders®. Stability of Plate and Shell Structures, Proc. Int.
Colloq., Ghent, ed. Dubas P. and Vandepitte D., 503 (1987)

AGELIDIS N., ‘Collapse of stringer-stiffened cylinders'. Ph.D thesis, Imperial
College, Univ. of London (1984)

FAHY W.G., 'Collapse of longitudinally stiffened cylinders subject to axial and
spressure loading'. Ph.D thesis, Imperial College, Univ. of London (1985)

DET NORSKE VERITAS, ‘Classification notes ~ buckling strength analysis of
mobile offshore units'. Hovik, Norway (1984)

WALKER A.C. and DAVIES P., 'The collapse of stiffened cylinders'. Steel Plated
Structures, ed. Dowling P.J. et al, 791 (1976)

RONALDS B.F. and DOWLING P.J., ‘Stiffening of steel cylindrical shells for
accidental lateral impact'. Proc. Instn. Civ. Engrs., Part 2, 83, 799 (1987)

41



Digitized by GOOS[Q



MAN-INDUCED VIBRATIONS IN STRUCTURES — MEASURES AND PRACTICAL CASES
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Professor of Structural Engineering
Swiss Federal Institute of Technology (ETH) Ziirich, Switzerland

SUMMARY

Man-induced vibrations in structures can lead to serious problems to the extent
to render a structure unserviceable. At the beginning of this paper, the follow-
. ing points, important for the objective of avoiding excessive vibrations, are
considered: major parameters, possible countermeasures, classification of struc-
tures with man-induced vibrations, representative types of motion and dynamic
loads, and frequency tuning. Then, case reports of footbridges, gymnasia and
sports halls, dance halls and concert halls without fixed seating, and concert
halls with fixed seating are presented. In some cases, existing buildings had to
be upgraded. In other cases, where structures were still in the planning stage,
significant modifications to the design were necessary.

1. PRELIMINARIES

Lately, man-induced vibrations in structures have caused serious problems. Only
recently has it become possible to establish guidelines on how to avoid problems
of man-induced vibrations [1,2]. While some theoretical considerations did play a
role, experience and understanding of the phenomena were gained, however, through
practical case studies. Most important were tests. carried out in situ before and
after rehabilitation of a structure.

Before describing such practical cases, attention is drawn to some general char-
acteristics.

1.1 Major parameters

In the case of vibrating structures the following parameters dominate the dynamic
behaviour

- dynamic loads

-~ dynamic system

- dynamic bending stiffness

-~ damping

These four parameters govern the structural response. In existing structures,

response can mostly be measured. For structures in the planning stage, the struc-
tural response can only be estimated and this represents a much more difficult

43



task. Sufficient knowledge of these four major parameters is vital for conceiving
anti-vibration measures.

1.2 Possible measures

Three classes of measures can be distinguished with reference to the foremen-
tioned major parameters:

- Frequency tuning of the structure, based on the loading frequency, i.e. the
spectrum of Fourier amplitudes of the dynamic load. For frequency tuning beside
of the load-time function the dynamic system and the dynamic bending stiffness
are also important, whereas damping is less important.

- Calculating the forced vibration of the structure and comparing the amplitudes
to certain acceptance criteria. For the calculation of a forced vibration, the
load-time function, the dynamic system, the dynamic bending stiffness and
especially the damping are important.

- Taking special measures such as, for instance, general stiffening of the struc-
ture, increasing the damping, installing tuned vibration absorbers, or, in-
stead, restricting the use of the building or facilities.

Depending on circumstances, these measures can differ greatly in potential, their
feasibility and expenditure.

1.3 Classification of structures with man-induced vibrations

Based on the various dynamic loads and the countermeasures applicable, structures
affected by man-induced vibrations can be grouped as follows:

~ pedestrian structures

- office buildings

gymnasia and sports halls

dance halls and concert halls without fixed seating

concert halls with fixed seating

- high-diving platforms in swimming pools

Man-induced vibrations are primarely a problem of serviceability, in terms of
annoying or disturbing the respective users. On pedestrian structures and high-
diving platforms the causative person himself may feel disturbed, whereas in
other buildings only users not directly involved in creating vibrations are af-
fected. In rare cases, a.safety problem may arise, i.e. the stability of the
structure is at risk. A detailed description of serviceability and safety prob-
lems of man-induced vibrations in structures is given in the book [1].

1.4 Representative types of motion and dynamic loads

Knowing the dynamic loads is the basis to the understanding of the vibration
phenomena. This understanding allows measures to be taken to reduce vibrations.
The innumerate variances of rhythmical human body motions constitute a large
variety of possible dynamic loads. Of those, rhythmical motions often performed
to music by several people at the same time synchronising their movements have to
be especially considered. When lasting up to 20 seconds or more, they lead to
almost periodic loads resulting in more or less steady-state structural vibra-
tions. Although the loads differ in their dominant frequencies and their load-
time function, they can be grouped into the following representative types of
motion and the corresponding dynamic loads:

- walking

- running

- Jjumping



- dancing
- clapping

One can say that until recently the understanding of the dynamic loads induced by
man was very limited. Calculations were based on a single harmonic function of
the basic loading frequency (e.g. the pacing rate). Over the last few years,
however, incidences of structural inadequacies shed light on the contribution of
upper harmonics (as part of the Fourier decomposition of the loading function),
which may become critical for the dynamic design of a structure [1,2,3].

1.5 Frequency tuning

The simplest countermeasure, which proved efficient in numerous practical cases,
is frequency tuning of the structure. The structural frequency, mostly the funda-
mental natural frequency, has to be established with regard to the most critical
frequencies of the load-time function. This is quite often not the nominal load-
ing frequency itself, but the frequency of an upper or lower harmonic in the
spectrum of the load-time function.

The following criteria can be used for frequency tuning in the forementioned
structural classes:

~ Pedestrian structures:
Avoidance of the 1st and 2nd harmonic of the dynamic load due to "walking".

- Office buildings:
High-frequency tuning with respect to the 3rd harmonic of the dynamic load due
to "walking".

-~ Gymnasia and sports halls:
H'lgh-frequency tunin w‘lth respect to the 2nd harmonic of the dynamic load due
to "jumping" (see [1])

- Dance halls and concert halls without fixed seating:
High-frequency tuning with respect to the 2nd harmonic of the dynamic load due
to "dancing" (see [1]).

- Concert halls with fixed seating:
High-frequency tuning with respect to the 1st harmonic due to "clapping" [4].
In structures with low damping, the frequency of the 2nd harmonic of the same
load should be considered (avoidance or high tuning).

- High—diving platforms in swimming pools:
Consideration of special frequency and stiffness criteria (see [1]).

On determining the frequency bounds for different structural types, the accurate
stiffness, mass and damping have to be taken into account.

The above mentioned criteria together with a general consideration of the proper-
ties of the different structural types lead to the recommendations for eigenfre-
quencies given in Table 1 (fundamental and higher frequencies). Observing these

- frequency bounds should in most cases result in adequate dynamic performance. In
the following, several practical cases are described. Some cases deal with exist-
ing structures most of which had to be upgraded. The other cases are projects,
the design of which had to be substantially modified. In most cases, the above
frequency criteria became relevant.



of 16 124Hz and 35S 1 4SH
ORice bulidings »78 >80 >85 >90
Gymnasia end sports hes >75 >80 >88 >90
M'a“m'* >88 >70 >78 >80 ‘
Concert halts with fxed >34

Table 1: Recommendations for the eigenfrequencies [Hz]
of structures with man-induced vibrations

2. FOOTBRIDGES
2.1 Footbridge of ~ 2 Hz

A 4 m wide footbridge was planned to cross a canal over a total length of ca.

91 m, divided into three spans of 25.7 m - 40 m - 25.7 m, Figure 1a. The U-shaped
cross-section is made up from a ~ 20 cm thick slab and two 40 cm thick parapet
walls of 1 m inner height, topped by a 30 cm high metal non-loadbearing metal
railing. Above the intermediate supports, the slab is haunched to 40 cm. The gir-
der will be prefabricated in 3.5 m segments and assembled on the site with resin
joints and post-tensioned by means of longitudinal prestressing cables.

Fig.1: Project of a footbridge before and after dynamic calculations

During the design, the dynamic behaviour was calculated, and the fundamental fre-
quency was found to be ~ 2.0 Hz. A forced vibration was calculated, estimating
the damping ratio to 0.5Z of critical, a value which was found in similar struc-
tures. For a mean flow rate of 20 pedestrians per minute an acceleration of ~ 8%
g was obtained (after [1]). As the acceleration in footbridges should not much
exceed 57 g and peak flow rate could well be higher, design modifications were
envisaged to reduce the proneness to vibration.

The following measures were examined:

- increasing the height of the parapet walls
~ making a much heavier railing part of the load-bearing structure
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- further haunching of the slab over the intermediate supports
- changing the ratio of spans.

Heightening the parapets or thickening the slab seemed aesthetically undesirable.
Stiffening of the bridge by the railing was kept as a last resort for post-con-
structional upgrading. Hence the lengths of the spans were altered from 25.7 m -
40 m-25.7m to 28.44 m ~ 34,12 m - 28.44 m, Figure 1b. This raised the cal-
culated fundamental frequency to ~ 2.4 Hz and reduced the acceleration at 20
persons/minute to ~ 4% g. In addition, the structural detailing provided for a
certain encastrement of the girder in the piers.

The bridge is going to be built in the spring of 1988. After completion, dynamic
tests will be carried out and the results compared with the design calculations.

2.2 Footbridge of ~ 4 Hz

When a steel footbridge showed noticeable vertical vibration, its frequency and
amplitude were measured during normal evening peak traffic [1]. The number of
people crossing varied between 30 and 55 per minute. It became obvious that the
bridge vibrated predominantly in its fundamental frequency of about 4 Hz. This
was excited by the second harmonic of the load-time function with a pacing rate
frequency of about 2 Hz.

3. GYMNASIA AND SPORTS HALLS
3.1 Gymnasium of ~ 5.2 Hz

A two-storey gymnasium showed severe vibrations of the intermediate floor caused
through normal gymnastics, especially rhythmical exercises. These vibrations were
disturbing and raised doubts about the safety of the floor. The floor is a ribbed
slab of reinforced in-situ concrete, spanning an area of ca. 15 m x 27 m. The
load is carried across the short span by 0.15 m thick and 0.46 m high ribs spaced
about 0.65 m apart. On one side, along the glazed front of the building, the ribs
are indirectly supported via an edge beam by slender columns, which provides vir-
tually no rotational restraint; on the opposite side, the ribs are fixed rigid in
the concrete walls and adjacent floor slabs.

In order to determine the dynamic behaviour of the floor, drop tests were per-
formed as well as resonance excitation by jumping and running of schoolchildren
from two classes. A total of 34 pupils, aged about 14 years, carried out a stan-
dard test of jumping on the spot synchronized by a metronome with frequencies
between 1.4 and 3.5 Hz. This way, the frequency response curve of Figure 2a was
obtained. The strongest vibration resulted from jumping at 2.58 Hz. The fundamen-
tal frequency of the floor was 5.15 Hz. Thus resonance was excited by the 2nd
harmonic of the load-time function or - figuratively speaking - pupils exerted a
thrust in (shifted) phase with every second downward swing of the floor. However,
Figure 2a shows another resonance with the 3rd harmonic, which time did not per-
mit to explore further. The peak amplitudes obtained were + 50 mm/s velocity and
t 1.65 m/s2 acceleration.

The damping ratio was determined to 3% of critical, which is fairly high for gym-
nasium floors. It was derived from a sudden stand-still of the jumping pupils, so
that the decaying vibration could be monitored. Because the pupils standing on
the vibrating floor provided extra energy dissipation, the damping ratio of the
unloaded floor must be expected to be smaller than the 3% measured.
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Fig. 2: Gymnasium floor; a) resonance curve from jumping
exercises; b) section of the upgraded structure

Serviceability of floors in gymnasia 1imits acceleration to 52 g, at most

10Z g. Since the respective gymnasium is used by adults as well, and may host a
larger number of participants than in the tests, the owner of the facility de-
cided to upgrade the structure. The fundamental frequency of the floor was to be
raised to about 7.5 Hz [1]. Out of six alternatives, two seemed equally cost-ef-—
fective: (a) to demolish the existing floor and to replace it with a prestressed
concrete joist floor, and (b) to install a steel girder grid as supporting struc-
ture underneath the existing floor. It was decided to use option (b) for its
shorter construction time, although it reduces significantly the clear height of
the lower hall. Figure 2b gives a cross-section of the upgraded floor.
Post-rehabilitation tests were carried out again with jumping on the spot, this
time by a group of 51 pupils, aged about 15 years, who were lined up in the rele—
vant central area of the floor at a high density of one person per 2 m2 [1]. The
fundamental frequency of the upgraded floor was measured to ~ 7.47 Hz, the damp-
ing ratio from decay measurements was 3.2%. The fundamental frequency could be
excited to resonance by both the 3rd and 4th harmonic of the load-time function,
i.e. with jumping frequencies of ~ 2.5 Hz and ~ 1.9 Hz. Associated peak accelera-
tions were 0.74 m/s2 and 0.60 m/s2, respectively. Thus they do not exceed the
upper bound of 5 to 10% g. The calculated displacement and acceleration (accord-
ing to [1]) overestimate the experimental results by about 10%.

3.3 Sports hall adjacent to grandstand of ~ 2.4 Hz

The design project of a large two-storey sports hall involved 3 m high and 42 m
spanning prestressed concrete beams [1]. On one side, the columns had also to
support a grandstand (Figure 3a). For a first assessment of the vibrational per-
formance under rhythmic excitation as during fitness classes, dynamic calcula-
tions were applied to a simplified but conservative model structure (Figure 3b)
and yielded a fundamental frequency of ~ 2.4 Hz. The low value was mainly due to
a very adverse contribution of the horizontally swinging grandstand mass. For the
resonance case of the excitation frequency being equal to the structural frequen-
cy, a forced vibration computation (according to [1]) with 1Z damping and a user



density of one person jumping per 4 m2 indicated amplitudes of + 34 mm displace-
ment, + 560 mm/s velecity, and 8.6 m/sz (1) acceleration. The high stress level
was expected to lead to damage or even structural collapse. Therefore, one had to
consider substantial design modifications and strengthening with the goal of
reaching a fundamental frequency of the floor of about 8 Hz.
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Fig. 3: Sports hall connected to grandstand;
a) cross-section, b) simple dynamic model

4. DANCE HALLS AND CONCERT HALLS WITHOUT FIXED SEATING
4.1 Concert hall without fixed seating of ~ 6.2 Hz

A medium-size hall of 32.8 m x 55 m area exhibited strong floor vibration during
pop concerts [1]. These events were attended by up to 4000 people, a part of the
audience was always enthused to activities such as clapping of hands, body rock-
ing or light bouncing up and down to the music. Several hall areas without fixed
seats brought about differences in density of the audience with a particular
grouping (estimated up to a maximum of 6 persons per m2 ) towards the stage when-
ever the musicians were on show. The plan and the sections of the floor structure
in Figure 4 reveal a hollow-block slab of 0.45 m thickness and about 450 kg/m2
mass. The floor is supported by two rows of columns spaced 6.62 m apart, across
which runs in longitudinal direction an internal joist (a cast-in strengthened
steel section DIE 38). The structural action can thus be described as a predomi-
nantly crosswise-spanning continuous plate over three openings of 8.6 m/14 m/-
8.6 m. The floor is bisected by a dilatational joint. Designated originally as an
exhibition hall, the building had merely been designed for static loads, so that
the new problems are to be attributed to the unanticipated utilization for con-
certs.

Measurements were made at several concerts, showing that the vibration intensity
depended more or less on the kine of music influencing the activities of the
audience, and on its beat frequency. For example, soft pop music (Band "Simple
Minds") with a beat frequency a 2.0 Hz + 2.5 Hz and 3500 relatively quiet spec-
tators yielded at a beat frequency of « 2 Hz + 3 Hz a peak vibration amplitude of
+ 4.6 mm vertical displacement and ¢+ 1.66 m/s2 acceleration. During hard rock
music (Band "Status Quo"), however, with a beat frequency of « 2.1 Hz = 3 Hz and
an audiance of about 2000 (of which about one third was quit electrified), the
displacement at a beat frequency of m 2.1 Hz reached ¢ 9.5 mm, the peak velocity
+ 177 mm/s and the maximum acceleration 2.7 m/sz2. :
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Fig. 4: Concert hall with hallow-cast floor structure (from [1])

When excited by a local impulse, the unloaded floor showed a fundamental frequen-
cy of ~ 6.2 Hz. Dynamic loadings on a larger area would probably bring out the
inherent structural action in the crosswise direction of the building and - with
the additional mass of the audience - a fundamental frequency in the range of
double the beat frequency of the music (~ 4.0 Hz + 4.5 Hz). This indicates a
resonance-1ike excitation of the fundamental frequency of the structure, as found
for the gymnasium floor described under 3.1, by the 2nd harmonic of the audi-
ence's bouncing-time function.

The measured vibration magnitudes and concluded stressing of the floor exceeded
the admissible values by far so that the hall had to be closed for pop concerts.
For upgrading, the floor would have to be supported by additional beams in the
cross-direction, or temporary props would have to be fitted and removed before
and after every concert if the use of the lower storey was not to be greatly
restricted. Finally, the discussion became inconsequential as another location
{or1such ;oncerts was found with a much higher floor frequency of about 12 Hz
unloaded).

5. CONCERT HALLS WITH FIXED SEATING
5.1 Concert hall with fixed seating of ~ 2.5 Hz

The floor of a concert hall with approximately 2000 seats span on an area of
about 40 m x 40 m. The floor vibrated considerably whenever the audience clapped
their hands rhythmically (seated or standing up). This phenomenon is quite common
in pop-concerts while clapping in rhythm to the music or demanding encors. It may
also occur in classical concerts when clapping to a piece like the Radetzky March
by Strauss. The floor in question had a measured fundamental frequency of

~ 2.5 Hz (unloaded), Which dropped to ~ 2.4 Hz due to the audience present; this



corresponds to a usual rhythm or clapping frequency. Dynamic loads due to clap-
ping are usually of minor importance [4]. In this case, however, the audience was
able to excite the floor to near-resonance by clapping with the natural frequency
of the structure (1st harmonic of the load = 1st structural frequency).

As no plausible magnitudes for the dynamic load were available, special experi-
ments had to be carried out. Figure 5 shows the load-time function and the
Fourier amplitude spectrum of the dynamic load exerted by a seated person clap-
ping hands. Figure 6 shows the Fourier amplitudes of the different harmonics
created through various ways of rhythmical clapping (after [4]).

8GN # Intensive clapping with
shouldermoving
. 4 st clapping
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Fig. 5: Rhythmical hand clapping (2 Hz) Fig. 6: Amplitudes and harmonics
of a person being seated (from [4]): created through various types
a) Load-time function of dynamic load; of hand clapping (2 Hz) (from [4])

b) Fourier-amplitude spectrum created

6. HIGH-DIVING PLATFORMS

6.1 Diving platform with torsional vibrations

The shaft of a 3 m and a 5 m platform showed intolerably large twisting vibration
soon after completion [1]. The two reinforced-concrete platforms are each sup-
ported by two steel columns with cantilever beams, resulting in an excentric
layout of the facility with the four columns forming the corners of an open rec-
tangular shaft. The columns were braced horizontally only near the foundation.
The design engineer, although he had calculated the fundamental bending frequency
and had found it uncritical, must have overlooked the low torsional rigidity of
his design. Subsequently, two concrete wall members were erected between the
foundation and each platform parallel to the flights of stairs, combining an
architecturally satisfying solution with a much improved dynamic behaviour.

6.2 Diving platforw of ~ 2.8 Hz

A reinforced concrete diving platform has two slabs at 3 m and 5 m elevation,
supported by a Y-shaped shaft (Figure 7). The shaft arms are connected by a tie-
beam at the height of the lower slab. Below the ground the shaft is joined to the
wall of the pool from the foundation base upwards to 1.20 m below surface.
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Figure 7: Diving platform

The lower slab is equipped with a soft spring-board. During normal use, irri-
tating vibrations were felt when diving off the spring- board. Moreover, the en-
tire platform could deliberately be excited by gump'lng on the upper slab or
rhythmical pushing and pulling on its railing ("vandal loading" by youngsters).
Because of the frightening amplitudes thereby obtained, the owner of the facility
became concerned about long-term deterioration of the structure. The Swiss
Federal Laboratory for Testing Materials and Research (EMPA) was called in to
investigate. For an experimental modal analysis, the platform was excited with a
hammer (including a contact-force sensor) and the resulting accelerations were
measured at 50 points in all three orthogonal axes, in groups of 6 points.

By a phase-separation technique, the following basic modes were identified:

- Mode 1 (lateral sway about the x-axis): f1 ~ 2.8 Hz, € = 1.64%.
- Mode 2 (shaft nodding about the y-axis): f2 ~ 4.2 Hz, € = 1,18%.
~ Mode 3 (Torsion of the upper slab about the z-axis): f3 ~ 4.8 Hz, € = 0.88%.

Higher modes at f‘4 =~ 10.8 Hz, f5 ~ 11.8 Hz, f6 =~ 14.6 Hz, etc. show a combination
of these spatial "components.

Additional resohance excitations were performed through test persons. Rhythmical
jumping of a person on the upper slab caused vertical displacements at the slab

center of max. 5.7 nm and accelerations of max. 2.8 m/sz at the rear edge of the
slab. The fundamental frequency decreased by about 5% because larger sway ampli-
tudes decreased the flexural rigidity about the x-axis (opening of cracks). From
single-jump tests with amplitudes of a few mm (especially in mode 1), the damping
ratio was derived to ~ 2% of critical. A high-diver jumping off the spring board
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on the lower slab caused accelerations at the rear end of this slab of max.
4.6 m/s2 lateral (y-direction) and max. 2.6 m/s2 vertical.

The acceptance criteria in [1] require the following lower bounds on shaft vibras-
tions:

-~ slab without springboard: f 2 3.5 Hz
-~ slab with springboard: fa 5.0 Hz

The platform in case does not meet the frequency criteria, although in this par-
ticular case the most critical vibration is not in take-off direction. Stiffening
the structure without gross changes in its appearance will be difficult. No
decision on upgrading has been made to date.

7. CONCLUSIONS

In practical cases frequency tuning of the structure is a useful countermeasure
to curb excessive vibrations. The structural frequency, mostly the fundamental
frequency, has to be established in view of the most critical frequency of the
spectrum of the load-time function. This is quite often not the nominal loading
irequency itself, but the frequency of an upper or lower harmonic of the dynamic
oad.
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SOME PROBLEMS OF TWO-CHORD SYSTEMS
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The problems of two-chord linear systems which have high elastoplastic properties
are considered in this attachment. The analysis is made for the systems which
possess the different sign curve so that the gaus curve of the system in negative.
Fig. 1. shows a structural possibility of such systems which is frequently used

in engineering practice for beam prestressed girders with tendons outside the
cross section.

Fig. 1.

As it is evident from Fig. 1, the system consists of two chords connected by the
web which is supposed to be rigid in vertical direction. The elementar par with
external and internal (forces in the section) that act upon it is presented in the
Fig. 2.

J
€ltx) -gT(t)) +f K(trx) % dv +Eg(¢.T) +dE®) (1
T

The réelation between stress and strain in the form of Volttera - integral equation
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of the second order is assumed for the material which has high elastoplastic
properties.

Flg. 2.

or its resolvent form
t
Bt )= E@[E0)-E5(t) -0t R(T) )-6,0)-L0(T ] T (2)

where K(t;U) - the core and R (t,T) its resolvent with the known relation in
the form,

K¢ v)=r (t;'c)"J:K(t,n) R(%,T)dn (3)

€s(tT) - shrinkage deformation
ol - thermal coefficient
©-(t) - change of temperature with time.



From the equilibrium condition ’6f the differential element of the girder the fol-
lowing is obtained:

d’M, oM
X Z’ ax ! (H1 H?)T!*Hdd'xz "H":d'xz

(3)
+ QT 432+, ()4 P2 x) =0

where,

=YW Y=Y W

It is valid for technical theory taking into consideration the relations (1) or (2),

- N;(X,‘l:) "{(xnt)
W) E®) () J}[ KD Emansy *° )

or
t
M‘(x,t)-E(t)U‘(X.-t)[’&q,(X,&)]- fx‘(x,t) E@)JxT)REx)dT,  (6)
: T
as well as
S M) | dwnt)
: My dlwxr)
Zy(Xe)= Ei@Jy(xx)  dx?

so with the assumption that not much preciseness is lost if the change of the
modulus of deformation E(t) with time and the moment of laziness are neglected
JO,¥)x I (x;T), the equation (4) finally acquires the following form,

d‘“iii""f D urran + (ko) S g0 o

where,

Rﬂkz ’ 2=mf Ri=E,(T)J, and Rp=E,J,

P(x) = “1 "'WR—} "'%1 ax "'gq-a—*ﬂ(")*ﬂ(")

For the case t=T (momentary elastic solution) integral differential equation (7)

Is transmitted into a non-homogenous bi-square total differential equation the
solution of which is relatively easily attained. The function ¥(x) as it is easily
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noticed, is the function of the initiai geometry as well as of the quantity and
distribution of the external forces acting upon the girder.

Integral differential equation (7) with the corresponding boundary conditions
provides the possibility to determine the displacement condition of both of the
systems W(x;t), In the function of parameters H,(t) and Hz2(t) . In order to
finally determine the state of stress and strain it is necessary to use (meet) the
deformations conditions. In this case, the conditlons for calculation of the
"lengths" of the members after the action of the external forces most frequently
called the conditions of "length" are the required conditions.

So, if
L(o'fAL{o-L{
(8)
[ ]
d; 0 .2
L=t [ () ax
[]
2 (]
o O dwi(xt) diwxt
Li={,+-;- J‘[:z +23§‘: dﬁ( )+ d.)E" )] dx
°

3Lio—21

EEF

t
Al = [Hg(t) "’f“dﬂK (‘t,"'r)d.'l:]
A
S 4
for, f 006‘5 dix = 3Lip—2L ., if the angles between the system lines and positive
o
direction of the x-axis are the conditions of length (8) acquire the final form,

3lio-2L ‘/da‘i dW(t.t))dx_i f(d“’(;"‘))%.x-o!”

Emw ) AT z
0

[ Hy @) + j H) K (t,t)d:c]

Integral differential equation (7) and the conditions of length (9) make it possible
to achieve the general solution for the values of stress and strain state with two-
chord systems under any kind of loading.

For engineering practice, however, the soiution of equation (7) and the condition
(9) is a task very difficult to solve. Sufficiently precise solution of the problem
for engineering practice can be attained by the introduction of aigebaric relations
between stress and strain instead of the relation in the form of Voltera's integral
equation of the second order.

Algebraic form of the equations (5) and (6) for this case when the percentage
of reinforcement is small, can acquire the following form:




1 | '
;4 5mEw [ b MiGxt) + (Q4-6,) M;(x,t)] (10)

e

namely .
M) =T OB [ Cr R+ dle) R (an

where a'hst C. d‘t are determined known functions of time and age (when con-
crete or some other material changing its mechanical properties with time is in
question). '

With the equation (11) using the relations (6) the equation (7) becomes

[c,, WD | (- dt)’HF—d‘w(x't)]( D _g6ye0 o

where,
2 H® e Ho(d) | e Hy(t)+Ho&)
K Rare ' " ReR P T T RR,
while

Ri=EJ, , Ro=EJ,

In this case, equation (12) is, for algebralc relations (11), a total non-homogeno
differential equation of the fourth order with quasi-constant coefficients.

The task is solved in two steps. First of all, in the first step, the so cailed
momentary elastic task shouid be solved. That wiil be acquired if, in the equatio
(12)Ce=dL =4 is inserted t=T and differential equation of the form Is firstl
solved

dw(x,t d* ;

% ( -K%) wcxt)-‘P()'G (13)
where

K- H,@ 2 _H @)

T R,+Re R Rq“"?z

The general solution for this case must be searched depending on the values of
e
parameters K.: and Kg . Namely, when:

a) K: > K; the general solution is obtained in the form '
W (6T)=Co S, Krp X +Cpp, OIKX +Cg X +Cg + f U fﬁcx)dx] dx (14



where

2 '“1(1) -He ()
Ke R«+R2

while (x) - particular integral of the differential equation (13)

b) When K2< K7 then

W (se) =Cy fkk..,x +Coy Chox +Cogk+Cug + f [ f P (x)lx ] dx . (15)

When however,
c) K'= K% therefore, when W,(t) = He(x)  (the case of vertical loading only)
then

W (x)

vy -

@(x)=0 (16)

so the unknown function is acquired by direct successive integration of the
known function given in advance ¥(x) .

In all those cases, integration constants are obtained from the conditions along
the deformations and forces in the section at the ends of the member.

When W(%;T) is known, horizontal forces are determined directly from the con-
ditions of the "length" which, in this case, with algebraic relations is

[t au-bomen | 22 -

(e [l
where ° Oy (A @), b‘-(ﬁ‘«&f'tg
Kii =EiA¢

‘Pt - coefficient of creep
X - ageing coefficient
A{ - cross section surface



In case of momentary elastic solution for =T when Q4>b¢=4 the conditions (17)

is acquired in the form
t

o ¢ o —
o5 [ o

(FEdx=0 oo

o
With the solution (14), (15) or (16) and the conditions (18) the task to establish
the state of stress and strain for momentary elastic condition of the two-chord
system is determined with a single sign.

When M,(Tt) , Hgo(T) and W(X,T) is determined, then, as the second step,
it Is possible to determine H;(t) and W(xst) for any moment of time t and any
age of the materlal T .

Equation (12) in this case, is

diwxt) e diw(xt)

Co—gua — + Ke— gz — — P +(Ce-de) ¥ (x,T) =0 (19)
where,
Y(xx)= —%ﬂ

G.and dy Is the determined function of age and of time, and

K.:- H, (£)-Hq () .
R, +R2

It is now possibie to write the general solution in the form for
a) Ki>0
W (t,x) -C:; vk, +C:,,_ CO3K o X +C°;tx +C:t +
J[ f @,‘(’f)dx]dr(crdt) f [h’(ﬁs‘) dx]'ds
b) K*<0
w(t.x)--cftsmtx +Cae Chucyx +C‘,.‘x +C:¢ + f [ j @t(x) dx] dx-

(o) [ [Py o] ax

for the case K.f-o, the function W(‘E,Y) is obtained by the direct integration
of the equation

a
d:x—(:"x)—%(x%(ct-damc) =0 (22)
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Now, when W(tX) is known from the equations (20), (21) and (22), horizontal
forces are determined directly from the condition (17).

- THE CASE OF PRESTRESSED CONCRETE SYSTEMS WITH PRESTRESSING
TENDONS OUTSIDE THE CROSS SECTION

The sketch 1 presents a beam system of the type with which the chord (1) is of

classical reinforced concrete and the chord (2) of prestressed tendons as a case

of prestressed system of reinforced concrete with prestressing tendons with one,

usually upper chord, convex "upwards" made of classical reinforced concrete with
significant bending rigidity while the lower chord (concave "upwards" is of clas-

sical steel or of prestressing steel and Is, as a rule, without bending rigidity.

In this case, determination of stress and strain state, taking into consideration
the general solution given inthe preceding chapter, is significantly simplified and
is recuded to solving the differential equation (12) where, it should be taken in
consideration that

H Ha (£
K:t’—'—-é (:) ) K:l -__22(1) Rq‘E‘Uq
£)-H
R2=0 K.et= ————H‘( )E : 2(-*)

and the conditions (17) with which it should be taken into account that the
system (2) does not possess the property of creep.

In this case, the taks is also solved in two steps. First of all, the state of
stress and strain for t=U is determined (momentary elastic task). With the
determined W'(T,x)and H,(T) and H,;(T) and wi(tx), H,(t,x) and
Hz(t,x)by modified (adaptable) equations (14), (15) or (16) namely (20), (21)
or (22) with the conditions of "length" (17) and (18).

For the case of vertical loading only, when K:--K:-O, the task to determine
the state of stress and strain is reduced determination of W ( x,T) and W(x,t)
and significantly simplified conditions of the "length" (17) and (18) which, in

" this case, are simple algebralc equations.
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THE ESSENTIAL STRUCTURE OF DAMAGE THEORIES
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Brittle deformation processes are characterized by nucleation and growth of
the grain size micro-cracks (evolution of damage) gradually weakening the mesos-
tructure of the solid and leading ultimately to the failure of the specimen.
This short state-of-art review discusses some of the seminal aspects of the
newly emerging damage mechanics dealing with this class of problems. The paper
discusses both mesomechanical and phenomenological theories emphasizing their
accomplishments and shortcomings.

1. INTRODUCTION

Until rather recently the constitutive modeling was based on the premise that a
solid is a continuum with scale independent properties. The state and internal
variables were selected primarily on the basis of macroscopic observations and
had little in common with the underlying physics of the phenomenon. The ensuing
plethora of clever stratagems and cute artifices created just as many problems
as they purportedly solved. Naturally, with an almost limitless supply of ’'ma-
terial’ parameters it was not difficult to fit a particular set of curves with a
desired accuracy.

Yet as most physicist knew for some time the mechanical properties of the
solid entirely depend on its microstructure. The resistance to the reversible
stretching of its crystalline lattice (elastic parameters) are related to the
primary bonds keeping the particles of the solid together. The inelastic
behavior 1is, in contrast, traceable to the defects in the crystalline lattice
and their kinetics during the deformation process. Nauurally, keeping track of
every bond and each defect requires a horrendously large database relegating
such procedures to the realm of statistical physics [1-2].

On the intermediate or meso-scale the bookkeeping becomes much simpler but

still prohibitive in the case of nonuniform macro-fields. Each crystal is con-
sidered a continuum (with a defined structure), while the atomic defects such



as dislocations and ruptured bonds are lumped into slip systems and microcracks.
Despite some spectacular accomplishments [3-6] the engineering community
remained if not ignorant than at least unimpressed by these efforts.

With a strongly developed predilection of engineers for the continua and an
equally strong suspicion of arcane theories dealing with objects not visible to
the naked eye, it appears that the phenomenological single scale theories are
here to stay. And, indeed, therein is the crux of the dilemma. A typical phe-
nomenological model combines the computational expedience (inherent to manipula-
tions with gradually changing continuous fields) and the often bewildering
uncertainties related to arbitrary choices of -the internal variables and flow
rules,

A rational approach adhering to the physics of the phenomenon and retaining
tractability must by necessity span at least two scales. The distinction
between the two scales and the micro- and macro-defect is by no means fortui-
tous. On the micro- scale an otherwise macro-homogeneous solid is all but homo-
geneous with randomly distributed material properties. Consequently, a grain
size microcrack can propagate only along the cleavage plane even though the
stresses in some other planes might be higher. A macro-defect, however, ’sees’
the surrounding material as homogeneous and grows according to the dictates of
the stress field.

The primary objective of this paper is to discuss some of the basic issues of
the mechanical response of brittle sclids on both phenomenological and
micromechanical grounds. The confines of time and space dictate the reduction
of the scope to the isothermal and time-independent brittle processes and infin-
itesimal strains.

2. THERMODYNAMIC PRELIMINARIES
The infinitesimal macro-strain fields admit additive decomposition

a-§:g+£p (1)

~

where ¢ = sP when o = 0 is the plastic strain. In (1) S(x) is the compliance
tensor reflecting the crystalline lattice of the solid and the already accumu-
lated defects in the neighborhood of the material point x. Since a point does
not have a structure the preceding sentence invokes the notion of the represen-
tative volume element (RVE) (or unit cell in sense of Hill) which in a statisti-
cal sense defines the smallest volume of the solid which in respect to a given
variable behaves as the continuum itself. In other words, the disparity between
the statistical momenta of a given variable taken over the RVE and any larger
volume centered in x are within a prescribed margin of error.

From the present point of view it is then possible to define a configura-
tional space containing all relevant informations (database) about the defects
in the RVE which define the state in x. This configurational space will be
referred to as the recorded history H(x). The flux dH(o,H) in a physically
acceptable manner will define the irreversible (energy consuming) rearrangements
of the crystalline lattice. Disregarding the diffusional growth of spherical
vacancies, phase transformations, and some other less frequent mechanisas of
structural changes the present paper will briefly emphasize the major differ-
ences between the slips and microcracks (i.e. ductile and brittle response).
After that the discussion will be limited exclusively to the brittle response.




The process of slip is often depicted by stating that during such a process
material slips through the crystalline lattice [4] which remains unperturbed and
undistorted. In other words, as a mobile dislocation glides along an operative
slip system for every primary bond ruptured ahead of the dislocation another is
reinstated in its wake. Hence the number of primary bonds remains virtually
unchanged during a plastic deformation. Since the elastic properties depend on
the primary bonds they are not affected by ductile processes (excluding
geometric instabilities associated with large strains). Since the lattice is
not distorted the plastic (residual) strains will not be removed during the
removal of stresses (unloading).

In contrast, the microcracking is in essence a process of creation of new
internal surfaces, i.e. rupture of primary bonds. Not surprisingly, the micro-
cracking strongly affects the elastic parameters (i.e. the compliance of the
s0lid). The elastic energy stored in the distorted lattice (to accommodate a
crack) tends to eliminate the inelastic stresses (associated with the crack
opening) in unloading. The residual strains in brittle processes are not the
result of ductility (slips) but friction, grain interlock and bridging over the
uneven crack surfaces.

Consistent with the physics of the deformation processes reasonable choices
for the internal variables defining the ductile and brittle deformation pro-
cesses are:

- path traversed by an individual dislocation and the number of
ruptured bonds on the micro-scale,

- shears on the operative slip bands and active microcracks on
the meso-scale, and

- appropriate scalar (work-hardening) or tensorial (strain-
hardening) functions of the plastic strain and the compliance
on the macro-scale.

In all cases the selected internal variables can be readily measured and
identified in experiments satisfying one of the most important requirements for
their selection [7]. They can also be related to each other by an averaging or
homogenization process starting from the mioro- to the macro-scale.

For a path-dependent process the expression (1) should be rewritten in its
incremental form .

ds =8 : dg + al3 : o + dsP (2)
where as in [8]

al3(g, ) = S(g,H + dB) - S(o,H) (3)
represents the change in compliance attributable to the evolution of damage. In
keeping with the objective the plastic strain will be neglected in the sequel.

Introduce the Gibbs energy of the RVE with volume V as

¥(o,H) = Vo : & - (s, B) (4)



where ¢ is the Helmholtz free energy of the RVE., Consequently,

1 ay
!' | — —
c (&)
Also, from (2) and (5)
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where as in (3) the superscript ‘i’ denotes inelastic changes in a process dur-
ing which H changes into H + dH,

As a consequence of the second law of thermodynamics [8]

Y
aly =55 20
H (8)

The utility of the stress-strain relation (2) is contingent on the availabil-
ity of the expression for the inelastic change in the Gibbs energy of the RVE
containing a crack. To explore the possibility of accomplishing this task con—
sider a single crack, circumscribed by a closed contour L, embedded into vol-
ume V of elastic material. Consider a process during which the surface area
is increased through rupture of the bonds at the crack tip. The change in the
Gibbs energy [8,9] consists of two parts

N o
Y = 0—-27 SajdL 2 0
L & )

where W(o,H) is the elastic energy associated with the distortion of the elastic
lattice accommodating the crack and y the surface energy. Also 8a is the
advance of the crack tip in the direction normal to L.
The first term under the integral in (9) can be computed as in [8,9]
Aa

w 1 1

'a—a' - A'P-»'o ; 'z- 4' Tiluildr (10)
The tractions T at the distance r ahead of the original crack tip are

-1/2
Ti = ‘1 r + eee (11)

where K are the stress intensity factors (SIF). Similarly the crack opening
displacements (COD) behind the crack tip are



[“1] L cinJ(M - ?)-1/2 + .00 (12)

Thus, from expressions (10) to (12) it follows that

aly -=f [(G - 2y)8a)l dL 2 0 (13)
L

where
n (14)

is the energy release rate. Thermodynamically, G and 2y are the driving and
resisting thermodynamic forces conjugate to the flux 8a (increase in the crack
size).

From (7), (12) and (14) the inelastic change in the compliance (which can be
selected as the internal variable [10]) is

K 3Kq
dis - [ [C —2 6!] dL (15)
1jmn

An entirely equivalent formulation is possible via the Eshelby inclusion
method [11,12] identifying the CODs with the eigenstrains [5]. The identity can
be verified using the expressions for the SIFs and CODs from [13].

The inequality (9) assuming it to be valid pointwise can be written for the
case when the healing is excluded (8a > 0) in the form of Griffith’s inequality

F(g.ﬂ) =G-2r20 (16)

such that
8a =0 when F<CO (17)

In the case of many oracks in RVE the conditions (15) written for individual
cracks form a polyhedral hypersurface enveloping the loci of all points in the
stress space reachable without energy

3. ANALYTICAL MODEL
3.1 Mesomechanical Models

As demonstrated above the stress-strain relationship (2) for a volume V of
brittle solid containing a single crack (and mapping on a point x of the con-
tinuum) can be written providing that it is possible to derive the expressions
for C and K in (14), and that a kinetic equation &a = 8a(o¢,H) 1is avail-
able. In reality the problem is further complicated by the presence of many
cracks of different sizes and orientations in V. The determination of the



external fields of N cracks embedded in V entails solution of N coupled inte-
gral equations [6]. Since N is by definition large and crack fields random
the problem does not admit an analytical solution.

The prohibitive computational effort associated with the more rigorous models
motivated formulation of the effective field theories. Assuming (6] that: (a)
the external fields of a particular defect weakly depend on the exact position
of the adjacent defects in V, and that (b) the external stress field of each
defect is equal to the macro-stress, the problem becomes solvable via a formal-—
ism known as the self-consistent model. The assumption (b) eliminates the need
for the integral equations. The assumption (a) reduces the number of random
variables by 3N and eliminates from considerations the direct interaction of the
neighboring defects. Consequently, the method becomes suspect for higher defect
concentrations characteristic of incipient localization. Within the framework
of these models the compliance of the RVE is obtained summing the ocontributions
of all cracks over all sizes and orientations. For a large number of cracks N
the sums are recast into integrals over the probability density functions for
the radii and orientations of active cracks [11,12].

The principal advantage of the micromechanical methods based on the effective
continua [11,12,15], etc. is a direct consequence of their adherence to the
physics of the phenomena. The kinetic laws are derived (rather than a priori
postulated) from the distribution of toughnesses in the meso-structure allowing
unambiguous identification of the material parameters. Nevertheless, despite
considerable success in replicating the experimentally determined trends the
referenced literature also identifies the limitations of these methods. Most of
those limitations stem from the paucity of the analytical solutions for the SIFs
embedded in anisotropic solids, branched or kinked cracks, etc. In fact, with
possible but rare exceptions the mesomechanical solutions are limited to the
uniform macro-fields and loading cases resulting in isotropic and transversely
isotropic crack distributions.

3.2 Fhenomenvlogical Models.

The above mentioned limitations of the mesomechanical models present a strong
stimulus to the development of phenomenological theories. An entire class of
models have been formulated (see Lemaitre or Murakami in [11], or [16]) follow-
ing this simple recipe: select a priori a suitable damage variable, define an
objective form of the Helmholtz free energy, select (somewhat arbitrarily) a
damage law (either in form of a damage potential or a set of evolution equa-
tions) and use a sufficient number of parameters to fit a given set of experi-
mental curves. While computationally efficient these methods are by their very
nature restricted in application to the cases for which they are fitted.

Rather recently Ortiz [10] proposed an interesting model. Integrating twice
the expression (6)

[

¥gH =2 o:8(H) :g- o : (18)

where Y° (H) is the energy dissipated in creation of new (crack) surfaces in V.
From the second law of thermodynamics (8)

1
D=>g:dly:g-at20 (19
Provided that a flow rule such as (10,17]
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als = ur(e) (20
can be specified the flow potential can be derived directly from (19). Denoting

Blg) =3 g :R@:g aly® = fr(w (21)
the flow potential is from (19)

F(g,u) = B(o) - f(1) 20 ) (22)

since excluding healing u > O. The identity of (16) and (22) for a single
crack, when B =G, p = a and f(p) = 2y , is evident. As in plasticity it is
now possible to write from (19)

ny>o iff F=0 and (3F/3c) : 6 2 0
. - " (23)
u=0 otherwise

which provides th'e distinction between loading and unloading.

The unilateral constraints imposed by cracks on the displacement fields are,
perhaps, the primary impediment in the formulation of a reasonably simple but
rational phenomenological damage theory. The single most distinguishing aspect
of the damage process is the dependence of the COD and crack growth mode on the
sign of the normal stresses to which it is exposed. Since the flux, the change
in compliance (15), depends on the mode of the crack growth it appears reason—
able to modify the algorithm in [10] in a manner conforming to the physics of
the phenomenon. This task would require the establishment of the deformation
maps (not unlike those in [18]) defining regions in the stress space in which a
particular crack growth mode governs.

As an illustration consider a case when one of the three principal stresses
is negative and held constant. If the other two principal stresses are tensile
and approximately equal the existing cracks will grow in a self-similar manner
remaining planar. If one of the stresses is much smaller a crack will exhibit
directional instability [19] and kink into the direction minimizing the shear
stresses on the kinked part. The kinking becomes much more pronounced when the
larger of two stresses is compressive. Finally, when all three principal
stresses are compressive the deformation becomes ductile. The brittle-ductile
transition depends on the size of the pupative crack and the yileld stress and
critical SIF of the material (i.e. the ductility ratio [20]).

Consequently, the two types of the damage evolution are never coincidental
in a given point as suggested in [10]. Instead it is an either-or proposition
since a crack either kinks or grows in its own plane depending on the state of
stress.

In the case when the kinking is either absent or can be neglected the inelas-
tic compliance rates can be written as [11,21]

disfjm«- ﬁc ngngnpn, (24)

n



II . 2C
qisijm =p reT “:lnnj“- + 5jm“1°n - 2n1ndn.nn) (25)

vhere the two components of the dis are associated with the normal (tensile) and
shear stresses in the plane of the crack. For the N non-interacting peany-
shaped crack of the same radius a

2
1-v
C=8 E (26)
while 3
M -"% (21

is the crack density parameter suggested first in [22].

The derivation is somewhat more complicated in the case of the kinking
oracks. However, using the modified first order solution of Cotterell and Rice
[23] the SIFs K of the kinked crack can be determined with a surprising degree
of accuracy from the stresses extermal to the pupative (straight) crack. Thus,
it is always, at least in principle, possible to write

where k are the SIFs of the pupative crack. The coefficients M are readily
available when the length of the kink is much smaller than the radius of the
pupative crack £ < a. If £ >> a the derivation of the coefficients M involves
the determination of the stresses external to the pupative crack along the path
of the prospective kink and a numerical quadrature of a definite integral. A
simpler deduction of the SIFs K, using approximate expressions (such as one in
[20]) may ultimately be a much more appealing alternative.

The proposed strategy is sketched here using a broad brush. A number of out-
standing problems remains open. Among them is the formulation of the flow
potential in the case when the orack kinking dominates (compression). The pres-
ence of friotion will preclude from consideration the normality structure of the
kinetic processes [23] and introduce a number of problems in modeling the
unloading phase of the process.

Finally, it must be pointed out that the kinetic equations must be oonsistent
with the mode of the ultimate failure. In the presence of substantial tensile
stresses the macrofailure is typically a result of the runaway instability of a
single, critical orack. In contrast, when oonfined and exposed to compressive
stresses an otherwise brittle material fails in the localization mode [20] dur-
ing which the microcrack density in a narrow band becomes so large that the
direct interaction between cracks cannot be neglected.

4. CONCLUSIORS

This short and unpretentious state-of-art review obviously presents the per—
sonal opinion of the author. The somewhat unsettled state of affairs of this
relatively new branch of mechanics makes this enterprise a risky one. A variety
of different and often contradictory concepts and models have yet to be recon-
ciled ith each other and sorted into a theory with a well defined structure.
Succinotly stated, the damage mechanics is, as expected, still in the state of
flux. However, a lot has been done in the last decade and pieces of the mosaic
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are emerging in the literature at an increasing rate. In particular, the devel-
opment of the mesomechanical models is presently at a stage allowing a careful
look at the phenomenological models. And that is, in the opinion of the author,
the most important part of the development of the damage mechanics.
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APPLICATIONS DE CONNAISSANCES RECENTES DANS LA CONCEPTION D'OUVRAGES
EN BETON

Renaud FAVRE

Professeur & 1'Ecole Polytechnique Fédérale de Lausanne
EPFL/IBAP, 1015 Lausanne (Suisse)

RESUME

Cette contribution tente de montrer quelques répercussions concrétes
que peuvent avoir des résultats de recherches théoriques et
expérimentales sur la conception d'ouvrages en béton armé ou
précontraint. Dans le cas d'élargissement ou de renforcement de
ponts avec du nouveau béton, on montre la part importante d'une
force de précontrainte qui se diffuse du nouveau dans 1l'ancien
béton, malgré la disposition d'une bréche. Cette diffusion peut en
particulier créer des problémes de couture.

D'autre part, un exemple de piles encastrées malgré la complexité de
l'ouvrage est présenté, permettant une conception simplifiée en
évitant entre autres des palées obliques inesthétiques ou des
mesures contre le soulévement des appuis.
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1. INTRODUCTION

Afin d'étre compétitif, l'ingénieur doit continuellement s'adapter
aux progreés des connaissances dans son domaine. En ce qui concerne
les ouvrages en béton armé ou précontraint, la recherche a fait
d'énormes progrés depuis une dizaine d'années pour mieux saisir 1le
comportement réel des structures et mieux discerner les éléments et
critéres essentiels qui interviennent dans la conception d'un
ouvrage de bonne qualité, durable, sOr et néanmoins économique.

C'est ainsi qu'une meilleure connaissance sur la réalisation de
bétons & haute performance permet de réduire la fissuration et la
déformation des structures. Elle permet grdce a des bétons plus
fluides et contenant moins d'eau, de réaliser un enrobage de
l'armature plus compact, plus dense, plus imperméable ce qui
favorise grandement la protection anticorrosive du béton. Les
connaissances accrues concernant le rd8le primordial de 1l'état
permanent sur l'aptitude au service et la durabilité ont permis de
concevoir des ouvrages qui travaillent dans les meilleures
conditions possibles sous l'effet des charges permanentes en tenant
compte des effets différés. Les charges mobiles, rarement &
l'origine d'ennuis, peuvent é&tre traitées de facon beaucoup plus
permissives en ce qui concerne l'aptitude au service.

En Suisse, on tache de tirer profit des enseignements de 1la
recherche en portant un soin particulier & la conception des
ouvrages, aux détails constructifs, a la qualité du béton, & son
enrobage et a sa ductilité. C'est ainsi que la nouvelle norme SIA
162 prévoit une armature minimale, graduée en fonction des
différents cas, mais ‘devant toujours assurer une ductilité
suffisante et limiter 1l'ouverture des fissures [1]. Elle prévoit
également, pour des structures exposées aux intempéries ou agents
agressifs (béton apparents, ponts, tunnels) de 1limiter les
contraintes dans l'acier sous l'effet des charges quasi-permanentes.

Une conséquence de la ductilité élevée du béton armé est la
possibilité d'espacer ou méme de supprimer les joints de dilatation.
Elle permet également d'accepter des déformations imposées
importantes dans les structures (variations de température, retrait,
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tassements) sans compromettre leur qualité A l'état de service ni
leur résistance a 1'état de ruine. ’

2. ELARGISSEMENT OU RENFORCEMENT DE PONTS

Toute une série de ponts d'autoroute construits en Suisse entre 1960
et 1970 ne comportent pas de voies d'arrét et doivent &tre élargis
afin de créer le méme profil que sur le tracé en terre plein et afin
de faciliter l'entretien. C'est ainsi p.ex. que la plupart des ponts
d'autoroute entre Genéve et Lausanne sont en train d'étre élargis
(Fig. 1).

27700m
S x 3700

lr‘ﬁ.ﬂ
|

34.00 1500
a) COUPE LONGITUDINALE
b) COUPE TRANSVERSALE

sur pile en travée

L 360 9.18 164, 918 360
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]
/élargissement

~2300 '
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Fig. 1 Pont sur 1l'Aubonne de 1962
a) coupe longitudinale
b) coupe en travers avec l'élargissement projeté
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D'autres ouvrages, en particulier des ponts biais en béton armé sans
précontrainte, doivent &tre renforcés pour endiguer 1l'évolution
continuelle des fléches. A titre d'exemple, nous montrons a 1la
Fig. 2 le pont trés biais de Bibersee prés de Cham, canton de Zoug
[2]). Ce pont, construit en 1969, accusait des fléches de prés de 300
mm qui continuaient a augmenter année aprés année. C'est pourquoi il
a do 8tre renforcé par des poutres précontraintes.

| 80.08 m

.l
)

VUE EN PLAN
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-\ ——y B
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Fig. 2 Pont biais de Cham
a) vue en plan
b) coupe en travers
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Le probléme qui se pose lorsque du béton jeune est ajouté & un béton
ancien provient des effets différés de ce jeune béton. Pour limiter
ces effets, on tdche de laisser une bréche provisoire, si possible
pendant quelques semaines, entre l'ancien et le nouveau béton.
Ainsi, lors de la mise en précontrainte de ce dernier, il pourra se
raccourcir librement et commencer & subir les effets du fluage et du
retrait sans é&tre entravé par l'ancien béton. Néanmoins, dés la
suppression de cette bréche, le raccourcissement résiduel du béton
jeune va étre entravé par le béton ancien. Cette entrave, en vertu
du principe de St-Venant, va avoir lieu sur une petite longueur du
joint entre ancien et nouveau béton. Cette petite longueur est de
l'ordre de 1 & 1,5 fois la largeur de l'élargissement b (Fig. 3).

ancien
béton

nouveau
béton

Fig. 3 Vue en plan de la diffusion de la précontrainte P

Etudions quelle est l'importance de AP, donc de la partie de
l'effort normal dd & la précontrainte P qui va quitter le béton
jeune et pénétrer dans l'ancien béton [3, 4, 5]. Admettons que le
probléme soit symétrique (Fig. 4).

ancien béton: A_, /2

——= |  nouveau béton: A, —

ancien béton: A_,/2

Fig. 4 Modéle de calcul (vue en plan)
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L'équation de compatibilité de déformation au temps t. s'ecrit :

P Ap AP
e A 'Eqn 1+ x-49) Aci°Ecy | Ac2'Eez

(1 +0.4) (1)

S'il n'y a pas de bréche, l'équation (1) devient

P 1+ Ae Ae
Ac1°Ecy { e Ac1°Ecy Ac2'Ec2

1+ (1 +0.4) (2)

Mais revenons au cas plus favorable (1) ol nous voulons montrer que
AP est néanmoins trés important. AQ représente le coefficient de

fluage qui reste aprés 1la 1liaison, X 1le coefficient. de

vieillissement. 0.4 représente la partie différée de la déformation
élastique du vieux béton. )

Admettons A, = 2.7 A.; et Ec2 = 1.1 E¢; ¢

AP - (1 + X-AQ)AP = 0.47-AP

Ag
' AP = - P
d*on 1.47 + x-A9 )

Exemples numériques :

Ap =1.0 , x=0.8 — AP =20.44P
Ap = 1.5 , X =08 — AP = 0.56P
Ap=2.0 , x=0.8 — AP = 0.65P

On constate donc, que méme si on attend longtemps avant de lier le
nouveau béton & l'ancien et que ¢ = 1, il y aura avec le temps

néanmoins une part trés importante de P qui va quitter le nouveau
béton (AP 2 0.44 P) et créer des problémes de couture sur la

longueur 1 & 1,5 b de la liaison (voir Fig. 3). Il faudra donc créer

une liaison appropriée transversalement au joint de bétonnage, qui
soit capable de reprendre l'effort rasant AP ,ce qui n'est pas aisé,

du moins dans l'ancien béton.
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3. EXEMPLE D'UN PONT BIAIS ET COURBE A PILES ENCASTREES

L'autoroute de contournement de Genéve actuellement en construction
nécessite la création d'un grand échangeur a St-Julien. Une route
cantonale importante y franchira l'autoroute sur deux grands ponts
contigus biais et courbes. Le début des travaux est programmé pour
1'automne 1988 (Fig. 5).

Notons que les points hauts des cébles de précontrainte sont situés
au droit des piles pour chacune des &mes. De plus, la précontrainte
balance entiérement les charges permanentes.

Gréce aux travaux de thése [6, 7, 8] dont celui de D. Najdanovic de
1'Université de Belgrade, il a été possible de concevoir ce pont en
simplifiant grandement les problémes d'appui. En effet, des piles
encastrées dans les fondations et la superstructure assurent la
stabilité de l'ensemble, encastrant le caisson & la torsion; ces
piles reprennent les efforts longitudinaux et transversaux tout en
étant capable de supporter le raccourcissement du tablier par suite
du retrait, du fluage et d'une baisse de température. La grande
ductilité de ces piliers, grédce en particulier a un frettage
adéquat, a la relaxation du béton et la prise en compte du
éomportement réel permettent d'assurer une aptitude au service et
une sécurité a la ruine satisfaisantes. Il s'agit 1la d'un exemple
d'application concret de colonnes sollicitées, outre l'effort normal,
N, par des déformations imposées dues surtout au raccourcissement du
tablier et par certains moments M dus a des actions directes (forces
de freinage, de frottement des appuis sur culées et du vent), pour
lesquels la capacité portante doit étre vérifiée. Les applications
aux batiments, ou il y a un noyau stabilisateur, sont déja
fréquentes en Suisse. Dans ce cas, aucun moment dd aux actions
directes n'est a reprendre et le probléme en est simplifié. Jusqu'a
des angles imposés aux extrémités des colonnes de 1 a 2 %, la
capacité portante vis-a-vis de l'effort normal N n'est pratiquement
pas affectée. I1 y a en effet un recentrage de N dans la colonne,
gridce a la formation de rotules plastiques, pour autant que 1la
ductilité soit assurée par un frettage adéquat.
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Quant & l'aptitude au service, il s'agit d'éviter une fissuration
des colonnes et un éclatement du béton d'enrobage. Dans le batiment,
on adoptera en Suisse comme critéres, des limitations pour les
déformations relatives de l'acier a4 e, = 1.5 %. (acier tendu) et
- 2.3 % (acier comprimé). Pour le pont de la Fig. 5, on a adopté des
critéres plus sévéres afin de tenir compte de 1l'exposition aux
intempéries, & savoir 1.0 % resp. - 1.5 %..

4. CONCLUSIONS

Il nous parait indispensable de faire bénéficier la conception d’'un
ouvrage des enseignements récents de la recherche. Il ne s'agit pas
du tout de vouloir rendre les ouvrages meilleurs marché au détriment
de la qualité, mais bien au contraire d'introduire dans la pratique
des notions et des outils qui permettent une amélioration du
comportement (p.ex. suppression de joints, d'appareils d'appuis,
amélioration de la sécurité au renversement, renforcement efficace
par précontrainte additionnelle etc.). Ce qui est également
essentiel, c'est que les normes et réglements en vigueur autorisent
l'application de ces connaissances récentes et que les ingénieurs
apprennent & les maitriser.
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FEM SOLUTION OF THE COUPLED PLANE PROBLEM OF THERMOELASTICITY
Natalija Naerlovié-Veljkovi¢ and Dragoslav Sumarac

Department of Applied Mechanics and Structural Analysis,
Faculty of Civil Engineering, University of Belgrade

SUMMARY

A computer program (TRE) was writtenfor the linear coupled thermoelastic
theory of plane or axisymmetric problems, using Finite Element Method (FEM)
formulation. The programme is checked comparing obtained results with the existing
solutions of thermoelastic problem for the half-space subjected to the temperature
increment at its boundary.

1. INTRODUCTION

New development in the field of technology and application of new classes
of materials, reguires also a development of more rigorous theories of materials
behaviour. Regarding the behaviour of materials under elevated temperature, up to
1952 |1]| and further 1960 |2|, coupled thermoelasticity theory was subject of
research of a sequence of authors |3|. Explicit form of the second order
thermoelasticity field equations may be found in |4] (1971). General thermoelastic
theory is also incorporated in |5| (1976). In spite of the development of the
nonlinear theory, classical form of thermoelastic field equations |1], |2| remained
the basis of solving particular problems |6], |7|. The present paper yields a
numerical solution of the linear coupled thermoelasticity field equations |2],
using the Finite Element Method (FEM). The computer programme TRE (TheRmoElasticity)
is written to solve plane and axisymmetric problems of coupled theory formulated
by equations (1) and (2) for arbitrary boundary and initial conditions. As it is
evident,equation (2) exhibits nonlinearity in the second term on the left-hand side
?: ?he eqtﬁtilon. The programme is tested on the three well known examples |8],

0| and |11].

2. FIELD EQUATIONS

Coupled thermoelastic theory as formulated by Chadwick |2|, is expressed
by the following set of field equations:

CiprsUr.ps = Bip 8,5 * PFy = ol M

pch + T + ph (2)

pq Yp.qa = Xpq ®.pq
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Performing strict linearization, the actual temperature T in eq. (2) may
be substituted by the value T_, corresponding to the reference state |2|. In the
equations (1) and (2) usual nBtation are used: u; - component of the displacement
vector, T - absolute temperature at the current Iime, T. - uniform temperature at
the reference state, 6 = T - T_ temperature increment r@lated to the reference
state. The description of the Broblem in particular cases is completed by the
boundary and initial conditions.

2.1. Half-space subjected to external temperature increment
on its boundary

One among classical problems of thermoelasticity is that of half-space
being suddenly subjected to uniform temperature increment at its boundary. The
solution of the problem includes the determination of temperature, displacement
and stress fields at an arbitrary time t. The problem was first solved by
Danilovskaya in 1952 |8|, |9], but without coupling term in the equation (2)
(first Danilovskaya problem). Later on, Sternberg and Chakravorty |10| considered
a similar problem examining the influence of the duration of the temperature
excitation at the boundary of the half-space; on the ground of uncoupled theory.
Further on, authors such as Hetnarsky |11|, Boley and Tolins |12], Nickell and
Sackman |13| were analysing the Danilovskaya problem within the framework of the
linear coupled thermoelastic theory (second Danilovskaya problem).

The governing thermoelastic field equations for the halfspace y < 0 (Fig. 1)
reduce to two equations in terms of displacement u,6 = u (y,t) and T = T(y,t).
Using dimensionless variables these field equation¥ mayybe expressed in the form:

2 2

a%v _ 3% , 3q
=zt (3)
an 9T an

2 2

39.39,453V _ (4)
an 9T andTt

zazazl;azz?
x
Fig. 1 Half-space

Following notation were used:
2 (] T-T

n=f; =8t o=§¥; i a-= T°°=:°r—

4]
MtV S Y1
KBT, v [

K+h 2 82T

: = M = : = = o
g = G(3A+2].l) H h Kk ¢} [ G(T)m N 60 G(TO) m
with oy being the normal stress, A, u - Lame’s coefficients, k - thermal
conductivity, ht - boundary-layer conductance, and c - specific heat.
The initial conditions for the equations (3), (4) are:
v(n,0) = 3% (n,0) = 0 (5)

q(n,0) = 0 (6)




On the free surface the following boundary conditions for mechanical and
thermal variables take place:

o(0,t) = 0 (7)

q(0,7) = 1 (8a)
= 0<ten,

q(0,t) = ¢ ° (8b)
1 T>T,

The exact solutions of the uncoupled dynamical theory, |8| and [10| for
boundary conditions (8a) and (8b) respectively, will be compared with the numerical
solution obtained here using FEM. Numerical solution for the coupled theory,
obtained for the boundary conditions (8a) by programme TRE, will be compared with
the solution |11].

i
'
H 3
Y >

Te T
Fig. 2 Boundary condition for the Sternberg-Chakravorty problem

3. FINITE ELEMENT SOLUTION OF THE PROBLEM

The differential equations of the coupled problem of Thermoelasticity are
cast in the form of the FEM equations. The basic FEM equations are:

v=R (9)
79 (10)

~

x

+

+

b3 I B 4

= <
[ = K]

where the introduced matrices and vectors are:

M=7( I NTp N dv) - global mass matrix
~TEN PR

e
K=J ([BTDBdV) - global stiffness matrix
=TS SR

e
P=17( I Tk B dvV + I NT hy N dS) - global conductivity matrix (11)
T e V.Y " s/ - -

e e
c=7 ( I NT c Npdv) - global heat capacity matrix
~TEN) SR

e .

T - global node force

R=Z(IN pds+JT IT 9
T e Ve - Ve Npfavs ve B 9% av) vector
Q=Z(JNqus+ INToth+ INTuicthdV+ N7 by ds)
T oe Sq - - Ve - - Ve h S{ ~

- effective heat flow vector (12)
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Additional notation includes: N, - shape function vector, f - body force vector,
h - internal heat generation, l0 - rate of the first invariant of the stress
tensor.

The programme TRE has been based on the equations (9) and (10) (including
the possibility of strict linearization of the heat conductivity equation). In the
programme plane and axisymmetric elements with four to eight nodes were
incorporated. The number of Gauss points for the numerical integration with
respect to space variable can be also varied between four and sixteen.

Integration of the differential equations (9) and (10) with respect to time
is performed by Wilson - 6 method, in the case of equation of motion, and “step by
step” method for the temperature field equation. Both methods are numerically
stable. Equations (9) and (10) are coupled and simul taneous. Therefore, the
solution procedure for any time interval has to be iterative. The coupling term is
included as a part of the effective heat flow vector, containing stress invariant.
The rate of the stress invariant in any time can be calculated as:

O teat -t - (13)
o=z [o55 o4

where At stands for the time interval.

At the first time interval, beginning with t=0, temperature field is
determined neglecting the I, term. Then, vector R is calculated and equation (9)
is solved. After that, term ?13) can be found. Substituting (13) in (12), second
iteration for the temperature field is obtained from (10). Using this result the
second iteration for the deformation and the stress field is determined from (9).
This procedure, corresponding to the same time interval, is repeated until the
difference in the norm of the heat flow vector from the two successive iterations
becomes less than required one. In each subsequent time interval (t+At) the part
of the heat flow vector, depending of the stress invariant for the i+1 iteration
can be written as:

alish)teat _ I NT gg [of])E00 - of,) w r(i)eeat (14)

e

In the expression (14) the coupling coefficient § = §(T) is introduced. The further
iteration procedure for an arbitrary time increment is identical to one already
described above.

4. NUMERICAL EXAMPLES

To check the TRE program three examples are considered: the first
Danilovskaya problem, next Strenberg-Chakravorty problem and finally the second
Danilovskaya problem. The same finite element mesh, given in Fig. 3, is used for
all examples. Such mesh pattern is imposed by the nature of the problem itself.

The density of the mesh is increased from the bottom to the top, where the boundary
conditions are prescribed. For n = 0 up to n = -2.0 there are 20 elements with a
width 0.1 each, and fromn = - 2.0 up to n = -3.0 there are 4 elements 0.25 with.
Finally between n = - 3.0 up to n = - 10.0 the elements are of 0.5 width. The

total number of elements is 38 and the total number of nodes is 78. The density of
the mesh is satisfactory. Namely, increasing the number of points, and introducing
elements with 8 nodes, the results didn“t change significantly. Bottom of the mesh
is far enough from the free edge, and the reflective waves do not exist.

The problem is set in the dimensionless form. According to this, the
characteristics of the material are: E = 1.0; u =1/3; k = 1.0; g, = 1.0; p = 1.5.
It follows here from: a =K=1.0; n=y; T =t; v = 1/2(uy) x 109,



The convective element is introduced with the value
ht = = on the element 1, between nodes 1 and 40. This is
equivalent to the boundary conditions (8).

4.1, Sternberg-Chakravorty problem

Sternberg-Chakravorty problem is defined for the
boundary condition (8b) (Fig.2). The closed form solution
is obtained by means of Laplace’s transformations |10].
The numerical solution in obtained for the same boundary
conditions. To check the convergence two time intervals
t=0.1 and t=0.05 are used. The dimensionless displacement,
stress and temperature distributions are presented in
Fig. 4, 5 and 6, including the closed form and two FEM
solutions, for 1y = 0.5. A1l diagrams are given on n =
The convergence of the numerical solution is apparent.
The decrease of the time interval improves the accuracy
of the analysis.

Fig.3 FEM
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Fig. 5 Stress for the Sternberg-Chakravorty problem, To * 0.5

The curve on the Fig.7 shows the influence of the parameter To ON the
change of stress in time. The stress for n = -1.0 has an extremum s = -0.89, for
= 0, For 19 + = stress reduces to quasi - static solution (s=0). This example

T
c?early shows the inertia effects.

&9 ——EXACT SOLUTION
© | -----FEM SOLUTION Atz0.10
{ -——--FEM SOLUTION Ats0.05

™

200

TIME T

Fig:G Temperature for the Sternberg-
Chakravorty problem, To = 0.5

TIME T
EXACT
SOLUTION

At=0.1

=
e

&

t=0,05

0.100000{0
0.200000/0
0.300000/0
0.400000|0
0
0
0
0

8

1125
4807
.046839
.092401
.150678
.217556

.
.

o
=

0.500000
0.600000
0.700000(0.279914
0.8000000.331391
0.900000(0.373709
1.000000/0.411797
1.100000(0.439045
1.200000|0.464920
1.300000(0.487521
1.400000(0.507482
1.500000(0.525278
1.600000|0.541269
1.700000/0.555747
1.800000|0.568933
1.900000/0.581014
2.000000(0.592120

0.008580
0.030550
0.066400
0.114760
0.173820
0.233370
0.287230
0.333780
0.373530
0.407540
0.436880
0.462430
0.484890
0.504820
0.522630
0,538680
0.553220
0.566490
0.578640
0.589840

=30

0.004950
0.023350
0.057010
0.104230
0.162790
0.225810
0.283260
0.332150
0.373210
0.407930
0.437650
0.463380
0.485930
0.505880
0.523690
0.539710
0.554220
0.567440
0.579560
0.590710




1 [l I ' I

x4
d

d

-Lp

. /o
. e
4
,/

~———=FIRST DANILOVSKAYA PROBLEM
== ==STERN. CHACK. PROB. Te:=0.5
—-=—=STERN. CHACK. PROB. To=1.0

sesereese-QUASI STATIC THEORY

STERN. CHACK. PROB. To:2.0

Fig. 7 The change of stress in time for different values of T

4.2. First and Second Danilovskaya Problems

The Danilovskaya problem differs from the Sternberg-Chakravorty in the
thermal condition on the boundary. Here the temperature excitation is represented
by a jump on the free surface as given by the expression (8a). First Danilovskaya
problem requires a solution of the uncopled dynamic theory of Thermoelasticity. In
Fig. 8 analytic and numerical solution for two time intervals are presented.
Convergence of the FEM solution is again apparent.
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Fig. 8 Displacement for the first Danilovskaya problem
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For the second Danilovskaya problem, a small number of analytical solutions
exists. There is the Hetnarsky solution |[11|. On Fig.9 numerical solution obtained
with the TRE program and Hetnarsky’s solution are compared. The curve shows the
distribution of the temperature with respect to n coordinate, for two different
times t=1.0 and 1=2.0.
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Fig.9 Temperature vs. space for the second Danilovskaya problem
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Fig.10 Temperature vs. time for the second Danilovskaya problem

Finally in Fig.10 (curve and table) temperature vs time, at the level
n=-1.0, is presented as obtained numerically from the TRE program. Diagram
clearly shows the influence of substituting §(t) instead of &§(T,) for the value
of the coupling coefficient. From Fig.10 it can also be seen thgt no jump in the
temperature distribution exists for t = - n = 1.0. This fact contributes to the
known discussion concerning the form of the temperature curves |14], |11].
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MODELLING OF THE BEHAVIOUR OF COLUMN WEB PANELS IN SEMI-RIGID JOINTS.

René MAQUOI, Professor
Jean-Pierre JASPART, Assistant

Institut du Génie Civil, Université de Ligge, Belgique.

SUMMARY

Present paper is aimed at assessing the non linear shear deformability of
unstiffened column web panels in the vicinity of bolted and/or welded beam-to-
column semi-rigid joints. A general expression providing the associated M-8
curve is suggested and formulae for the evaluation of the different terms are
presented. The agreement between experiments and modelling is found quite
satisfactory.

1. INTRODUCTION

For some years much experimental and/or theoretical research work has been
devoted to the actual behaviour of beam-to-column joints in steel buildings and
more especially to semi-rigid joints. There are theresult of a search for sim-
ple and cheap connections with a view to a reduction of the labour cost, which
grew much faster than the material cost. Thus for the sake of economy bolted
joints and joints without any stiffener became a common practice. Unfortunately
such joints have a non linear behaviour : when subject to an applied bending
moment M, the axis of the connected members do not rotate a same angle, so that
there is a relative rotation 8, which is not proportional to the applied bending
moment M.

Both strength and stability of steel frames are affected by the semi-rigid
behaviour of the joints [1] . Though several computer programmes, which allow
for material and geometrical non linearities - including semi-rigid connec-
tions - are available, there is an urgent need of knowledge for the M-8 charac-
teristics of the joints.

In the authors' laboratory a lot of experimental investigations were recent-
ly carried out [2, 3] ; in addition, the junior author is developing a mathema-
tical modelling of the two components of the joint flexibility : i) the deforma-
bility of the connection properly, and ii) the shear flexibility of the column
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web panel adjacent to the beam.

Present paper is aimed at presenting a mathematical model that is likely to
provide the M-6 curve associated to the shear rotation of the column web panel.
This model is demonstrated to give results in close agreement with experiments.

2. EXPERIMENTAL INVESTIGATION.

Tests were carried out in Lidge on strong axis -, weak axis - and 3 D beam—
to-column joints. As far as column web panel is concerned within present paper,
it will be referred to strong axis connections only ; the beam is connected to
one flange of the column, so that any transverse loading on the beam induces
bending about the strong axis of the column cross section. Beam and column are
made with hot-rolled H or I sections ; they are assembled by either an end
plate, or web cleats, or flange cleats. The load is applied at the end of the
cantilever beam while the column is subject to an additional axial load (fig.l).

P

N+P ' 1N+P

Figure 1 - Strong axis joints tested in Lidge.
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The relative rotation of the joint, as well as the one of the connection
properly and the shear flexibility of the colummn web panel are directly measured
or deduced from measurements with transducers (fig. 2).

It results from experimental evidence that the effect of the axial force in
the column on the shear flexibility of the column web panel can be disregarded
as far as it does not exceed half the squash load. However that is not actually
a severe restriction in practice.

Comments can be made on the physical meaning of the contributions of the
joint rotation depicted in figure 2 by referring for instance to figure 3. From
a statical point of view the bending moment that is applied to the beam can be
substituted by two equivalent forces C and T - equal but opposite - acting in
both compressive and tensile flange respectively. Because of the tensile force
T, the end plate and the adjacent flange of the column bend locally and the
shank of the bolts in the tensile zone elongates. For the same reason, a part
of the column web is subject to transverse tensile stresses and will consequent-




ly deform in the plane of the web. The sole effect of the compressive force C
is to generate transverse compressive stresses in another part of the column
web that is adjacent to the lower flange of the beam.

M(kNm) M{kNm) M(kNm)
80+ 804 80
< L

. O(rad) Ofrad) |  B(rad)
002 004 006 008 002 004 006 002 004 006 008

(a) (b) (c)

Figure 2 - M-6 curves for an end plate connection : a) of the connection ;
b) of the joint ; c) due to the shear deformability of the column
web panel.
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Figure 3 - Deformation during test of a joint usingan end plate connection.

The rotation associated to the aforementioned deformations due to C and T forces
constitutes the relative rotation of the connection ; the latter is obtained as
the difference between the rotations 6, and 6 (fig. 3). This connection rota-
tion is increased by a rotation resulting from the shear flexibility of the co-
lumn web panel ABCD - in short, the shear rotation -, because of the combined



effects of tensile T and compressive C forces. This shear rotation is quanti-
fied by the difference between rotations 6 and 6, (fig. 3), where ef would be
the flexural rotation of the colummn when subject "to a concentrated “bending
moment M. The relative rotation of the joints is simply obtained by adding the
relative rotation of the connection and the shear rotation of the column web
panel.

Within the frame of present paper, only the non-linear M-6 curve dealing
with the shear rotation of the column web panel (fig. 2.c.) is concerned with.
First the column web panel behaves elastically, as if it was quasi rigid in
shear. In a second step, yielding occurs in the column web ; the connecting
flange of the column begins to bend appreciably, with consequently a sudden and
fast increase of the shear deformation of the web. Finally the ultimate
strength of the joint is reached.

3. MATHEMATICAL MODELLING OF THE BEHAVIOUR OF A COLUMN WEB PANEL.

To be general let us consider an ijinternal joint of a structure that is
subject to shear forces and bending moments (fig. 4).

Ney
Mey
Q T
cl Mp;
" oY) Qb1 dy
b2 Q¢2
Mc2
Ne2
de
o

Figure 4 - Loading of an internal joint.

The loading of such a joint is composed of two parts [4] which are associated
to gravity loads and horizontal forces respectively. The loading components are
simply computed as follows :

Horizontal forces Gravitx loads

My = 0.5 (M, + M) (1.a.) u: = 0.5 (M, - M) (2.a.)
M, = 0.5 (M + M) (1.b.) n’c‘ = 0.5 (M, - M) (2.b.)
Qp = 0.5 (Q, *+ Q,) (l.c.) q: = 0.5 (Q, - Q) (2.c.)
Q. = 0.5 (@, *+Q_,) (1.4.) Q’c‘ = 0.5 (Q; - Q) (2.d.)
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Figure 5 - Loading components in a column web panel.
The shear in the column web panel is thus clearlyshown(fig,5)toresult from
the effect of horizontal forces. By assuming that the bending moments are main-

ly transmitted by the flanges, the computation of the shear forces in the column
web panel can be conducted as follows (fig. 5) :

Q, = (2M,/d) - Q = (M, +M,)/d, - 0.5 (Q, + Q) (.a.)

Q= (M /d) - Q = (4, + M ,)/d - 0.5 (Q, + Q). (3.b.)
A bending moment(pM)can be associated to this loading ; it writes :

(M) =Qy d. =Q 4, (%)

Let us now investigate the successive steps of the behaviour of the column
web panel.

3.1. Range of elastic strength and behaviour.

At the first beginning of the loading, the column web has a purely elastic
behaviour. It is reasonably assumed that the shear stresses t are distributed
uniformly accross the column web depth of thickness tp ; then it writes simply :

T = Qb/dbtP = Qc/dctp (5)

The elastic behaviour is subject to the condition :

I<
T<T, (6)

where the shear yield stress is derived from the von MISES's yield criterion,
according to :

T, - fy//i N

f_being the tensile yield stress of the material.(Let us remind that the effect
of axial force in the column can be disregarded).
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The shear strain is given as :
Y =1/6 (8)
where G is the shear modulus.

Thus the bending moment that is associated to the end of the elastic range
behaviour writes :

M) =V 9
(p)y e %y 9)
with :

Vp = db dc tp (10)

On the other hand, one has immediately :

Oy = Yy - Ty/G (1)

3.2. Inelastic range.

As soon as the web yields, a deformation range associated to a constant
bending moment - and thus to the yield plateau of the material stress-strain
diagram-could be expected. The truth is else.

The shear strength is increased as a result of the bending resistance of the
column web panel fitted with its boundary elements : column flanges and res-
traints provided by the adjacent beam(s). Obviously this bending resistance is
already present in the elastic range, where it is there not significant because
of the large shear rigidity of the elastic web.

The inelastic range ends when the column web material reaches the strain
hardening range. The associated bending moment (pH)st can be found as follows
[5) :

(pn)st = 0.75 (pM)y + 0.50 (mM)y (12)
vhere (mM) is the elastic bending moment of the column or of the beam cross
section, according to which is the lesser. The validity of (12) is subject to
following condition : :

M) < 2 (mM : 13

(M), < 2 @) ' a3)
which is not actually restrictive for most of the joints used in practice.

The shear rotation of the columm web panel writes :

0 ™ ey + /3 (est - ey) (14)

where €_ and € aTe the strains associated respectively to the start and the
end of Ythe yiefd plateau (o = fy) in the relevant o - € diagram.

3.3. Ultimate carrying capacity.

Strain hardening contributes to an increase of the shear strenmgth too.
According to [5], the ultimate strength can be asseesed as :
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M) =V 1 +0.5 (mM) - 0.25 (pM 15
M) » Tu ( )y (p! )y (15)
where the ultimate shear stress T writes :

T, = fu/»’i (16)

fu being the ultimate tensile strength of the column web material.

Any mathematical function that is likely to represent the shear behaviour
of a column web panel must :
i) be such that(pM)= O when 6 = O ;
ii) be asymtotic to(pM)=(pM) when 6 is increasing infinitely ;
iii) comply with the coordinates (pM)_ 0) ;
iv) comply with the coordinates «pM)itezt) .

From the several mathematical expressions which were investigated and com-
pared with tests results, the following one is suggested :

®M) = M) (1 - exo [-£ ()]} 17)
with :
f(6) = a6 + co >0 (18)

Parameters a and b can be determined by above conditions (iii) and(iv),where-
from :

a=- (B + ceyye: = - (o + cest)/e:t (19.a)
b=1n [(a + cest)/(B + cey)] /1n (est/ey) (19.b)
with :
a=1n [I _(PM)st/(PMl} (20.a)
B=1n [1 -@EM) / (EM)] (20.b)
y u

According to requirement (i), parameter b must be strictly positive ; therefore
parameter c cannot exceed a limiting value Crax °

c<c 2n
max

with :

= (g - -
Crax - (B a) / (est ey) -(22)

At last it is easily demonstrated that only positive (or zero) values of c
can warrant the pM-6 curve with existence of the horizontal asymptot.

4. COMPARISON BETWEEN THE MATHEMATICAL MODELLING AND EXPERIMENTAL RESULTS

The shape of the pM-8 curves is largely dependent on the value of parameter
c, as it is clearly shown in figure 6.
By comparing the results of the mathematical model suggested here with those got
from experiments, a very simple value ¢ = 0.75 ¢ can he recommended when the
column is a HEB section. Indeed a very good agreement is obtained by using
this value, as shown in figure 7, which is dealing with end plate connections.
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Figure 6 - Influence of ¢ value on the shape of pM-6 curve.
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Figure 7 - Comparison between mathematical modelling and experimental results.

The authors' mathematical model complies with the coordinates ((pM)_ 6 ) and
does not develop, as it should be, a linear elastic behaviour in ¥I’leyregion of
small bending moment. The rcason for doing so is the desire of simplicity when
expressing mathematically the pM-6 curve. As demonstrated by the diagrams, this
simplification appears quite justified ; indeed the difference between the theo-
retical approach and the actual behaviour is not significative at all.

Figure 8 is concerned with an end plate connection between a HEB 200 column
and an IPE 300 beam ; two curves are plotted, which are both dealing with the
shear behaviour of the web :
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a) The first one has been obtained by KLEIN [6], on base of a modelling of a
joint by means of a set of springs, each of which is associated to a specific
source of deformability (shear deformation of the column web panel, compres-

sion and tension in the column web,...). It must be noticed that the strain
hardening is not accounted for.

b) The second one is deduced from the authors' model, which has been arranged in

order to neglect strain hardening, in accordance with KLEIN's approach.

The agreement between both approaches is here too quite satisfactory.

pM(kNen)
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Kiein 79/
—-— modeling
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Figure 8 - Comparison between two models.

5. CONCLUSIONS

The results of the modelling have been found in a very satisfactory agree-
ment with experiments. Work is still in progress with a view to suggest c va-
lues for several types of sections. The authors are of the opinion that such
a modelling is likely to avoid extensive laboratory tests when aimed at quanti-
fying the shear deformability of column web panels.
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LONG SPAN BRIDGES

Prof. F. DE MIRANDA
Assoctate Professor of Structural Ehgtneertng Milan Polytechnic

SUMMARY

First of all the situation in the last century is recalled which
thanks to the use of steel, served as a point of deparature for an
extraordinary development in the field of bridge building. In order
to satisfy new traffic requirements, a typical feature of this
development was a progressive increase in the length of free spans.
After referring to the various and heterogeneous aspects involved
in the design of long span bridges, a brief description is offered
of the fundamental technical problems which, in the course of a
century, have been faced and solved through great works of enginee-
ring, thus adding further to the possibilities of reaching the
maximum potentialities offered by the use of steel in constructions.
As a conclusion, some brief reference will be made to some present
research programmes investigating new structural systems for long
span bridges.

1. INTRODUCTION

over the centuries the need for rapid road connections has always
been felt as a factor of considerable importance, and often let to
brilliant solutions in the planning of routes, shown, for example,
by the roads of the Roman Empire. However, the limited speed of even
horse-drawn vehicles meant that these routes did not really need
large spans for crossing natural obstacles. But the arrival of the
railways in the last century, and then more recently the development
of civil motor traffic and motorways, and the growing operational
speed have imposed certain characteristics on these routes, such
that more and more often they have to cross natural obstacles with
long span bridges.

This urticle represents a shorten version of the paper submitted to the
ECCS (BSCA Intermational Symposium on Steel Bridges, London 1988)
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Progress up to the 19th century in the fields of mechanjcs and loco-
motion also, of sourse, involved civil engineering, above all for
parallel developments in the technology of materials and the science
of constructions. In this wide range of development, also in civil
engineering steel played a leading part, widely used above all in
bridge building, where it gave rise to a profound change in structu-
ral engineering. Construction in steel, and bridge building in parti-
cular, haé always kept a close eye on progress in the steel industry
and technologies for its use. The growing homogenity of steel
products had made it possible to increase working stresses, and
greater knowledge of states of stress in load bearing structures has
led to a more and more rational distribution of the material. However
the introduction of steel in bridge construction did not immediately
produce those structural systems which are the most efficient for its
optimal use. This was mainly due to the centuries long tradition of
masonary and woodwork, which still influenced designers and builders,
who thus tended to approach new constructions in steel with the
structural systems of the past. So to begin with there was a vast
range of different typologies of long structures with arches and
latticed girders, in general rather heavy both overall and in detail.
This was partly because of the great density of the secondary members
but also because the only sistem for connecting them was by hot
riveting. For decades this type of construction dominated steel
bridges.

It seems reasonable to suggest that steel bridges, like other things,
tend to reflect the spirit of the age in which tey were built, also
because construction in steel is already in itself a particular form
of architecture.

There were, however, a few exceptions to this general rule, such as
the Britannia Bridge over the Menai Strait (1851), designed by
Stephenson and his collaborators. With its well-known self-supporting
plate girder it really broke with the past and anticipated by about
a century the bridges of self-supporting girders in stiffened steel
plate.

In many significant instances, as in suspension bridges, where there
was a desire to exploit the new material to the full, new structures
were built growing constantly in lightness and elegance. This devel-
opment, with the help of new techniaues and means of construction,
has continued without a halt up to our own days, and is ready to
launch itself into the future, as will be shown later. So bridges
gradually became more slender and efficient, but to begin with still
far from the lightness of those structures that could only be achie-
ved with the use of high strength steels and electric welding methods
that have made it possible to simplify and lighten the joint very
considerably.

If one pauses for a moment to consider certain modern tyvlogies of
bridges created from steel over the past 40 years, such as cable
stayed bridges, the attentive critic will be struck by an evolution
that is so rich and variegated that it might almost be considered a
revolution. This evolutionary process, with the help of new construc-
tion and assembly techniques, and new technologies for the use of
materials, has brought results that are objectively of very great
interest in the field of large buildings, even from a formal point
of view.
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2. LONG SPAN BRIDGES ~ STRUCTURAL TYPOLOGIES
2.1 Long span bridges - structural systems

More than sixty years ago aeronautical engineers introduced the
"strength/weight factor". It is defined by the ratio o,/y between
the permissible stress o, of the material and its specific weight vy.
About thirty years later (1951) Prof. Fritz Stiissi 1] arrived at a
formula that was both concise and at the same time highly expressive
realted the theoretically maximum span that a bridge could be given
to the physical parameters involved:
_ . 1 _ %a

gH-' (¢F gF + op P) zc,_z 5 lc = a Y_
In this formula the values gy, gp, p are, per unit of length, respec-
tively the dead weight of the principal structures of the bridge, the
dead weight of its secondary structures and the live load, while yp
and ¢, are, respectively, coefficients depending on the distributions
of gp and, differentiated of p. Stiissi”s formula still contains the
so-called strength/weight factor o,/y of the aeronautical engineers,
as a fundamental parameter in the problem of long spans. But it also
contains a factor a« that depends on the chosen structural system and
the relative geometry, that is to say, on a parameter that depends
essentially on the ability of the designer, or "the human factor”.

Among the various materials available for the construction of bridges
-~ masonry, reinforced concrete, wood, steel-the highest value of
o,/y is obtained precisely, and only, for high strength steels. So,
clearly, construction in steel dominates and will continue to domi-
nate in the field of long span bridges.

Stissi“s study (Fig. 1), although referring to long spans (and by
long he meant starting from 300 m), only took into consideration
certain well-tried structural systems, such as:

~ Simply supported lattice girders -

- Latice gerber girders

- Arches

- Suspension bridges.

He demonstrated their relative technical-economic validity as the
span increase or, more exactly, for their average spans

Stiissi “s curves show that the first of these systems is the most
suitable for smaller spans (100+200)m, the second for medium spans
(200+300)m, the third for larger spans (300+600)m, and lastly sus-
pension bridges for the long spans (5002000 m and more). But during
the evolution of the technique of steel bridges for the larger
spans, besides the suspension bridge a new structural typology has
been developed over last thirty years - the cable stayed bridge, As
will be shawn later, it too is valid and efficient for a wide range
of spans (300%+2000 m and over), particularly of its great, rapid
continous .and growing development during last decades.

So as things are today, in the field of long span steel bridges two
basic structural typologies (2) might be considered valid: the
suspension bridge and the cable stayed bridge. They will be the next
subject of discussion, examing their basic systems and relative
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erection techniques,

2.2 Suspension bridges

The most common type of cable supported bridge has three spans, a
large main one flanked by two smaller side spans; the main components
of the structural system are indicated in Fig. 2, where the suspension
system comprises a parabolic main cable and vertical or slightly inc-
lined hanger cables connecting the stiffening girder to the main cable.

For the concept and design of cable suported bridges, aspects related
to erection have a very strong influence, as is the case for any
structure of considerable size. Thus, the structural systems and
materials, as well as the design of details, must be chosen with due
regard to the erection procedure.

The erection procedure to be used for Bridges with Earth Anchored
Cable Systems depends on the anchoring of the cable system, as this
will determine the sequence of erectiong the cable system and the
stiffening girder. With a fully earth anchored cable system as found
in all major suspension bridges, the cable system can be completed
first and subsequently used to erect the stiffening girder. This
feature is illustrated by the erection procedure outlined in Fig. 3,
where six stages of a typical suspension bridge erection are indicated.
The erection procedure outlined has the advantage that the girder sec-
tions adjacent to the pylons are placed when the main cable is reac-
hing its final configuration. This makes it possible to reduce the
secondary stresses in the main cable, as the final tightening of the
cable bands near the pylons can be postponed to a stage when only
insignificant permanent angular changes of the main cable at the
pylon top remain. With this procedure the erection crew has to use

the catwalk to get to the partially erected stiffeninag girder in the
main span (during stages 3 and 4). The erection procedure of Fig. 3
has been used in several cases, among these for the Severn Bridge.

Another erection procedure to be found within suspension bridges, is
illustrated in Fig. 4, where five stages of a typical suspension
bridge erection are indicated. The erection procedure of Fig. 4 is
advantageous in relation to the planning of the work as the erection
crew can easily be transported to the bridae deck from the main piers,
and also easily be moved from the main to the side span. The procedure
of Fig. 4 was adopted in the erection of the Mackinac Bridge.

2.3 Cable stayed bridges

The cable stayved system (Fig. 5) contains straight cables connecting
the stiffening girder to the pylons. In the fan system all stay cab-
les radiate from the pylon top, whereas parallel stay cables are

used in the harp system. Besides the two basic cable stayed systems
(the fan and the harp system), intermediate systems can also be found;
thus, in the modified fan system the cable anchor points at the pylon
top are spread sufficientily to separate each cable anchorage, Combi-
ned systems containing both the suspension system and the cable stayed
system had been applied in cable supported bridges built in the 19th
century, such as the Brooklyin Bridge, with its main cable and verti-
cal hangers supplemented by stay cables in the fan configuration.
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The idea of combining the suspension system with stays to achieve
more efficient structural systems was proposed already in 1938 by
F.Dischinger. In this system the central part of the svan would be
carried by a suspension system, whereas the outher parts were to be
carried by stays radiating from the pylon top, It was intended for
a railway cable supported bridge with a 750 m main span across the
River Elbe in Hamburg.

In connection with the reconstruction of German bridges after the
war, the Dischinger system was proposed on several occasions (Fig.6),
but it was never used, probably because of the pronunced discontinu-
ity of the system with respect to the structural behaviour.

Although the system proposed by Dischinger was never adopted for
actual construction, undoubtedly it had a considerable influence on
the introduction of the pure cable stayed bridge. For cable stayed
bridges the trend has been to move from systems with relatively few
heavy stay cables to multi-cable systems with a large number of stay
cables supporting the stiffening girder more continuously. For the
concept and design of cable stayed bridges too, aspects related to
erection have a very strong influence, as is the case for any struc-
ture of considerable size. Thus, the structural systems and materials,
as well as the design of details, must be chosen with due regard to
the erection procedure, as previonsly mentioned for suspension brid-
ges. A straightforward solution is to erect the entire stiffening
girder on temporary supports before adding the cables, as illustrated
in Fig. 7 for a fan cable stayed bridge with a Earth Anchored Cable
System, where four main stages are indicated.

This erection procedure offers the advantage that the girder can be
erected continuously by cantilevering from one end to the other,
allowing the transportation of men, equipment, and material on the
completed part of the deck (Fig. 8). Also, the procedure leads to an
efficient control of the geometry and cable tension. The disadvantage
is related to the temporary supports that must be used. In many cases
clearance requirements during the construction period, or deep water
under the main span, will exclude the installation of the necessary
number of temporary supports, and the procedure will not be feasible.
Temporary supports can be completely avoided if the bridge is being
erected by the free cantilever method, as illustrated in Fig. 9 where
four main stages are involved.

With this procedure it is essential to have a very efficient fixity
of the super-structure to the main piers throughout the construction
period, as the entire stability depends on this fixity until the end
pier is reached. Also, the lateral bending stiffness of the girder
must be sufficient to ensure the stability of the cantilever arm with
a length corresponding to half the main span.

Thus, the procedure is especially advantageous in bridges with a
large width-to-span ratio of the girder

The cantilevering of a cable stayed bridge requires that all girder
joint are closed as soon as the girder units are in place, to allow
the transmission of the normal forces and the bending moments induced
during the subsequent tensioning of the stay cables.,
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Fig. 8a: Indiano Bridge (Florence)
during deck erection by longitudinal
launching.

Fig. 8b: Indiano Bridge in the stage
of tensioning of cables.

Stage 1: Construction of piers and pyloms.
The girder units above main piers are erec-

ted (temporarily) fized to the piers.

St_aﬁc 2: Erection of deck and cables
Y ced free cantilevering.

Stg'se 3: Erection of central part of the
ridge.

S;a:ge 4: Closing main span central,
additionl dead loads from wearing
surface, ete...

Fig. 9: Self-anchored cable stayed bridge erected by double sided free
cantilevering from the pylons
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3. STRUCTURAL ANALYSIS OF LARGE SPAN BRIDGES

3.1 The Evolution of Theories for the Static Analysis
of Suspension Bridges

The theories available for the calculation of suspension bridges in
the second half of the 19th century were all first order theories,
such as the theory by Rnakine of 1858, This first order theory was
the first to take into account rationally the interaction between
the cable and the stiffening cgirder; it is based on the assumption
that the change in geometry due to deflection caused by the applied
traffic load can be nealected.

The desire to have a practicable mathematical model is reflected in
the arrangement of the structural system with unsuspended side spans.

In Fig. 10 can be seen the funicular curve of the applied dead +
traffic load; it does not coincide with the cable curve of the dead
load condition, so that moments will occur in the system. Because the
cable is supposed infinitely flexible, the moments will be taken by
bending in the stiffenino girder, and can be expressed by:

M(z) = M (z) - H(y(a)-y(s)) = Hee,

where H is the horizontal force (related to the funicular curve) and
e is the vertical distance from the cable to the funicular curve,

In the evolution of cable supported bridges, the so-called "deflection
theory" developed by Melan in 1888, had the effect of progressively
increasing shenderness in the design of suspension bridges. The def-
lection theory is a second order theory taking into account the dis-
placements of the main cable under traffic load when calculatina the
bending moments in the stiffening girder. In this theory the equilib-
rium is established more correctly for the deflected system rather
than for the system with the dead load geometry.

With reference to a suspension bridge with main span subjected to
traffic load in the left half of the span (Fig. 11), it can be seen
that, due to the hangers linking the stiffening girder to the main
cable, the deflection of the girder will cause a change in the geo-
metry of the cable. The full line is the shape of the cable when def-
lection of the stiffening girder is taken into account: the cable
moves towards the funicular curve, and as equilibrium must exist in
the deflected system, the bending moments in the stiffening girder
will be:

M(z) = H(e(s) - §(3)),

where H is the horizontal component of the reaction and e-§ is the
vertical distance from the funicular curve to the distorted cable
When taking into account the second order effects related to the
displacement of the cable, the bending moments in the stiffening
girder will be reduced, often to less than half of that found by a
first order theory. Actually there are no limits to the reduction
that can be achieved, as a suspension bridge with a ogirder having
insionificant bending stiffness will deflect under asymmetrical
loading until the displaced cable and the funicular curve coincide.
Consequently M(3)=0 because: (e-5§)=0. As equilibrium can be attained
without any stiffenihg girder at all, the deflection theory will not
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Fig. 10: Moments in the stiffening girder when assuming equilibriwm of
the system having the dead load geametry (first order theory,
or elastic theory).
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Pig. 11: Moments in the stiffening girder when assuming equilibrium of
the deflected system (second order theory, or deflection theory).
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ensure a minimum bending stiffness. However to make structural defor-
mations compatible with traffic requirements, in the applications of
the deflection theory the authorities recommended a minimum depth of
the stiffening truss in the interval from one sixtieth to one ninet-
ieth of the span lenath, When the deflection theory was introduced,
the calculation capacity of the design engineers was still limited,
and thus the solution orocedure for the non-linear differential equa-
tion was difficult and complicated, Consequently, simplifications had
to be introduced in the form of charts, tables, and correction curves
by which the results of the simpler elastic theory could be corrected
to approximate those of the deflection theory (3).

3.2 Structural Analysis of Cable Stayed Bridges

Reference is to a continuous stayed bridge with the fan system and
with a continuous distribution of cables along the girder, which is
the most suitable system for long spans. It is assumed that construc-
tion,by regulating the tension in the cable, will ensure a practica-
lly straight final configuration with no bendino moments. The struc-
tural analysis due to permanent loads can be carried out starting
from the equilibrium equations of a beam element in the left half of
the bridge (Fig. 12):

%i-ncoaa:o N
(n:A—) (1)
g-nasina =0 N
in which z is the abscissa of the cross-section considered, ¥ is the
axial force in the deck, N, the axial force in the cable. With refe-
rence to the adimensional abscissa £=3/H, and considering that:

tgu:l; cosa = 3 s 8tna = v
71#E2 /T#E2
then the second equation of system (1) gives:
n=—_4_ ; N, = £, (2)
V1+E3 JT+E2
which, when substituted in tthe first of the equations in (1), gives:
dN
I = oHt

From this, taking into account that at the centre (t=L/2H), because
of the erection procedure, it can be assumed that ¥=0, one finally
obtains:

wre) = g5 1&)? ) (3)

The action of the live loads modifies the initial eéquilibrium corres-
ponding to the permanent loads, and sets up an additional stress-strain
state. The stress state already existing before the action of the mo-
bile loads is made up of tensile stresses in the stayes and of compre-
ssion stresses in the pylons and the girder. Furthermore, the action

of the dead loads fixes the equilibrium configuration of the cables,
and thus controls their reactions through the value of Dischinger s
modulus of virtual elastictiy (Fig. 13):
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Pig. 12: Typical structural system of wide span cable stayed bridges

2050

1800
1600

1400 (-

1200
1000
800
600
400
200

L E(tem®)

N ¢=5t-cm”
N ¢=4tcm?

N =3 tem?

N g=2tcm?

1 1 1 1
0100 200 300 400 500 600 Lo tm)

-+

Fig. 13: Virtual modulus of elasticity of the cable

Fig. 14: Distorted system under live loads on half central span
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vy = specific weight of steel in the cable

lo- horizontal projection of the length of

the cable
‘E
E* = ——p— E = modulus of longitudinal elasticity of
, zﬁy 1 the cable
1+ 1303 o = tension of the cable.

The additional strain in the bridge is further indentified (Fig. 14)
by the vertical displacements v(sz) of the girder, by the rigid hori-
zontal displacement w of the girder itself, and by the elastic hori-
zontal displacement u of the tops of the pylons.

Structural analysis for evaluating static effects due to live loads,
after the first simple applications_in the 1950+s, heas been studied
theoretically ba various authors (5) with approximation methods that
are vary interesting, but tend to be rather laborious and complex.

A the same time, however, the complete and exact structural analysis
of the stress-strain state has been carried out systematically by
means of a discrete model which also takes into account the effects
of non linearity due to straing in the cables and variations in the
geometry of the structure. The discrete model can be obtained either
by the analysis with a computer of a system with a given number of
cables, or by solving with a numerical method (e.g. the finite ele-
ment method) the equations of the continuous model, The results ob-
tained in this way are very precise and make it possible to state
that the earlier analytical obstacles, considerable through they were,
have now been overcome, obstacles that were responsible for the init-
ial distrust in the cable stayed bridge and its late development.

In fact, computers have made it possible to conduct investigations
and reasearch on stiffening systems of cable stayed bridges for app-
lication to lonc and very long spans.

3.3 The Aerodynamic Stability of Lonc Span Bridoes

Among the numerous problems that arise in studying the dynamic beha-
viour of long span bridges, aerodynamic instability is undoubtedly
the most important, since it may lead to destruction.

The main forms of aerodynamic instability are:

- Those deriving from self-excited vibrations of the bridge due to
vortex shedding by the deck when exposed to wind, vibrations that,
as a first approximation, are substantially indevendent bv deck
defoxmation;

- Those deriving from flutter due to perjodic variations in aerodyna-
mic 1ift and the (external) twisting moment, vibrations that depend
on the flexural-torsional oscillations of the girder.

3.4 Self-excited Oscillations Due to Vortex Shedding

For the sake of a brief discussion on the essentials of the problem
of self-excited oscillations of a bridge due to vortex shedding, it
should be remembered that if a bridge is exposed to a steady current
of air, vortites shed from the deck generating the so-called "Von

Karman wake". Each time that a vortex is shed, a noticeable vertical
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force develops on the deck. So periodic shedding produces a pulsing
1ift effect on the deck. For a given value of the velocity of the
wind, which corresponds to the so-called critical resonance velocity
between the freaquencv of the formation of vortices and the natural
frequency of the bridge, vertical (and sometimes, but more rarely,
torsional) oscillations are induced of increasing amplitude. Depending
on the particular case, the amplitude of these oscillations may be
limited, or may reach catastrophic proportions.

From numerous experiments in wind tunnels, within the range of
variability of the Reynolds number:

Y]
(in which C is a characteristic dimension of the cross-section, norma-
lly the half-width of the cross-section of the deck, V, the wind speed
and u/p the so-called kinematic viscosity, i.e. the ratio between the
viscosity u and the density p of the air), the frequency f, of the
vortex shedding is directly proportional to the wind speed V,, and
inversely proportional to the transversal dimension C of the deck For
a given cross-section of* the deck, the frequency fg of vortex shedding
can be expressed through the simple relation:

Vo
fo 7Ky T (4)

in which X, is a constant, to be defined for each cross-section, in
the technical literature known as a Strouhal number. Then, for a given
cross-section of the deck, the evaluation of the ratio:
. C
Ky = s 7V,
i.e. of the corresponding Strouhal number X,, makes it possible to
evaluate the frequency of the vertical forcing actions.

The values of K; are worked out for each case by testing models of
cross-section of the deck in a wind tunnel. Experiments already ,
carried out show that for a circular cylindrical cross-section Ks—o 25
while for thin cross-section, aerodynamically shaped, Kg=0,15 0,10.

So it seems reasonable to conclude that for a long span bridge with a
fundamental vertical oscillation period of 2.5 sec. and a cross-sccti-
on with a Strouhal number X, for vortex shedding equal to 0.20, the
resonance condition would be attained when the wind speed, blowing
across the deck, reaches 20 m/sec. But for a more aerodynamic cross-
section, e.g. with a Kg value of 0.10, the critical velocity would

be 40 m/sec.

Long span bridges generally have rather low free flexural vibration
frequencies, and anyway they decrease as the span increases, as shown
by the curves of Fig. 15. Given these frequencies, and kg values on
average around 0.20, with the usual values of ¢, and in the range of
variability of the wind speed V, (between 5 m/sec. and 50 m/sec., i.e
between 18 Km/h and 180 Km/h), it seems impossible to avoid the onset
of resonance conditions between the aerodynamic actions induced by
vortex shedding from the deck and the natural oscillation due to ver-
tical displacements of the girder. In the absence of special devices,
that do not always work (flaps arranged along the lateral edges of
the deck able to destroy the Von Karman wake before it develops), it
is impossible to prevent the formation of self-excited vibrations of
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Fig. 15: Flexural frequences of long epan bridges
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Pig. 16: Cross section of the aerodinamically shaped deck
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the deck due to these effects. What is possible, as a counter measure,
is to reduce the intensity of the pulsing forces due to the vortices.
Studies in wind tunnels in fact make it nossible to quantify not only
the frequency of the veriodic actions transmitted by the wake, as
expressed by equation (4), but also the intensity of the pulsing lift
forces as a function of such characteristic parameters as the wind
speed J,, the half-width C of the deck cross-section, and its shape.
In fact, if pg is the pulsing 1lift per unit of length of the deck,
then:

P, =% Vi(zc)cp sin w £yt (5)

where p is the density of the air, f_ the frequency expressed by (4),
and Cp a coefficient depending on the shape of the cross-section to
be degermined experimentally. Experiments in wind tunnels show that
the coefficient C, is greatly reduced if the cross-section of the deck
is "aerodynamically" shaped (Fig. 16). In this way the intensity of
the periodic lift forces can be reduced and so also the energy that
the wake transmits to the deck in conditions of resonance for each
oscillation cycle of the bridge. In this case the energy which, beca-
use of various damping effects, is dissipated during the oscillation
of the bridge, can partly absorb the energy transmitted by the vorti-
ces, and so reduce the maximum amplitudes of the vertical oscillations
of the bridge to acceptable values. So a long span bridge, whether
suspended or cable stayed, must have an aerodynamicallv shaped deck,
so as to avoid dangerous amplitudes of self-excited vertical oscila-
tions due to vortex shedding. An aerodynamic shape of the cross-sect-
ion will have the following characteristics (Fig. 16):

1) Tapered leading and trailing edges (with a low drag coefficient)
2) High slenderness ration ( 2 aﬂ7g 10)

So for the designer of long span bridges today this is the first
problem - to decide on the geometry of the cross-section of the deck
and its aerodynamic stability, taking into account resonance with the
Von Karman wake. It might be said that for long span bridges the study
of this problem can never be undervalued in the design phase, when the
geometrical characteristics of the cross-section of the bridge deck
are being defined. A further check in a wind tunnel on a suitably
reduced scale model is also necessary..

3.4.1 Self-Excited Oscillations Due to Flutter

Problems of flutter, that is, vibrations self-excited by the periodic
variations in the lift and by aerodynamic moments due to variations
in the angle of attack of the wind on the deck because of its flexu-
ral-torsional vibrations, must be neutralized. So the cross-section
of a modern long span bridge should typically have one or more longi-
tudinal openings. This was first suggested by Stiissi and Ackeret.

But it should only be necessary if those particularly dangerous
conditions arise in which the value of the ratio between the natural
torsional and flexural vibrations is close to unity. In other wor?s,
if there are very small values for the natural torsional frequency.
In the case of stall flutter, or aerodynamic instability due to high
values of the angle of attack of the wind on the horizontal olane of
the deck, such values would lead to very dangerous conditions, as in
the case of the first Tacoma Narrows bridge.
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During the past 40 years a large amount of theoretical and experimen-
tal (windtunnel) work has been done to solve the complex problem of
the aerodynamic stability of long span bridges. Various solutions
have been proposed, and the most effective have been mentioned here.

The fundamental design criteria in this field for long span bridges,
whether suspended or cable stayed, show a definite trend towards
reducing the height of the deck to a minimum, forsaking the stiffe-
ning contribution of the flexural moment of inertia. This is because
it has a very limited effect in countering the deformations compared
to the advantages to be drawn from reducing the static and aerodyna-
mic actions of the wind. So at the same time another oroblem assumes
greater importance. How to strengthen the entire structure with other
systems so that, from the point of view of deformations, it can cope
with service conditons. And since these various aspects so far consi-
dered are intimately connected, also the stiffening systems have a
considerable and favourable influence on each other (6).
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CONTRIBUTION TO NONLINEAR ANALYSIS OF R.C. THIN-WALLED BEAMS
AND FRAMES BY FINITE ELEMENT METHOD
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/

ABSTRACT

A method of analysis for three dimensional slender reinforced concrete
frames based upon the finite element displacement formulation is presented. A
stiffness matrix for the analysis of thin-walled beams with an arbitrary open
cross-section made up of longitudinal filaments to represent the concrete and
reinforcing steel is derived. The description of the element is based on the
assumptions introduced by Vlasov. The varping degree of freedom is added to the
conventional degrees of freedom at each end of the element. An updated Lagrangian
formulation is used to take into account the material nonlinearities and the
effects of changing structural geometry.

1. INTRODUCTION

It is well known that the behaviour of reinforced thin-walled concrete
structures deviate, even for relative low loading levels from the linear elastic
behaviour that classically has been assumed as valid. For ultimate loading levels
the behaviour of these structures is highly non-linear not only because of the
material properties but also because the change of structural geometry is
significant.

The purpose of this paper is to describe a unified numerical procedure
for the material and geometric nonlinear analysis of reinforced concrete thin-wa-
1led beams and frames.

The stiffness matrix for the general nonlinear analysis of thin-walled
members with open cross-section is derived. The description of the element is
based on the assumptions introduced by Vlasov.

The approach followed is of a general nature, enabling its implementation
in a general-purpose finite element computer program.

2. THIN-WALLED BEAM WITH OPEN CROSS-SECTION
The following three basic assumptions, which are usually adopted in the
analysis of thin-walled beams, are used in this study:

a) The cross-section is assumed to be perfectly rigid in its plane while free to
warp out of its plane.
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b) The shear strains in the middle surface are very small and can be neglected.
c) Mormals to the reference surface of the member remain normal to it and undergo
no change in length during deformation (the Kirchhoff-Love assumption).
According to the first assumption only three displacement components, i.e.,
two translations and a angle of twist, are required to describe the cross-sectional
behaviour. From Fig. 1, the in-plane displacements of on arbitrary point are

u* =&- (y-y )0
* 14 (1)
v =n+ (=-zp)e

middle line

Fig. 1

The longitudinal displacement » of the arbitrary point, due to the warping
of the cross section may be found, concerning the absence of the shearing strain,

w*=wo-5‘:c-n‘y-e‘w (2)
where w, is on arbitrary function and

8

= = +

“ Ihpdaf-hnpe v hnpe (3)
o

is the generalized warping function.

The first three terms on the right hand side of eq. (2) describe longitudi-
nal displacements of the cross-section as contained in a plane surface (Bernoulli’s
assumption). The last term describes the warping of the cross-section.

From eq. (1), (2) and (3) it is obvious that the displacements (u,v,w) of
a thin-walled beam are dependent only on one coordinate variable, namely the axis
of the beam. This is a direct result of the starting assumptions, and thus the
thin-walled beam is effectively reduced to a one-dimensional problem.

3. FINITE ELEMENT FORMULATION
Figure 2. shows a typical finite element of thin-walled beam as a straight
line element with two nodes at the ends of the member. At each node there are seven
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displacements as the basic unknown parameters, so that the element has fourteen
degrees of freedom. The convention for the positive directions of the incrementa
displacements and forces at the element nodes is indicated in Fig. 2.

It should be noted that the normal force ¥ and the bending moments M, and M ref
to the centroidal point 0 while the other forces refer to the point *p. The’dist
ributed loads gy, gy and g., and support reactions refer to the axis which passe
thru the point P. It should also be noted that the transverse shear forces and
the twisting moment can not be defined in terms of deformations as a result of
imposed thin-walled beam assumptions. The vector Aq of incremental displacements
at the nodes of the member can be written as

= (aq, bq, 8qq 8q,) (4
where
T_
aq, = (8¢, 8v,7 A%, Awyz]
8a,” = (an; bu y ng av ) (5
T

8qy" = (8, 80 46, 26,)
T
N, = (Awl sz]

A linear displacement field is adopted for the axial displacement field,
and the cubic displacement field for other displacements

8 =Ny, q,
on = N, Aq, 6
86 = Ny Aqy
bo = N, 8q,

where the shape functions discribing the displacement field are
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N =N, =N

u [}
= (1-36%+26% 1e-26%46%) ael-26 10-6246%)) -
N, = (1-3e%+267 1(-e026%-6%) aeP-26? 106%-¢%)
N = (1-t ¢
where ¥ )
=g/l

The derivation of the equilibrium equation using the principle of virtual
displacements and its transformation and linearization in the incremental form
following the updated Lagrangian formulation is explained in Ref. 1. Substituting
the expressions for incremental displacements eq. 6 it is possible to obtain the
following equation of equilibrium in terms of nodal displacements and nodal forces

1
G+ k) a=R-Ta (8)
ng = J 13% DT By dV - tangent incremental stiffness matrix
Ty (9)
1, _[1,7T1 1 -
Kz = I By, 'O By, dV - geometric incremental stiffness matrix
1

12

2R - vector of externally applied nodal-point loads in current configuration

10 - the vector of nodal-point forces equivalent to the element stresses

in previous configuration

10 and 15 - the matrix and vector of Cauchy stresses

B;» By, - the linear and nonlinear strain-displacement transformation matrix
uT - the tangential stress-strain material property matrix.

The more detailed approach of derivation of element matrices of eq. 8 are
given in Ref. 1. The final form of the linear stiffness matrix IKL' is given in
Table 1. .
Nonlinear (geometrix) stiffness IKNL is derived assuming the following
incremental strain components

_1 2 2 2
Angg - -2-((Aw,z) + (Au,z) + (A”,z) )

M, (10)

3 x 3

28n,,5 = Av’z b o+ Aw’

2Ar123 = Au’y Au,z + Aw’y Aw-’x

The final form given in Table 2. is derived assuming constant axial force
and linearly varring bending moments and bimoments. It must also be noted that
the final form is simplified by neglecting the nonlinear termw , w i? the above
expressions .for the strain components. The element forces appeaf?ng’ﬁn Ky, are
those existing in previous equivilibrium confiquration.

The element stiffness matrices of eq. 8 are evaluated with respect to nodal
displacements referred to local coordinate system. The element displacements with
respect to the local coordinate system are related to those in the global system
by the transformation
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Aq*= T Aq (11)
where Aq are displacements in local coordinate system, aq* are displacements in
global coordinate system, T is transformation matrix.

For the case of an arbitrary cross section the transformation matrix is
given in Ref. 2. In preparation for computer assembly of thin-walled elements, the
conditions of compatibility and equilibrium of nodes are formulated using connec-
tivity matrix (2). The overall stiffness matrix taking into account the boundary
conditions is generated following the rules that govern the assembly process used
in the finite element analysis.

4. MODELING OF MATERIAL PROPERTIES

Concrete and reinforcing steel are considered homogeneous materials. It is
assumed that perfect bond exists between concrete and steel reinforcement, thus
the displacement field within a reinforced element can be considered continuos.
The material properties of concrete and steel depend on the stress state of the
material due to the effect of the nonlinear stress-strain relationships, cracking
of concrete and yielding of steel.

As it is shown in Fig. 3 the cross-section of the thin-walled bean element
is divided into discrete number of concrete and reinforcing steel filaments. The
concrete filament area is 4, and its position in the cross-section is defined by
the coordinates Qﬁ the respect to the reference axes. The value of the
tangent modulus gktthebﬁoncrete filament is . Each steel filament has steel
area A,;, and coorgénates Tais Yaj* The value f the tangent modulus of the j-th
steel filament is @i

P e o

~

“ai
Fig. 3

The stress-strain relation-ship for concrete for short-time loading is the

one sug%ested by Yugoslav preliminary codes shown in Fig. 4.
ensile failure or cracking of concrete occurs when tensile stress exceeds
its maximum tensile strength 7.

In this study a bilinear model which is symmetrical about origin, as shown
in (Fig. 5) is used for steel reinforcement.

The assumption about the vanishing shearing strain in the middle surface,
introduced by Vliasov, allows the separate consideration of bending and warping
torsion effects in straight members with open cross-section. In order to simplfy
the numerical approach the bending and torsional interaction are caupled only thru
normal stresses. A triliniear model is used to represent the torsional response
of a reinforced thin-walled concrete beam. The experimental curve Fig. 6 can be
usually approximated by three straight lines representing the uncracked, cracked
and yielded phase, respectively.
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Taking into account the assumptions about the deformation for straight
thin-walled beams with open cross-section, only normal stress contributes to the
yielding of the material and the tangent modulus E; for both materials at a
filament is uniguely determined by the total strain ¢ and the incremental strain
Ae. The incremental strain Ae is given as

fe = M - zAE" = y An" - w A" (12)
and the stress increment as
Ao = E't Ae (13)

Substituting the above eq. in the equilibrium equations establishing the
stress-force relationships for the cross-section of a thin-walled beam, it is
possible to express the generalized stresses N, M, M, Mp in terms of generali-
zed strains bw;, AE", An", A" about the reference axés as
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AN 4 Sy =S, -5, |[ &g

aM, | Iy ~Iyz ~I ag" (18)
M, Ip Iy, |l ta"
AMg Ty l ae”
and the St.Venant“s torsional moment which has the value
2™ = G &t ne” (15)

Expressions for the evaluation of the section properties and stress resul-
tants are given in terms of the transformed section assumming the accepted stress-
strain curve for concrete and steel reinforcement.

I P P
A= f dA = ':‘I_ EBi ABi + :‘I_ Eaj AQf
4 1=1 Jj=1
ET E‘T nB na
Sz = f wdd = T Bp Ap; Tpp * L Epi g %o
4 1=1 Jj=1
E‘T E‘T nB na
Ixyzj zya:;]EBidBizBini*.EIEaquian'yaJ
Yl = J=
nB na nB
- 24, _ 2 2 1 3
E'TIyy-JEEdi- I Egy Ap gt T B A ate ToEg ity b
4 =1 J=1 =1 ]
nB na nB
- 2. _ 2 2 1 3
E'I, = J £y’ = = Fpifpi¥pr * T Fajlag Vet I Fpi 7z %ty (16)
4 1= J= i=1
nB
_ - 1
E'TSN = I o dA = ’3:-1 3 Epg 895 A:ci(wlimki)
4 =
nB Ax Ay .
- - 1Y
E"’Z'Im = J Elozda= 1221 By — 5 ("’Zi(xki*zzli)mki(xli*axki))
A
nB Az AY .
- _ 191 .
E'TIyw = J Elw a dA = iﬁ] By, —5 (wli(ykiuyu) + “ki(yli*zyki))
A
nB Az Ay .
= A= 1 7 2
ETIW“[ET‘““‘ LB Te T Mt e T k)
4 =

To investigate the performance of the above defined element taking into
account the effects of material and geometric nonlinearities the following coloumn
in Fig. 7 is analyzed. The geometry and the reinforcement of the cross-séction and
the material properties are given in Fig. 7.

The coloumn is modeled using 10 equal sized thin-walled beam elements. The
cross-section is divided into a grid of 10x10 layers Fig. 7.
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Fig. 7

An eccentric axial load is applied at the top of the column up to failure.
Maximum load was reached in fifteen load increments. The control of the lateral
displacement of the top of the column was used to obtain the response of the
structure. The resulting load-displacement curve is shown in Fig. 8.
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SHEAR LAG IN ARCH-SHAPED STEEL BOX GIRDERS

V. Kristek* and M. Skaloud**

* Faculty of Civil Engineering , Czech Technical University ,
Prague , Czechoslovakia

** Institute of Theoretical and Applied Mechanics , Czechoslovak
Academy of Sciences , Prague , Czechoslovakia

Research on the shear lag phenomenon in the wide flanges
of constructional steelwork, conducted by the authors and their
associates, has been under way in Prague for some ten years now.
The present paper describes part of the results obtained during
the last stage of this research, focused on the problem of shear
lag in the flanges of arch-shaped box girders,both longitudinal-
ly unstiffened and stiffened flange plates being considered in
the analysis. The solution was based on the finite strip method.
An analysis of the data obtained reveals that in the flanges of
vertically curved box girders is frequently the effect of shear
lag more pronounced that in straight girders , the difference
increasing with girder curvature.

1.PROBLEM STUDIED BY THE AUTHORS

The writers studied the shear lag behaviour of an arch
bridge portrayed in Fig.la, which is a typical example of verti-
cally curved girders.

As the weight of an arch itself produces a stress distri-
bution that has the character of simple compression only , the
present study is focused on an analysis of the effects of point
loads which are transmitted into the arch by way of stanchions.
Then the thrust line is given by the funicular line to the sys-
tem of loads applied , which determines , by its distance from
the median line of the arch , the eccentricities of the forces
_acting on the individual sections and thereby the distribution
of the bending moments in the arch.
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In the intersections of the thrust line with the median
line of the arch (Fig.1lb),the bending moments are nil. There-
fore , in an approximate solution , the shear lag analysis can
be carried out independently for such individual portion of
the arch between the adjacent points of zero bending moments.

It is seen 'in Fig.1lb that there are two kinds of segments in
the arch.The first kind (Fig.1lc), which can be termed a secant
segment , is loaded only by two opposite forces P acting at

its ends and having the direction of the chord of the segment.
The intermediate segment (Fig.ld),on the other hand, is loaded
by a mid-span vertical force Q and , at its ends, by two forces
P, their inclination from the vertical being denoted as f. It
follows from the above definitions of secant and intermediate
segments that the angle B cannot surpass the angle , B,n‘, bet-
ween the vertical and the arch tangent at the segment end
points.

The arch bridge studied was of box girder construction,
two cases being considered in the investigation :

(i) A box girder with longitudinally unstiffened flanges

(Fig.2a).

(ii) A box girder with longitudinally stiffened flanges

(Fig.2b).

The main objective of the investigation was to look into
the efect of girder curvature upon the distribution of longitu-
dinal normal stresses in the upper and lower flanges of the
girders and , consequently , on the intensity of the shear lag
phenomenon present in them.

The investigation was performed via the finite strip me-
thod. In the numerical analysis and the evaluation of results ,
also Z. Kovanicova , a Ph.D. post-graduate student of the second
author , took a significant part.

As it is beyond the scope and means of this short publi-
cation to present all data obtained (they are going to be publi-
shed soon in a paper to appear in the journal "“Acta techni-
ca* of the Czech. Academy of Sciences ), we shall deal herebelow
only with the results related to the behaviour of vertically
curved girders having no diaphragm and no transverse stiffener
-at the section under the vertical load.

- In this case, diaphragms are then placed only at the end
sections.

The mid-span radial load Q is assumed to be split into
four equal forces Q/4 acting at the four corners of the box
cross-section (Fig.le).

2.THE SECANT SEGMENT

2.1 A BOX GIRDER WITH LONGITUDINALLY UNSTIFFENED FLANGES
(Fig.2a) - Type 1

In the case of a straight girder , the secant forces P
induce merely a state of axial compression and,therefore, uni-
formly distributed compressive normal stresses in the upper and
lower flanges. (See the straight lines in Figs.3a and b, related
to 6 = 0.015° = 0°. In order to avoid any misunderstanding , it
should be noted at this juncture that in all figures giving
stresses the scale of the vertical axis is such that the stresses
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are plotted in thousands of MPa .) When the girder curvature
grows, the significance of bending enlarges. Thus the originally
compressive stresses in the upper flange gradually change into
tensile ones,which are non-uniformly distributed over the flange
breadth ( as is typical of a shear lag phenomenon ) and attain
their maximum values at the flange edges,i.e. at the junction of
the flange with the vertical webs (Fig.3a). In the lower flanges
of curved segments , the stresses remain mostly compressive; but
as the eccentricity of the forces P increases, the non-uniformity
of stress distribution (due to the shell action of the flange,
flange ,
inclusive the effect of shear lag) grows, the maximum values oc-
curring again at the junction of the flange plate with the webs
(Fig.3b).

2.2 A BOX GIRDER WITH LONGITUDINALLY STIFFENED FLANGES
(Fig.2b) - Type 2

To start with , let us mention at this juncture that the
area of the cross-section studied with longitudinal ribs (see
Fig.2b) was the same as the area of the cross-section of the
longitudinally unstiffened box girder (Fig.2b) , which was inve-
stigated in the previous section.

This was achieved by using a thinner flange sheet than
in the preceding case , in order to balance out the area of the
longitudinal stiffening .

The results of the analysis are plotted in Fig.4. An in-
spection of the figure indicates that the non-uniformity of lon-
gitudinal normal stress distribution in longitudinally stiffened
flanges (i.e. the effect of shear lag) is-similarly to straight
beams-more pronounced than that in flanges without longitudinal
ribs (see nec.2.1 above).The reason for this observation can be
attributed to the reduction of the flange sheet thickness des-
cribed above,since it is merely the flange sheet that takes over
the effects of shear and of transverse flexure.

3.THE INTERMEDIATE SEGMENT

As already said above, the intermediate segment is sub-
ject to a vertical , radial load Q , acting at mid-span of the
segment, and to two skew forces P, acting at the end sections of
the girder . The forces P can again be split into two states ac-
cording to Fig.5 , viz. (i) the effect of the radial reactions Q,
( Fig.5a ) and (ii) the effect of the tangent forces S and of the
reactions Q, related to them (Fig.5b). The latter case (Fig.5b)
is quite identical with the performance of a secant segment de-
scribed above, since - for the reasons of equilibrium - the re-
sultant of the forces S and Qz is bound to have the direction of
the segment chord.

It is worth noting at this moment that the radial load Q,
representing the compression transmitted via the stanchion into
the arch girder (Fig.la), is materialized in this study by four
separate loads Q/4 positioned at the corners of the box cross-
-gection of the girder (Fir.le).
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3.1 A BOX GIRDER WITH LONGITUDINALLY UNSTIFFENED FLANGES
(Fig.2a) - Type 1

In the context of what was said above , the longitudinal
normal stresses brought about by the action of the forces S and
Q, are nesessarily identical with those occurring in the secant
segment subjected to the secant forces P and portrayed in Figs.
3a and b.This implies that,with increasing girder curvature, the
originally compressive stress in the upper flange gradually chan-
ges into a tensile one, which is non-uniformly distributed across
the flange breadth and attains the maximum value on the flange
boundary (Fig.3a). In terms of girder curvature, even the non-
-uniformity of the compressive stress distribution in the lower
flange grows,the maximum value of the stress being again at the
flange /web junction (Fig.3b).

The behaviour of the intermediate segments is governed
by the effect of the inclination (denoted as B in Fig.1d) of the
trust line on the longitudinal stress distribution, which can be
studied by combining the stress states corresponding to Figs.ba
and b.An analysis of the results related to a number of selected
curvatures and various thrust line inclinations shows that for
B = 0° - 60° the stress distribution is approximately the same.
If the inclination B approaches to the angle between the longi-
tudinal force and the vertical,the magnitude and distribution of
the stress drastically change, the stress distribution in the lo-
wer flange even losing its parabolic charecter (see Fig.6). This
is due to ‘the interaction between (i)the non-uniformly distribu-
ted compressive stress induced by the longitudinal force (port-
rayed in the figure by a dashed line ) and (ii) the non-uniformly
distributed tensile stress brought about by the action of the
radial load

3.2 A BOX GIRDER WITH LONGITUDINALLY STIFENED FLANGES
(Fig.2b) - Type 2

Fig.7 shows the distribution of the longitudinal normal
stresses in the intermediate segment of a vertically curved gir-
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der with » = 7.64°,i.e. in the case where the character of the
distribution was out of the ordinary. Namely, in this case the
maximum value of the stress o did not occur at the flange / web
junction , but at an inner point of the flange breadth,which is
another difference from the shear lag behaviour of the flanges
of straight box girders.The solid line gives the stress distri-
bution in a girder with longitudinally stiffened flanges (type
2 ) and the dashed line that in a girder without 1longitudinal
ribs (type 1). The shape of both curves is similar, but an exa-
mination of the figure reveals that with longitudinally stiffe-
ned flanges the effect of shear lag is more pronounced.

SUMMARY

The objective of the paper is to study the effect of
shear lag in vertically curved box girders (Fig.l), such as are
enccuntered, for example, in the case of arch bridges and simi-
lar structures.

As a direct application of the theory of elasticity to
the solution of the problem concerned would be very complex, the
authors used the finite strip method in their analysis.

The vertically curved girder studied was of box girder
construction, two cases being considered in the analysis:

(i) A box girder with longitudinally unstiffened flanges
(Fig.2a).

(ii) A box girder with longitudinally stiffened flanges
(Fig.2b).

An analysis of the results obtained shows that:

(a) The effect of shear lag in the flanges of vertically
curved box girders subject to point loads is usually more signi-
ficant than that in the flanges of straight box girders, the dif-
ference growing with girder curvature.

(b) Unlike the flanges of straight box girders, where the
maximum longitudinal stress always occurs at the junction of the
girder flange with the girder web, in the case of vertically cur-
ved girders this maximum stress value can develop at another
point of the flange.
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A CONTRIBUTION TO THE SOLUTION OF ULTIMATE
CARRYING CAPACITY OF POLYGONAL SLABS

Professor MILIC MILICEVIC
Structural. Engineer, Dr. Sc.
Ni§ Univ., Civil Eng. Faculty

SUMMARY

In this work a procedure for determination the lower bound of ultimate
carrying capacity of polygonal slabs using nonlinear programming is presented.
At first, the solution for trapezoidal slabs is given. After that, this solution
is extended for polygonal slabs and for slabs with openings as wel]

* * * *

As it is known, exact solutions of the problem of a slab ultimate
carrying capacity could not be found in an closed form ( except in some very
specific cases). Therefore, approximate solutions are sought by application
of known theorems on the upper and lower bounds. Whereas it is rather easy to
find the upper bound by using the Theory of Fracture Lienes (Johansen), the
Tower bound of loading is calculated by detrmining statically and plastically
admissible stress field which meets: the conditions of equilibrium (1), namely
(2) boundary conditions regarding the forces (3) and the adopted yield condi-
tion (for illustration sake Johansen's yield condition of the orthotropic
slab (5) was used).

As a rule, the herebelow presented procedur gives good solution for
the upper bound.

"x,x + Mxy,y - Qx =0 e e e e o« e e e (l.a)
M -Q = '

XY X + My,y Qy 0 e e e e e e e e e e (1.b)
Qx,x + Qy,y + Ux,y)" 0 e e e e e e e e (1.¢)
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or:

nx’xx + 2nxy’xy + My’yy + Ux,y) = 0 e e e e e .. (2)
Mo=cZ*M - d s Mo+2*vcdeM =Mo...... (3a)
Q) = Q) - My n= Qo ’ B ¢ X))
Mpp = Cd* (M - M, )+ (c2-d%) My N O))

(t-m) (km) - wf, = Fm,m,m )20 ...... (5)

where:
c = cos(ALFA), d = sin (ALFA) (acc.Fig.1)

MO = Mpx, k = Mp]/MO; "i = Mi/Mo (i'x’y’x.V)

yr— . 1-m

Fig. 1 Fig 2

Let's assume that the state of stress could be presented in the form

m, A
m, |= Bl *F ..o o (6)
mxy C

where:
(Ao, ], ..Ag); B = (BO,B]...BQ); C= (CO,C]...CQ).. (7)

TT. (]lxlyl zsxy’ y2,X3,X2y, xy ,y3) ® ® e o e e s o e . (8)
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If the equation of the boundary, whose normal makes the angle (ALFA)i
with the x-axis, is given with x = a,+b.y, and the loading q (x,y) in the
field, and Mno and Qno on the boundary by:

q(x,y) = 9 (l+q]x + qzy) D )]
":(i) =/Mg, M:,M;,M;/ * /l,y.yz,ys/T e e e e e e e (10.a)
Q:(i). /pg’p:,p;/ * /],y,yz/T ........ (10.b)

then the equlibrium conditions (2), boundry conditions (3) and yield condition
(5) (after several tansformations) could be given in thefollwing form:

2 N
ql
VAN AR W YR WA L s P G |}
0

9

. . T
2 2 T i oy
/c5s a5, 2c,d,/ % JABC/ * /Sy =[MI, MIMMI] L L L (12)

/c%,d%,?cidi/ * IABLC/T % [T, /4 —cidyicdy,ch-dl/ x

/N RN WEN NN VLR )

Ao -1 BO ; k
A] T 1
. FeFy T
* -C*F*F*xC20..... (14)
Ay By

The introduced matrices Si’ Ti’ Qi’ Na’ Nb and Nc are given by expressions
(15), (16) and (17).
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E 0 0 0]
ay ~b1 0 0
0 1 0 0
a2 2a,b, bg 0
s;= |0 a; b ol ..., .. (15)
0 0 1 0
3 2 2 3
aj 3a1bi 3‘ibi I:1
2
0 a; Zaib1 b1
0 0 a; bi
| 0 0 0 1
_ 2 -
01 02,0 03 0 0 0
/Ti/Ts 00 02, 1 O6apb, 22, 0 Of ....... (16.d)
00 0 0o 0 0 32 2, 1 o
00 1 0 a, 0 0 a8 0 0]
T
19/ = 00 0 0 b 2 0 2ab, 2 0f ....... (16.8)
0 0 0 0 b, 2b, 3]
My/=J0o 0o o 1 o 0 0 o o0 O]
0 0 0 0 0 0 3 0 0 O0f..... (1.a)
L 0o 0 0 0 1 0 0]
[0 o0 o o0 0 1 0 o0 o0 O]
/MNg/= [0 0 0o 0o o o 0 0 1 ofl..... (1.p)
o 0o o 0o 0o 0 0 0 o0 3
0 o0 0 o0 1 0 O 0 0]
IN/ = 0o 0 0 0 0 0 0 2 ol..... (1.0
0 0 0 0 0 0 0 ©0 2 0]
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In a scalar notation, the condition (11) is transformed in there
scalar equations, the condition (12), each of them in 4.

Kowever, the condition (14) would have to be satisfied in all
points of the field. In order to the problem solved in practice, we will
require, in the first stage, that the condition (14) is satisfied in a certain
series of points, whose coordinates are known. Parameter q from (11) could be
expressed in the form:

q = f (A,B,C,x,y) = f(z,x,y) e e e e e e e ‘ (18)

where the vector z is denoted with A, B, C components.

The problem could be formulated as follows: toma x imi ze the
condition (19) (i.e.to define max q), however, provided that the conditions (20)
have been fulfilled.

q = f(z,x,y) e e e e e e e (19)

hj(z) =0 (j=1,2,...,Uj) e e e e e e e (20.a)
qk(z,x,y) 2 (k=1,2,...,UT) e e e e e e e (20.b)
min z, 2z, $maxz, ... .. e e (20.c)

The problem defined in this way is a problem typical for non-linear pro-
gramming (NPL) and coluld be solved by one of the wellknown procedures (the
author has used the already prepared programmed package of Commet - R.L.Stah,
1973 and GAPFQL - J. S.Newel, 1974 of Texas University in Austin). In addition
to the values for q, the solution of NPL problem gives also all components of
the vector z i.e. of the A, B, C vectors.However, the solution meets the yield
condition only in the chosen series of points, which does not still represent a
strict proof that it had been satisfied on the entire surface of the slab. In
order to eliminate this problem, one should solve the following:

min g (z;,x,y) =?
min x  x § max x eee (NLP)!

miny {y{maxy

giving 2

min g = -a e e e e e e e e (21)
X = X, Y=y, e e e e e e e e (22)

The corrective factor GAMA could be obtained from the follwing expression:
2

2
(kMx+My) + \l(kMX+My-2k) -4ka

> I T (23)
2 * (kMx+My-k~a )
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leading to
q=6AMA * q' { q e e e e s eea .o (24)

In the expression (21) M, and Hy as well as ny are the values of moments in
the point with X, and Yo coordinates.

The proposed procedure, including the assdciated upper bound, gives the
complete solution of the ultimate carrying capacity of trapezoidal slabs.

The table given together with Fig. 3 shows the results of the analysis of
the upper and lower bounds, as well as of the experimental tests for the tra-
pezoidal slab. The afore-described procedure was used for the lower bound,
whereas the Theory of Fracture Lines together with the optimum of the fracture
figure for the upper bound, Fig. 3. As the table shows, the differences expre-
ssed in percentage are not big. The discrepancies of both the upper and lower
bounds amount to 5 to 6%.

TABLE
+ + - -
_?’Iy-ag K Qe . 0+ Q‘ Q+‘ Ge g -C Qe - Q
Q' /1oo Q /100 |Qe/lo0
1 1,000 - 8,982 8,466 - + 5,75 -
2 0,640 |7,705 8,086 7,660 + 4,1 + 5,27 |+ 0,58
3 0,814 8,335 8,544 7,997 + 2,45 + 6,40 |+ 4,06
4 0,363 6,966 7,354 + 5,28
5 1,280 10,005 9,649 9,115 - 3,69 + 5,53 |+ 8,9%
6 2,131 12,819 11,866 11,250 - 8,03 + 5,19 |+12,24

k /M M =M

= Mox/Mpy o~ py

= 2 =
Q=aql /2"0 Q GAMA * Qcalculated
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When slabs of more complex boundaries are in question (polygonal
slabs, slabs with holes, etc.) the proposed procedure could be generalized in
two ways.

The first one is when a full polynom of the fourthe or higher power
is used for the function. In that cde A,B and C vectors have 15 or more elements

each, which in some cases could give good results, however, this increases the
(NLP) problem.

s GO

Fig. 3

Fig 4.

The second one is whien the entire surface of the slab is divided
into sections, and previously described procedureof optimization applied on
thes sections in succession, provided that the transition conditions on bounda-
ries of the sections have been satisfied. Application of this procedure in a
general form is the subject of a particular study.

'However, if the fracture 1ines of the slab are taken
as boundaries of the sections, obtained by optimization of the kinematic solu-
tion, the procedure could be simplified considerably. In that case, along the
slab boundaries (Fig.4) the conditions (12) are valid, namely (13), the
equilibrium (11) over the entire surface of the slab, and the conditions (12)
along the fracture lines between adjacent sections of the slab.

After that, one could define the lower bounds q¢...,q;...,q, for each

section in the identical way as for the previously describld traﬁezoidglslab. The
smallest of these values will represent the lower bound for the slab as a whole,

whereas the upper bound had been previously determined during optimization of

the kinematic solution.
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ON TORSIONAL BUCKLING OF THIN-WALLED CONTINUOUS MEMBERS
Z. Cywinski

Technical Univefsity of Gdafisk - University of Tokyo
Majakowskiego 11/12 Bunkyo-ku

80-952 Gdarnisk, Poland Tokyo, 113, Japan
SUMMARY

In the paper certain research has been presented, aimed on the
extension of the conventional method of displacements into the sphe-
re of the technical theory of thin-walled bars. For the torsion pro-
blem the warping-twist equations of this method have been derived,
suitable for the analysis of torsional buckling of thin-walled sys-
tems with open section, continuous members in particular. Simplifi-
cations of those equations characteristic for their classic slope-
deflection forms have been demonstrated. A numerical example shows
the application details of the procedure established. Possible deve-
lopment perspectives have been specified.

1. INTRODUCTION

It 1s well known that the displacement method is one of the
most general and effective methods of structural mechanics. Present-
ly it 1s classic as far as members of solid sections are concerned,
but appears to be still insufficiently developed concerning those
with thin-walled section.

It seems that the general principles of the displacement meth-
od related to thin-walled members have been first presented in mono-
graphs [19] and [2]; little later also in [13] outlines of this me-
thod have been given. Author of this paper, basing upon earlier Po-
lish editions of [1], generalized the correlated conventional meth-
od of Cross for the requirements of the theory of thin-walled mem-
bers [20], - in [3], [4], (6], [7], [9]. Other contributions in that
field are referred to in [10]. Adequate force method is shown in
[19], [2] and [14], but it is out of the scope of this paper.
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A particular problem of that topic was the treatment of thin-
walled frames. Corresponding references are presented in (7], [8],
and [9]; author wishes to point only at [12] and [18], probably 1lit
tle known outside Poland, as well as at recent publication [186],
characteristic for up-to date trends in that field.

For finite element procedures based upon the matrix displace-
ment method proper stiffness matrices have been, already, settled;
author mentions only [11] where the corresponding development and
the actual state of this question have been shown.

Present paper refers closely to author's earlier contribution
[5] and is aimed on the extension of the displacemnt method on the
title problem.

2. WARPING-TWIST EQUATIONS OF THE GENERALIZED DISPLACEMENT METHOD
FOR SINGLE MEMBERS

Since Wagner's classic research performed in the thirties it
is known that the buckling problem of centrally compressed thin-
walled member of bisymmetric section, practically - I-section as in
Fig. 1, is governed by three uncoupled differential equations of
the following shape:

EJ_E" + PE'' = 0,
E3¥n™ « Pn'' = 0,
= o'

X v (1)
EJGG +(r2p - GJd)e

where E and G are Young's and shear moduli, J_, J_ - moments of i-
nertia of cross-section about x, y axes, respéctizely. J - 1is its
sectorial moment of inertia, J, - torsion constant, and ¥2=(J_+J_)/
F, with F being the section arga. The remaining notations resfiit?
from Fig. 1 but ( )' stands for d/dz.

Fig. 1. Bisymmetric I-beam considered

The first and second of equations (1) describe the conventio-
nal bending buckling of Euler, respectively along the x- and y-di-
rection, whereby the corresponding slope-deflection equations are
well known (1], [15]. On the contrary, similar equations for the
torsional buckling of Wagner, resulting from the third of equations
(1), have been shown probably only by author in [5]; author sugges-
ts to call them "warping-twist equations”. Their derivation is de-
monstrated underneath.
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The differential equation of torsional buckling can be trans-
formed to the following nondimensional form:

ov + 12E2E=Glgr L o, (2)
w

whereby the differentiation refers to variable &£=z/1. Using the no-
tation

A = 1\ E2B-Edy (3)

EJ“ *

one obtains equation (2) in its classic appearance

elV + Aze" = o. (4)

The general integral of equation (4) and its derivatives can be ex-
pressed by the following relations:

8 =C; + C,At + CjcosAt + C,sinig,
' = C,A - CyisinAg + C,Asinig,
' = - CzA2cosAk - C,A2sin)g, (5)
9'''= C3A3sinAt - C A3cos)g,
8’ = Cy)M8cosAL + C AtsinAg,
where the constans C,,...,C, depend upon the boundary conditions,
i.e. - on the type o} member supports.

First the axially compressed fixed-fixed member is being consi-
dered. Its ends 1 and k are assumed to undergo imposed rotations 8
and 6, , as well as - warpings 6; and 9&. These displacements are aé-
sgcia%gd with the occurenge of.éupport reactions: torsional moments
H,,, H ., and bimoments Bik’ B,,. The original compression forces P
alg st*il there, exerting = witﬁln the 2-nd order theory - an addi-
tional effect on the expressions of 6 and of its derivatives along
the member span. The graphical illustration of that situation is gi-
ven in Fig. 2. To simplify the problem interpretation the illustra-
tion corresponds to the conventional one applied in bending, and u-
sed by author already in [3] - [7] and [9].

*
E&i

= K

L L l

g ]

Fig. 2. Force-displacement illustration for fixed-fixed member

Constants C,,...,C, result from the governing boundary condi-

tions:
] (o) = 91' ] (1) = ek’ }

8°'(0) = eil, 8'(1) = eﬁl,
and are expressed, as follows:?

(8)
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C. = g, + 1.460-6c)(A-sind)- ' -3)A(1-cos)

1 i A 2(1-cosA)-AsinA
C. = 1 (67+6i)(1-cos))-¥Asin)

2 A 2(1-cosA)-Asinx ’ (N
C. = _ 1 (6/-68d)(A-sin))-(6f -¥)A(1-cosA

3 A 2(1-cos))-Asinx

1., _ 1 (67+6y)(1-cos)d)-$Asind

Co = X8 - & 2(1-cosA)-AsinA '

Introducing the relations (7) into the first of equations (5)
one obtains the general integral of the fundamental equation (4) in
the following form:

6 = 8, - Zl[a(1-6-cosa+S10AE)  p( S10AR) Aginyc]e; -
- 21[3(l-c-cosxc+§lglg)*&(-C*glﬁég)]9& +

+ 210 (a+8) (1-26-cosag+22102E) 22 SIMAE,) 15, (8)

where the coefficients &, B and (&+B) are expressed by the follo-
wing equivalent formulas:

SR E SECONIE - e sl
2tan§-A
8 - %'Z(i-zgzi?ékslnx' B ’ZSinA' A-sink ’ (9)
2tan§-k
A
R R T e TV T O ,%,ffff;z_, )
2tan§-x

The approached warping-twist equations base upon the obvious
differential relations

- EJU vy
Bik = - 1218" g0
Bii - EJu[e"]C-l' (10)

. . L
H = Hgy = - Byaler teaze’ lgeo-

Taking advantage of (5), together with (7), one can express (10) in
the particular forms

By, = Z2EJ%ae;+Re;-(a+B)?],
By, = 2EJ“[Ro;+a0, - (a+R)V], (11)
Hi = Hpy = - —S3eaed- 2EJU(5.p) (040, -29).



Applying the rule of d'Hospital the proof can be given that for A=0

&a=2, RB-=1, a+R = 3, (12)
and the warping-twist equations (11) reduce to
. 2EJuw i
Bik = 1 (291+9k—369,
. 2EJw, o ‘
Bki = —-T—(ei+zek 3%, (13)

Hy, = - &J%e0;.0;-29),

which shapes are, formally, identic with the slope-deflection equa-
tions concerning the conventional bending problem.

Secondly, the axially compressed fixed-hinged member is being
considerd (Fig. 3). Rquired warping-twist equations can be found
from (11), respecting Bkiao. Here the following relations hold:

. EJuw-

By = —l—Y(Gi“&). (14)
. L EJw _EJw ‘
Hyp = Hey = - 12229-"pav(eg-9,
where the coefficient ¥ is given by equivalent formulas, as follows:
7 = g82-R2 % - A2sin 7 - Aztan) (15)

& ' Y = SInA-Acosx’ Y = tana-A

Fig. 3. Force-displacement illustration for fixed hinged member

Applying substitutions of type (12) it is visible that for A=0

Yy =3 (18)
and the warping-twist equations (14) become
B* = QEJ!(G'_,S)'
ik 1 i
i = K" __3EJu(e._‘t,,) a7
ik ki ~ 12 i -
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The third and last case represents the axially compressed fi-
xed-free member (F;c. 4). Proper warping-twist equations result
from (14) taking Hk1=° as follows:

. EJuzo,
;k 3 5 %1 (18)
= o
whereby ik ki
§ = -Atan), . (19)

For A=0 also =0 what means that the support displacements undergo,
obviously, reactionless.

P P

Fig. 4. Force-displacement illustration for fixed-free member

It is evident that the functions &, &, (&+8), ¥ and &, speci-
fied by(9), (15) and (19), are - as far as their shapes are concer-
ned - identic with those characteristic for the problem of bending
with compression [1]; only the substance of A is mutually different.
Relevant tables of A\ can be found in [1],[15]}.

3. PROCEDURE FOR CONTINUOUS MEMBERS

The developed warping - twist equations of the generalized dis-
placement method can be utilized in the determination of the criti-
cal load of torsional buckling in case of systems composed out of
thin-walled members. Because of the decisive effect of joint confi-
guration on the distribution of cross-sectional forces [3], [12],
[18]), presently continuous member systems are considered only.

Kix E i P
E ‘. 3 E -—
F)
Elu -EJb = E, fla
K222 K 2p= Kik-r———f“’ K285

I l ' | l \ ' L ,

Fig. 5. Stiffness relations in thin-walled members:
fixed-fixed, fixed-hinged, fixed-free
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Within the conventional bending problem mentioned systems can
be analysed, effectively, by a special procedure shown in [1]; for
the case of torsion it must be generalized. According to that gene-
ralization first the flexural-torsional bar stiffnesses K and bar
restraints K/, for the basic support conditions must be sé!tled.
whereby K ¥§ meant to be the bimoment at i-end which developes a
unit warpikg of this end, and K, - the associated bimoment occur-
ing simultaneously at k—end‘(whgﬁ fixed-fixed member is concerned)

For the case of fixed-fixed member, Kik and Kﬁi result from
two first equations of (11):
EJw v o opEJw
K- 2800, Ky - 2859 (20)
For the member fixed at 1 and hinged at k, K K follows from the
first of equations (14), taking ;=1 and Frt

EJuw
Ky 1 - (21)
At last, for the member fixed at 1 and free at k, Kik is a conseque-
nce of the first equation of (18), with ei-l:

<sEJuw
Klk' & 1 - (22)

The problem of flexural-torsional stiffnesses and restraint,
for the discussed three cases of member supports, is illustrated in
Fig. 5.

It can be easily noticed that for A=0 the quantities specified
by the formulas (20) and (21) become identic with those governing
the bending problem, what follows directly from the results (12)
and (16); in that case Kik corresponding to (22) is equal zero.

All the other items of the procedure applied in the determina-
tion of torsional buckling loads are identic with those concerning
the bending problem.

4. NUMERICAL EXAMPLE
The details of the discussed procedure will be shown on the e-

xample of a continuous member, analysed for flexural buckling in
[1); 1t is illustrated in Fig. 6.

1

. | 0
: =g = = & H
W06

B"ﬂ. l,-200 l%"ZO 4

Fig. 6. Continuous member analysed
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The member cross-sectional properties are the following:

F = 30 cm2, r2 = l&%l! = l%ﬁ cm2, E = 2.6 G =
Jx = 800 cm*, Jd = 3.6 cmt, = 21000 kNcm-2, (23)
= - .ﬂ‘- = -1
Jy 650 cm*, J“ 20000 cmé®, k Elw 0.008325 cm-1.
The bimoment required to develop a unit warping at jont 2, 1.
e. - the joint stiffness K,, is equal to the sum of stiffnesses K, ,
and K,, of both bars meeting at that joint:
Ky = K+ Ky = V02 o /EJ (24)
1 2

The stiffness K,, results from (21), since the member 1-2, at the
initial stage, is hinged at 1 and fixed at 2. On the contrary, the
stiffness K,, can not be settled on the basis of formula (21), al-
though both members, 1-2 and 2-3, are identically supported, becau-
se the last one is not under compression. Therefore, the correspon-
ding bar stiffness K,, must be calcutated according to principles
set in (3], [6]. The required. y-coefficient depends upon the flexu-
ral-torsional bar parameter x, of the second member:

.\
K, = 1,\EJu = 0.99846 (25)
which is associated with v=3.1944 determined by linear interpola-
tion from tables shown in [3], [8]); the coefficient ¥ depends on A,
competent for the first member and specified by formula (3).

In case that the axial thrust P becomes the continuous member
critical load of torsional buckling P,, the unit warping 6,=1 can
be exerted without the bimoment itseI?: therefore, the sti%fness of
Joint 2 must be equal zero:

-EJuw . EJuw -0, (28)
ll 12
or
Y=-v - ll = - 3.1044290 . _ 5.3240 (27)
1, : 120 : :

Now, for instance, taking advantage of the third formula of (15),
one obtains the following transcendental equation

Aftan A, + 5.324 tanA, - 5.324 A,= O, (28)

wherefrom, by trials, one can find A;=3.831. Having that, it 1s ve-
ry easy to determine Pe, properly tranforming the expression (3):

GJ. EJ At
- s bdd | EBEJuw
. P P] + P +

8 r2 rz 13 -
.21000-3.86 . 21000-20000 3.98312 _
145 145 2002
2.6'T =

= 601.59 + 3356.98 = 3958.57 kN ¥ 3959 kN. (29)

The Eulerian.buckling loads P, and P_ have been calculated, in
line with [1], according to the foflowingygeneral expression:
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P, T 2001 J = 7.98525 J [kN]. (30)

Substituting for J, in sequence, Jx and Jy. one obtains:

P_= 7.98525-800 ¥ 6388 kN,
x (31)
Py= 7.98525-650 ¥ 5190 kN.

It can be noticed that Pe. compared with Px and P_, is the
smallest critical load. y

Analysing the stiffening effect of the intermediate support 2,
additionally two other boundaring cases of that support have been
studied: hinged and fixed ends. For the hinged end at 2, it is:

.GJ4 ,EJuw n2.
Pe rz *rz 13 2746 kN, 52)
32
- M2EJx o . X2EJy -~
Px 13 4145 kN, Py 13 3368 kN, J
and for the fixed one, respectively:
. GJa EJw 52~
Pg = 7+ 2.092%37-75F 5087 kN,
with 2.092 taken from [19],[20]; (33)
Px= 2-4145 = 8290 kN, Py = 2-3368 = 6736 kN.

Full set of results is given in Table 1. They are characteri-
zed, on the one hand, by smaller values of Pe against P_ and P_ for
any kind of member support at 2, and - by an increase of a11 c¥fitic-
al loads together with the stiffening of that support, on the other.
It should be added that the critical loads calculated develop very
high critical stressed lying outside the elastic range of common
steel. Nevertheless, particular situations could bring up a more re-
al danger of elastic buckling just through torsional instability.

Table 1. Confrontation of critical loads
Critical load [kN]

Type of system Px y Pe
P_r—"'_1

+— 200 4145 3368 2746
P 200 = 120 v 6388 5190 3959
i S —
=B 00 8290 6736 5087

5. FINAL REMARKS

Paper shows the possibilities of the generalized displacement
method in handling the most simple buckling problem associated with
torsion. It is thought to create a basis for the analysis of more
complex stability problems of thin-walled systems, especially con-
tinuous members with monosymmetrical cross-sections treated in [17].
Presented method can be adapted for cases of closed sections.
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ON NONLINEAR FUNCTIONALS FOR SHALLOW SHELLS AND GEOMETRICALLY
IMPERFECT PIATES (D)

R. Dgbrowski

Technical University
of Gdarisk, Poland

SUMMARY - Formal identity of equilibrium and compatibility equa-
tions in terms of normal displacement w and stress function P
in the nonlinear theory of a shallow shell and that of an ini-
tially deformed plate is demonstrated; this is so despite of diffe-
rences in underlying strain-displacement relations (initial twist
curvature in the shallow shell is duly accounted for) . Nonlinear
functionals for both systems are derived.

1 INTRODUCTION

The topic goes back to problems and methods dealt with in the
fifties [1] . Nonlinear equilibrium and compatibility equations
with respect to normal displacement w and stress function F
for a shallow shell, inclusive of residual stresses expressed in
terms of initial stress function ro , are well lknown. Analogous
known equations apply to a plate with initial deflection vy [2]
- also inclusive of residual stresses as well [3] .

However, one difference in both approaches should be pointed
out. Whereas displacements u,v,w in a shell are measured in a
plane tangential to the shell surface and normal to it, respective-
ly, those in an imperfect plate are measured in initial reference
system x,y,z , Xy being plate middle plahe. Consequently, strain
-displacement relations oughtto appear differently.

(T) originelly subtmitted in Polish to Scientific Papers of Tech.
University Gdarisk in June 1985. Publication pending.
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2 EQUILIBRIUM AND COMPATIBILITY EQUATIONS IN GEOMETRICALLY
NONLINEAR THEORY

2.1 Shallow shell

As an example, a shallow shell with initial twist curvature
given by the equation
X XX
g = =+ + (1)
R AL
is considered (two special cases are shown in Pig.1a,b) where
the curvatures are constant:
2y, = /ry =8, :
’fy - 1/ry x Bygy (2)

. Zx‘y = 1/rxy="xy

( indices following a comma denote differentiation) .
Displacement components u,v,w are measured as indicated in
Fig.1a,b . It is implied that normal displacement w 1is, in tech-

nical applications, markedly greater than tangential displacements
u,v . The strain-displacement relations read [1] , 2q.(5.4),

w 1 2
.£x - u’x - rx """2 (w'x)
1 2
Ey = vvy - _:y + -4 (Vty) (3)
b2 = u,_ +v, -2 X w,w
xy y x rxy 'x 'y

Shear strain Ixy has been supplemented by the twist-curva-
ture term (1/rxy + 0).

One notices that for rigid-body translation w in the direc-
tion of g-axis the corresponding displacement components read

wzw, u:?s,x, v-;z,y (4)

and, in accordance with Eqs (3), all strains vanish:
Eg = WBypy = W/r, =0, ... yxy-zﬁ,xy- 2§/rxy =0 (5)
Membrane forces are defined by means of stress function P :

\nx'F’}'y' ny = Py s By == Py (6)
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Pig.1

Donnell-type equilibrium and compatibility equations for shal-
low shells have been derived by V.Z. Vlasov and subsequently by
A.S. Volmir [1] , Eqs (5.27) and (5.28),

kv - 722 = g4+ (WD) (m
BV 0 2 1 L(ww) (8)

in whick X = Bt>/12(1-v®), E and 7 are denoting modulus of elas-
ticity and Poisson coefficient, respectively; q is the normal
load, and

vz - ( )'n + ( )’yy
2 1 2 1
Vc = ;;( )ln - F;( ),n + ;;( )ln (9) o
L(w,F) = w,—ul,” - Z\v,vr,n + w,”r,n

(in the operator Vg twist curvature is duly presented ).

Inclusion of residual stresses can proceed as done subsequ-
ently under 2.2 for an imperfect plate.

2.2 Imperfect plate with residual stresses

A simply supported rectangular plate is considred, with ini-
tial stress-free deformation given by (Pig.2)

vy = -tsin%ain% (10)

and ( variable ) curvatures
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Pig.2

2
Iz x X
Xy =Vorxx = gelnT ey

a
22 X T
Xy xVoryy * ?ainTsinBZ (11

ttz rx T
kng "O’!’ = -—a-FCOB—a-cO!f
Displacement components u,v,w are measured strictly along
the coordinates x,y,z (Pig.2) . Strain-displacement relations
due to Marguerre [2] read now, see e.g. [1], Egs (45) :

£y = Wy + Wy Woyo + %(V.x)z

£y = Voy * VayWoey + %(w,y)z (12)

’xy = Uy + Vg ¥ WoyWory + WogWosy + WypWyy

One notices that for rigid-body translation along gz-axis
equal W a strain-free state of deformation is a priori secured.
One also notices that derivatives of u and v appearing in
Bgs (3) and (12) = identically written - have different meaning.
Also corresponding terms like v/rr and w,,W,,, are not necessa-
rily identical.

The residual stresses are defined as follows:
o = Foryy + 5o " Torxx * gyo = - Forxy (13)

Combined with initial deflection Yo s they constitute a selfcon-
tained system without any external forces required for equilibrium.

Equilibrium and compatibility equations assume final form
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kv = qQ + L(wgtw, F) + L(v,Fo) » (14)

FVIP = - Lwg,w)  F Lw,w) (15)
in which q 18 the load acting in g-direction. Herewith the known
Marguerre equations [2] have been supplemented by the effect of
residual stresses, see also[3].

Iet now the effect of residual stresses in Eq.(14) be sup-
pressed, L(w,]!'o) = 0 . Assuming for small curvatures the following
relations:

Vorxx F 1/xy Voryy = 1/::-y R Vorxy = 1/1':xy (16)
one obtains from definitions of Vi and 1 according to ( 9) the
following correspondencies:

L(wg,F) = \7§F and L(wo,w) = ng (17)

and thus formal identities of Eqe (14) and (15) for an imperfect
vlate with Eqs (7) and (8) for a "pretwisted" shallow shell. This
is 80 despite of differences in underlying strain-displacement
relations according to Eq. (12) and Eq.(3) , respectively, and
despite, or rather because, of disparity in definition of displa-
cement components (Fig.1 as opposed to Fig.2) .

3  FUNCTIONALS

In the case under consideration, a functional Tl constitutes
an area integral of a function f(...) expressed by w(x,y) and
F(x,v) an their first and second derivatives:

T = ”f(wngxowoyvwsxx'w’xytvyyy3
F,x 14 F’y 9 F’xx 1] F’xy 1] F’y-y) dx dy (18)
Stationarity of functional T1 corresponds to vanishing of
the first variation: 6[T= O . From this condition the following

Bulerian equation with respect (firstly ) to displacement w and
its derivatives results (4] ¢

22 _of 02 o . 22 ot
5;2 Yo xx D';Z' 7)w’yy 3x3y D"xy
¢ of o 0of of
-Eaﬁ - 5?0‘-'-,-; + 5o =0 19
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Analogous Eulerian equation applies to derivatives of the stress
function F . Equation (19) is valid over the whole shell or plate
surface and, in general, is supplemented by appropriate boundary
conditions with respect to displacement w and derivatives of the
stress function F .

From Eq.(19) equilibrium equation (7) ought to follow, from
another one - the corresponding comvatibility equation (8) , or
Egqs (14) and (15) , respectively.

3.1 Functional for shallow shell

The functional TT constitutes strain energy of the structure
due to bending, membrane strains and is completed by the potential
of extermal forces:

Il = V. +V_+V

»* 'm 1 (20)

In order to arrive at postulated equilibrium and compatibility
equations, the membrane strain energy Vm is expressed in the form
of a total energy (the sum of strain and complementary energies )
from which the complementary energy is subtracted:

Vm = J[ (nxg + nygy + nxy)’xy) dxdy
- m/f[(r,n + (F,yywz- 29F,nr,yy + 2(1+V)(F, \zj dxdy (21)

The total-energy expression 1is integrated by parts; the re- -
sulting new integral is accompanied by the boundary term

[/ (F,pqu - way] ::: e [/(r, v - F,xyu)dx] iso

which is cancelled by similar negative term of the edge load poten-
tial in Vl .

Under the assumption that at the boundaries the normal displa-
cement w vanishes (Fig.1) the following functional is obtained:

M = §//[(vzw)2 - (1-») L(w,w)] dxdy
- o /S [ (V2F)? = C149) L, 7)) dxay
1
+//| ; F,y 'y * —yl“,x 'x = ;i'y(l"-yw,x + F,xw,y)] dxdy

& [ Rrgg(r ) + r,n(w.,> - 2P, W,y ¥, | dxdy - ff qwdxdy (23)

=b

(22)
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(Attention is drawn to the minus sign before the second integrel.)
Thus Broude’s functional given recently [3] has been confirmed
and extended to account for initial twist curvature.

It can be checqued that for this functional from Eulerian
equation (19) the equilibrium equation (7),as should be,is obtai-
ned; in similar way the compatibility equation (8) is confirmed.
Functional and equations are valid for constant curvatures.

3.2 Functional for imperfect plate

Nonlinear functional for a bend and stretched plate - without
imperfections of geometry and residual stresses - has been derived
in the early fifties by A.S. Volmir (1], Eq.(1.116) . Supplemented
by both mentioned effects it reads in terms of displacement w
along g-axis (Fig.2) and stress function P as follows:

= $#/[(930?% - (1-v)T0w,w) ] axay
- s/ I(VZP? - (14v) L2, P)] axdy
+ %[/{F,W[Zw,xwo,x s (w2 P [ 2V0 00y + (,,,'y)z]
- ZF'xy(“'x"'O’y + WorWory * ""x"'y)} dxdy
+ 34/ [Porgy(Mrx+ Forgx(¥ep)’ - 2Ry0 py¥ag¥ey] dXdy

- /) a w dxdy (24)

Functional (24) is valid for variable curvatures Yorax *
Yoryy and Yorxy * and w = 0 at the boundaries. ( In a functional
given for the case under consideration by B.M. Broude [3] a slight
correction regarding the effect of initial deflection Wy had to be
introduced, as done here in the third and fourth line of functio-
nal (24) . The author of [3] has subsequently corrected his functio-
nal in another paper published in No 4/86 of the same journal.)
Functional (24) is congruent with former Eqs (14) and (15) .

The following observation is worth noticing. If the functio-
nal (24) is devoid of residual stresses (derivatives of ¥, vanish)
and constant curvaturesare assumed, integrationby parts of (24)
yields its formal identity with functional (23) .
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3.3 Final remark

‘In numerical computations of stresses and deformations of
steel-plated structures, more expedient than functional (24) can
turh out to be an alternative functional in which all three dis-
vlacement components u,v,w and the membrane forces Dys ’
are the unknowns [5] , instead of w and P . The condition
S[T= 0 yields three equilibrium equations and three nonlinear
compatibility relations, and boundary conditions as well.

Interesting is the application of the new functional to an
aporoximate analysis of postcritical behavior of a rib-stiffened
vlate forming a compressed lower box-girder flange (as hapvens to
be at intermediate supports in continuous girder bridges). Appli-
cation is limited to (physically linear) elastic behavior. However
discretely stiffened plate is treated as an doublelayered continuum.

"Shear lag is intrinsically accounted for.
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THE GENERAL NUMERICAL SOLUTION
OF THE LAME’S EQUATIONS BY HAJDIN“S METHOD

Petar S. Petrovié
Civil Engineering Faculty, University of Beograd
Bulevar Revolucije 73, Beograd 11000, Yugoslavia

SUMMARY

The three-dimensional state of stresses and deformations of an elastic, ho-
mogeneous and isotropic rectangular plate with constant thickness, described by
the equilibrium equations of the Theory of elasticity expressed only with displa- -
cements and body forces, is determined. These Lame’s partial differential equa-
tions, together with arbitrary boundary conditions on any of the plate’s surfa-
ces, are solved by application of Hajdin“s method of integral equations |1], |4],
I5]. As an illustration of the obtained solution, the results for a simply sup-
ported square plate subjected to a sinusoidal transverse load on the upper surfa-
ce, is presented. The results for a rough mesh 3 x3 placed on horizontal plane of
a quarter of a plate, and 5 horizontal planes across the thickness of a plate,
show very good agreement with exact solution |7].

INTRODUCTION

The basic problem of the linear Theory of elasticity - determination of sta-
te of stresses and deformations of an elastic body for the prescribed boundary
conditions, has been focusing the attention of scientists for many years now. And
while some of problems of the Theory of elasticity, which can be simplified to
one-dimensional or two-dimensional problems, are solved, the three-dimensional
solutions are very rare, being only given for the simplest forms of elastic bodi-
es with the simplest boundary conditions.

Navier in 1821 was the first one who derived the equilibrium equations of an
isotropic elastic body expressed through displacements, but containing only one
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constant for description of elastic properties of an elastic body. In such a way
the three-dimensional problem of the Theory of elasticity was for the first time
reduced to solution of differential equations containing only displacements U, V
and W as unknowns. In the present form the equilibrium equations were derived by
G. Lamé in 1852, and they comprehend two constants for description of elastic pro-
perties of an elastic body (G=E/(2+2-u) and Poisson’s ratio u).

The general solution of these three Lamé’s equations:

a2y 32y 3%y 3%v 3w X
‘| ¢ ) —
(a+1) ax2 * ay? * 3z +at Ixdy * axdz ' * G 0 M
32v 32v 32v , & 2w Y
Gl afrs mi il Ml et v e B (2)
32w 32w Xl 32y a2v b4
+ =+ (a1 o +— =
Ix2 3y (a+1) az? +ast Ixaz * dydz ) G 0 3)

(E =modulus of elasticity, a=1/(1-2+p); X, Y, Z = body forces, U, V, W=displa-
cements in x,.y and z directions respectively) in the form of three biharmonic
functions was given by Boussinesq in 1885, and in the formof four harmonic func-
tions - by P.F.Papkovich in 1932. Two years later H.Neuber arrived at the same so-
lution. In 1959 V.M.Deyev developed the general solution of Lamé’s equations - a
class of functions which has infinite number of mutually different general solu-
tions in form, in function of three arbitrary constants; for determined values of
these constants his solution equals to Papkovich’s solution.

Many scientists were engaged to solve Lamé°s equations, presenting either
"'general solution'" or "solution' of concrete problem: G.Lamé& (1852), P.A.Schiff
(1891), Kelvin (1863), 0.Tedon (1994), P.Burgatti (1926), B. G. Galerkin (1930) ,
G.D.Grodskij (1935), M.G.Slobodjanskij (1938), L.N.Ter-Mkrtichjan (1944), M.M.Fi-
lonenko-Borodich (1951), L.P.Vinokurov (1951), F.S.Churikov (1953), M. Mischonov
(1960), V.V.Vischnjakov (1963), S.M.Saakjan (1966), A.B.Zolotov (1971), B.M. Li-
sicin (1971), N.A.Telegina (1972), B.F.Viasov (1974), A.A.Rogovoj (1976), Isamu
Okomura (1976), S.M.Hzardzan (1978), E.Bajda (1983), N.Bojko (1983) and others.

TRANSFORMATION OF LAME“S EQUATIONS

Consider a homogeneous, isotropic and elastic rectangular plate (parallele-
piped - Fig.1) which has: four lateral surfaces denoted with A, B, C and D; the
upper surface is E, and the lower surface is F. The x and y axes of rectangular
coordinate system lie in the surface E and intersection of the surfaces E and A,
and E and C respectively., The z axis, intersection of the surfaces A and C, po-
ints downwards to form a left coordinate system. Each of the edges (d,, d,, dj)
of a rectangular parallelepiped is divided into acertain number of parts, and the
planes parallel to coordinate planes are placed through the points obtained in
such a way. Intersections of these planes produce mutually orthogonal lines Xis
Yjr Zks along which the Lamé”s equations are transformed into a system of alge-
braic equations |1]|. Calculating points of a parallelepiped are in intersections
of these lines. Position of calculating points is as follows:

- in a parallelepiped: points of parallelepiped (total of m points) i=1,2,
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oyl j=1,2,...,J and k=1,2,...,k;

- on surfaces of a parallelepiped - boundary points (total of n points): po-
lyhedral angles (ACE, BCE, ADE, BDE, ACF, BCF, ADF and BDF), edges without poly-
hedral angles (CE, DE, CF, DF, AE, BE, AF, BF, AC, BC, AD and BD), and surfaces
without edges and polyhedral angles (A, B, C, D, E and F).

(D

Wi th denotations

3%s 32s 32s
a2 T TP s T T Td s T T (4,5,6)
32s 3a2s 3%s
ay T % 0wz T B v ez T Ys o (189

where p_, qg,..., vg are 'fictive loads', and S=U,V,W, equations (1) to (3) beco-
me a system of three algebraic equations. Let us write this system of algebraic
equations for each of calculating points of a parallelepiped (m+n). Let us form a
system of matrix equations from the systems of algebraic equations obtained in
such a way:

- for m calculating points in a parallelepiped:

Copy,+ Qg tE, = oale, +p,) + %-l (10)
P, tcq + ¥, = ala +¥ ) + —:;"'l ()
Pt Q +t cow, = oa(p, +¥,) + %’z (12)

(c=a+1)

- for n calculating points on the surfaces of a parallelepiped:

CPui ¥ Qur * Fur = as(oly, +Pywx) (13)
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Pua t S Que* Tyx = ac(ot, +¥ ) v (14)

Pusx ¥ Guwx * T = a(Pux + ¥ i) (15)
These two systems have to be solved satisfying prescribed boundary conditions at
each of calculating boundary points (n). It is very clear that solution of these
systems of matrix equations can be obtained only by introducing expressions for
fictive loads (pg,...,vg) resulted as solutions of (4) to (9) equations.

HAJDIN S METHOD OF INTEGRAL EQUATIONS

Each of the members of the Lamé”s equations - expressions (4) to (9), con-
sidered as apartial differential equation of the form

2
_a_s_;_::_,fy_,_z)_ = - pgix,y,2) (16)
or

325 (x,y,2) .

3038 re(x.y,2) , (17

(ps and r  are unknown functions - fictive loads, and S=U,V,W; a,B=x,y,z) along
the straight lines xi(i=l,...,M), y:(j=1,...,N) and z) (k=1,...,K) (always two co-
ordinates are constant) represents ordinary differential equation of the form

y'(x) = - plx) (18)
y (x) = r(x). (19)

If solutions of these two ordinary differential equations are known, then the so-
lutions to the equations (4) to (9) can be obtained.

or

A method of numerical solution of boundary value problems of ordinary line-
ar differential equations and of partial differential equations, was developed by
Nikola Hajdin |1| in 1956.

According to the analogy with differential equations of linear systems of the
Theory of structures, equation (18) is a differential equation of bending moments
Y of a simple beam, loaded with p(x) along its span d and with bending moments Y,
and Yg at the supports A and B. The equation (19) is a differential equation of
shear forces. The kernels of the integral equations - Green“s functions a(x,£) and
a“(x,E) respectively, which appear in solution of these equations, represent the
influence lines (functions) of the bending moments and shearing forces respecti-
vely, of a simple beam of a span d.

Numerical solutions of equations (18) and (19), defined in the interval [O,d] ,
with prescribed boundary conditions at the ends x=0 and x=d, applying anyone of
the methods of numerical integration, at the points x;(i=1,2,...,M) and in matrix
form, are as follows |1], |4], |5]:

Y = Ap+ AA--pA + AB-pB + ‘A'YA + nB'YB (20)
= < = ’. ’. ‘. '. ’.
4 Y Ap+AApA+ABpB+!AYA+!BYB (21)

It is supposed that equation (18) is the first derivative in respect to x of the
equation (19), and that the boundary conditions for both of these equations are
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the same. In the papers |1| to |6]| and |8| definition and procedure for obtaining
a Green“s function (influence functions for: shear force, bending moment, tangent
on elastic line and elastic line) is shown in detail, including general form of:
matrices Q and @ (for a simple beam - ordinates of a Green”s function ((a(x,£)
and a“(x,g) respectively) - influence line of bending moment and of shear force
respectively) for arbitrary, symmetric and antisymmetric loads; matrices of nu-
merical integration (&) and interpolation of load p(x) (L), and product of mat-
rices A =Q-d'L and A° = aQ’-d-L.

In the equations (20) and (21) unknowns are: ¥, Y°, p, p, and Pg’ where P
matrix represents ordinates of unknown load p(x) at calculating points i (i=1,2,
«..yM), and p, and p_ are ordinate of the same load, but above supports A and B
respectively. From tRese two equations may be expressed matrices p and ¥~ with
¥, p, and p_; so, there is a surplus of two unknowns: Pa and Pg: There are two
possibilities to find them:

- the first one: by extrapolation of neighbouring ordinates (p;, p,, p3 and
Pu-2° Pu-1 P respectively) from matrix p:

Pa = Cia'P (22)

Pg = C,,°P (23)
In this case equations (20) and (21) become

Y = Bp+ BV, + B0V, (24)

¥ = Y = Bp+ BV, + ByeYy (25)

This way is simple and easy (error is small), but when is applied in solving of
equations (4) to (9), Lamé"s equations are not satisfied on the surface of a pa-
rallelepiped.

- the second one: the correct way is to look for new two equations for p
and Pg. as it is done in |8]; using prescribed boundary conditions it isobtained:

Pa = PppP + Y + 8y (26)
Py = Mg, P+ By, Y *+ 8 (27)

With these values of Pa and Pg Lamé°s equations are satisfied on the surface of a
parallelepiped. Exact values of Pa and Pg depend only fromselected: interpola-
tion of loads, way of numerical integration and mesh density of calculating lines
(for roughmesh also depend from loads).

»

SOLUTIONS OF EQUATIONS WITH FICTIVE LOADS

We shall consider that logical sequence of the elements in a column matrix
is realised if:

- all the elements with values of displacements U, then V, then W, are pla-
ced in order; and )

- all the elements with values of eachof said displacements are arranged at
the increasing indexes i, followed by j, and then k, i.e. i,j,k.

While forming some of column matrices with displacements U, V and W, due to

173



the procedure of numerical integration, the sequence of elements at the increa-
sing indexes i,j,k could not be written directly. The combinations of these sequ-
ences are: k,i; k,j; j,i and j,k,i. Such column matreces need to be transformed
at the increasing indexes: i,k; j,k; i,j and 1,j,k respectively |1]|, |4], |8].

Along the straight lines y;=const. and z=const. the equation (4) becomes
ordinary differential equation

2
_dlxrs(x,yj’zk) = 'Ps(xth'zk) ’ (28)

which in its form resembles the equation (18). According to the expressions (24)
and (25) at the points x;,it follows (i=1,2,...,1; q=A,B):
-1

Poik ™ A8 T BasikSajk T Basjk Sk (29)
Sk " Lok ® t BaggeSajk * Vesjk ek (30)
S (31)

aik = qPsik Bk * qlasjkSajk * qlssjkSBjk
Let us solve the equation (4) for each of calculating lines y.(j=1,2,...J)
(then, it is a solution for planes XY - for zk-const.) also, and wr{te J expres-

sions (29) to (31):
1

t 3§ - L] - * L] : - * .
Psk Ao® ” BoakSak T Blek Sax (32)
8, = LS LSt LS (33)
STk = Bk Sk * Bk ®ak * qTsek Bsk (34)

Finally, let us solve the equation (4) for eachof calculating lines z) (k=1,
24...K) also, and write K expressions (32) to (34), and then all necessary first
derivatives in respect to x, at the calculating points of:

- a parallelepiped:

= -IQ - * . - * .

P As 9 ‘As SA .Bs Sa (35)

8 = LS+ L 8, +L -8 (36)
- surfaces:

sq = qns-s + qLAs-sA + qLBs.sB (37)

sr = sz.sr * LAsj'sAr * Lssj.sBr (38)

L A T L TURM T (39)
- edges:

srt ,- szk.srt * l'A\sjk."ii\rt * l"Bs_ik.::'Brt (40)

sqt = quk.st * qLAsk.sAt * qLBsk.th (k1)

sqr = quj‘sr * qLAsj.air * qlhsj.’Br (2)
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- polyhedral angles:
Sqrt = qujk.srt * qLAsjk.SArt * qLstk.sBrt (43)
(s=u,v,w S=U,V,W q=A,B r=C,D t=E,F)

Solutions to the equations (5) and (6) will be obtained in a similar way to
that described for the equation (4). Applying the transformationmatrices,we fi-
nally obtain:

L - a;'-s T P8 T RS (44)
s = M S + M B + W S , and so on. (45)
r, - C '-8-06 .8 -a .8 (46)
s = NS'S + “Es'sE + “Fs.sF , and so on. (47)

Along the straight lines y.=const. and z =const., the equation (7) becomes
ordinary differential equation

d e
'—d';-S(x,yj,zk) = as(x,yj,zk) . (48)

which in its form resembles the equation (19). According to the expression (25)
at the points x; (i=1,2,...,1), it follows:

osik = LSk * BsajkSajk * Bsejk ek (49)

Let us solve the equation (48) also for each of the calculatin lines y. (j=
1,2,...,J), and then, also, for each of the calculating lines L (k=1,2,...5K):

& = LS+ L, 8 +L.B (50)
or
oy T X8 X o8 ¢ X g8y b X o8 XSt
Xoac Sac * s8¢ Ssc * %san %a0 * X80 %80 (51)

Solutions to the equations (8) and (9) will be obtained in a similar way to
that described for the equation (7). Applying the transformationmatrices, we fi-
nally obtain:

P, = YS-S+Y5A-5 +Y S +Y _-S +YsF-sF+

A sB B st E
* Yo ®ae t Yoee ®se * Ysar Sar * Yser Ser (52)
¥ = B8 + TS+ T oS, + TS 4T oS+
* e Sce t oo Soe * FscrScr * BsorSor (53)

BOUNDARY CONDITIONS

The boundary value problems of the Theory of elasticity are classified ac-
cording to boundary conditions into problems for which:

175



- displacements are prescribed everywhere on the boundary;

- stresses (surface forces) are prescribed everywhere on the boundary; and

- displacements are prescribed over a portion of the boundary, stresses are
prescribed over the remaining part of the boundary.

At each of n boundary calculating points:
no=2e[1ed 4 1K+ JoK + 2:(1 +J +K) + 4] (43)

(on the surfaces: 2<(1+J + 1K + J+K); edges: 4+(1 + J + K) and at the polyhedral
anles: 8) three boundary conditions are to be satisfied.

Let us denote matrices of displacements at calculating points in a paralle-
lepiped with )
h = [lufviw|" , , (44)

and on the boundary - surfaces, edges and polyhedral angles withsimilar matrices:
ﬁ*, h** and h*** respectively. Matrices of surface forces we may denote with

T
P, = ” Pyx | Py, | Pza " (45)
if they are on the surfaces, and with Pasx 39 Py - if they are at calculating

points of edges and polyhedral angles, respestively.

For those problems in which boundary displacements components are given e-
verywhere “(h%, H** and h***.) on the boundary, these displacements
h, = 0 , A, = R , K, = b (46 a,b,c)
have to be introduced directly into the Lamé”s equations.

For those problems in which surface forces are prescribed everywhere on the
boundary, have to be used relation between surface forces and displacements:
1

TP - (c-U‘+b-\'/+b-V)-cos¢x + (ﬁ+v‘)-cosoy + (U+V')-cos¢z (47)
%opy = (6+V’)-cos¢x + .(c-\./+b-\.'l'+ beU”) -cosé, + w +V) «cos¢, (48)
-é-pz = (.l3+\vl‘)-1:osox + W +V)-cosoy + (c*W+beU” +beV) ~cosd, (49)

a=1/(1-2.y)  bw=a-1 c=a+l G =E/(2+2y) , (50)

where ¢, QY and ¢, are angles between the normal on the surface and x, y and z
coordinate axes respectively. The first derivative in respect to x with a dash
() is denoted, the first derivative in respect to y-with a dot (°), and in res-
pect to z - with two dots (7).

Let us write these three equations for each of boundary calculating points,
and then let us form a system of matrix equations:

1 . . . . L e
TP« T @ - (ccU +b-V+b-W + 9y-(u+v ) + @, (W7 +u) (51)
1 - . . . o o o
TPy - @, (U+V7) + Qy-(b-u +cV+bW) + @« (V+W) (52)
1 T T T i o
TP, - ..,x-(w +0) + * (V+W) + °, (beU” + beV + c*W) (53)
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By introducing matrix expressions for the first derivative of boundary dis-
placements in calculating points in respect to x, to y and to z, obtained in the
part SOLUTION OF EQUATIONS WITH FICTIVE LOADS, into the equations (51) to (53),
bearing in mind equations (4k4) amd (45), we shall obtain next three matrix equa-
tions for calculating points of:

- surfaces:

1 %

cP = Dh+D.h +D, h, (54)
- edges:

1

.G—p** = Kech s K b Kb (55)
- polyhedral angles:

1

EP*** ol PUCL TR T (56)

For those problems having ''mixed' boundary conditions, for surface forces
prescribed over a portion of the boundary,we have to use equations (54) to (56),
and for displacements prescribed over the remaining part of the boundary - equa-
tions (46 a,b,c).

"‘Mixed" boundary conditions are the general form of the boundary conditions
for a parallelepiped. There are 3°n boundary conditions. Let us denotewith e and
f number of prescribed displacements and surface forces respectively:

e+ f = 3en (57)
and with ep and fp number of prescribed displacements and surface forces respec-
tively,which are on the surfaces, with ei and fi - on edges, and with er and fr
-at ‘polyhedral angles; then exist next equations:

ep +el +er = e (58)
fp+ fi + fr = f (59)
ep + fp = 6e(leJ + 1K + JoK) (60)
el +fi = 12:(1 + J +K) (61)
er + fr = 24 (62)

If we take out those rows,from matrices in the equations (54) to (56), which
correspond to prescribed displacements, and then solve insuch away obtained mat-
rix equations, we shall have:

1

**fp = - “3'h + -G-°H5 (63)
1

Mow; = Worh + 2oWy (64)
1

"***fr Hg-h + ToBy (65)

),

In that way unknown displacements of calculating points on the surfaces (b*f
edges (h** ') and polyhedral angles (l\** ) are expressed with dlsplacemegts
of calculatfng points in a parallelepiped ’(ﬁ), and equations (63) to (65) are the
general form of boundary conditions for a parallelepiped.

SOLUTION OF THE LAME“S EQUATIONS

The matrix form of the Lamé"s equations are equations (10) to (12) (there are
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3+m equations) and (13) to (15) (there are 3+n equations). These two systems rep-
resent a system of 3+m + 3¢n linear algebraic equations with total of 15:m + 15<n
unknown fictive loads Pyse--sYy at all of the calculating points.

SOLUTION WITH EXTRAPOLATED VALUES OF "pA“ and "pB"

The Lamé“s equations (13) td (15) are not satisfied with extrapolated valu-
es of "PA" and anu.

In the Lamé“s equations (10) to (12) there are 3+m algebraic equations with
15em unknown loads Pyseevsye By introducing matrix expressions for fictive loads,
obtained in the part SOLUTION OF EQUATIONS WITH FICTIVE LOADS (3-m + 3-n displa-
cements in 15 m algebraic equations), into a system of matrix equations (10) to
(12), it is obtained a matrix equation

1
Rh = Roh, +R -h, +cZ, (66)
where matrix %, represents a matrix of body forces:
T
2, = lix|ly|z] (67)

Each of the matrices b, and h_, has two column matrices of:
- prescribed disolacements: ‘\: and hg*
- unknown diplacements: h,candh .,

and equation (66) may be written as follows:

Rh = R ch, + R, h, + (3, ¢ R) (68)

**k

This matrix equation represents a system of 3em linear algebraic equations with
3em + fp + fi unknown displacements of calculating points.

?y mtrodt:nsmg ma?rix expressions (63) ar'vd (64) (h*f - h*f&' h**f - h*fgé;
fp+fi algebraic equations with 3+m unknown displacements) into the equation )
it is obtained the general numerical solution of the Lamé°s equations-for a para-
llelepiped:

- -é-.gl.az (69)
h,. = (M3 R "R, + W) (70)
b = 5 (G R "R, + Ky) (71)
L %'(us‘al"‘z + Hy) (72)

SOLUTION WITH CORRECT VALUES OF "pA" AND "'pg"

For the fictive load p(x,y,z) we may write two equations of the tipe (26) and
(27) for fictive loads "pA“ and "pB“ on the ends of the line connecting boundary
calculating points A and B, taking into account boundary conditions at A and B:

P = [P+ PAY+R, : (73)
In this equation there are no boundary displacements. In that way, instead of
the equations (24) and (25) we have to use equations (20) and (21), by introducing
into them the expression (73) for Pa and Py’
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Y = x.p + ‘A’YA + EB-Y8 + ‘O (74)
¥ o= Y = RTp o+ BY, + BIY, 4 £; (75)
Now, for example, solution of the equation (28) is not the equation (29), but
- -‘ L] - * . - * L] - *
Paik = oSk Basc Sk T Tesi Sajk - Bosjk ¢ (299)
and so on.

In that way we shall get in a matrix form solution for each of fictive lo-
ads in a form:
- for calculating points in a parallelepiped:

p, - X''s-x 8 -g (76)
- for boundary calculating points:
’*s = pps.Ps * fbs.s + PO*S an

For all fictive loads (Ts-pu,...,yw; T*s'p*u""’Y*w) equations (76) and
(77) become equations of tne next tipe: :

T, o= Y B Y 8 Y (78)
Tag = Xy T, + X, 84T (79)

The equation (78) has 15:m algebraic equations with 3+m + 3+n displacements, and
the equation (79) has 15-n equations with 3-.m + 3+n displacements.

The Lamé“s equations (10) to (12) may be written in a form

1
T, = t % ’ (80)
and the equations (13) to (15) in a form:
R-T,. = 0O (81)

By introducing matrices '!s and T*s in these two equations, it is obtained
1

‘1'9 + ll*'O* -3 (za + Rlo*) (82)

Q{! + az*~s* =R, (83)

Two systems of matrix equations (82) and (83) have 3+m+3+n linear algebra-
ic equations and 3°m+ 3+n unknown displacements. Solution of these two equations

-1 -1 1 -1
8 - (R -R R, R) 'E'[‘?a*‘lo*) 'Rl*'kzt'azot] (84)
-1
8, = R, (R, - R,8) (85)
is the general solution of the Lamé“s equations for prescribed arbitrary bounda-
ry conditions, which satisfied the Lamé"s equations on the boundary also.
NUMERICAL EXAMPLE AND RESULTS

As an illustration of the obtained solution (69) to (72), the results
for a simply supported square plate subjected to sinusoidal transverse load on the
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upper surface p = poosin"—x-sinly— is presented. Calculation is carried out
forivalueof Poisson”s ratio u=0,30 and a plate lateral dimension to thickness (h)
ratio d/h = 3: d, = d = 3+d, = 3+h.(s = d/6, s; = h/6 = 5/3).

Boundary conditions for a simply supported plate are taken as follows:

x = A, B: V=20 Wa=0 oy = 0
y =C, D: U=20 W=0 o, =0
Yy
z=E: sz'° -ryz-O 9, =-p
z=F: Tz = 0 ryz-o 01-0

Displacements are calculated at the points on one sixthof eash of dimensions
of a plate, With horizontal and vertical planes a plate is divided on 216 small
parallelepipeds with total 343 calculatin points and 1029 displacements.

Due to symmetric loads and symmetric boundary conditions only a quarter of
plate is taken into consideration, and a rough mesh is placed on it: 3x3 in a
horizontal plane and 5 horizontal planes across the thickness of a plate (Fig.2).
Symmetry of loads and boundary conditions reduced number of unknown displacements
on 60,

Coefficients K, of a plate”s middle plane vertical displacements are presen-
ted (at the points denoted with : 19, 20, 21, 22, 23, 24, 25, 26 and 27, which

Fig..2 A quarter of plate with meshes at horizontal and vertical planes,
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are on the same vertical calculating line with: 1, 2, 3, 4, 5, 6, 7, 8and 9 res-
pectively) in Table 1 (W = K *p -lo-sod/E) together with exact solution of:

- theory of thin plates |9];

- Reissner’s theory of plates [9|; and

- Lamé’s equations |7/,
and solution of the equations of Reissner”s theory of plates by Hajdin“s metod
|10].

Value of K, in vertical displacements W = K,ep 10 5.d/E
calcu- Solution of equations . error in %
;::;:g exact _ Hajdtn s method 5)-(2) | 6)-(3)

Lamé |Reissner plates Lamé |Reissner (2) (3)

! 2 3 b 5 6 7 8

(19) 1 29089 28994 18918 29294 29018 0,70 0,08
(20) 2 50383 50219 32766 50764 50254 0,76 0,07
(21) 3 58177 57988 37835 58629 58016 0,76 0,05
(22) & 50383 50219 32766 50764 50254 0,76 0,07
(23) 5| 87266 | 86981 | s6753 | 87945 | 87055 | 0,78 0,08
(24) 6 | 100766 | 100438 65532 | 101568 | 100512 0,80 0,07
(25) 7| 58177 | 57988 | 37835 | 58629 | 58016 | 0,76 0,05
(26) 8 | 100766 | 100438 65532 | 101568 | 100512 0,80 0,07
(27) 9 ] 116355 | 115976 75670 | 117308 | 116053 0,82 0,07

Table 1 Coefficients K, (W = K, py*1075+d/E
for sinusoidal load; d, = dy = 3¢d, = 3¢h; u=10,30

CONCLUSION

The general numerical solution of the Lamé“s equations (including body for-
ces) for an elastic, homogeneous and isotropic rectangular plate with constant
thickness, is presented. These equations are solved by application of Hajdin’s
method of integral equations on two ways:

- the first one: with extrapolation of values of fictive loads on the boun-
dary,Lamé"s equations are not satisfied on the boundary; calculation is not ex-
tensive, and error is small; and

- the second one: with exact values of fictive loads on the boundary,Lamé&”s
equations are satisfied on the boundary also; calculation is extensive, and may
be expected very small error (calculation in this paper is carried out using the
first way).

Calculation of a plate”s middle plane vertical displacements, for the same
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rough mesh 3 x3 on a quarter of a plate, show:

- excelent agreement with exact solution (<0,08%), when Hajdin“s method is
applied to problems in the plane (Reissner”s theory of plates - even better then
Finite element method - with same number of unknown displacements - see |5]),

- good agreement with exact solution (<0,82%) when Hajdin“s method is ap-
plied to three-dimensional problems (Lamé&"s equations).’

Similar to the other numerical methods employed in solving problems of the
Theory of elasticity, the accuracy depends on number of calculating points, na-
mely, on density of mesh of calculating lines applied, but also from: selected
method of numerical integration and interpolation of loads, and of wished extent
of calculations - with or without accurate values for fictive loads on the boun-
dary.

To get exelent agreement with exact solution of the Lamé”s equations - let s
say <0,1%, calculation should be carried out on the second way and with fine
meshes in horizontal and vertical planes.
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A RAYLEIGH ESTIMATE OF THE FﬁNDAHINTAL FREQUENCY OF SIMPLY SUPPORTED SLABS
WITH INTERMEDIATE COLUMN SUPPORTS

M.N. Pavlovié

Department of Civil Engineering, Imperial College of Science and Technology,
University of London

SUMMARY

A simple method for estimating the lowest natural frequency of
boundary-supported slabs with additional interior supports is presented
through the use of Rayleigh's quotient, in which the assumed vibrating shape
is obtained by superimposing known statical solutions. While the proposed
technique 1is 1illustrated chiefly by reference to simply supported,
isotropic, rectangular slabs with single internal point support, the
possibility of iLs extension to more general systems is also discussed.

1. INTRODUCTION

The naturul response of rectangular plates with point supports along its
edges has been the subject of a considerable number of studies (1-10]. On
the other hand, the related problem when these supports are located
throughout the span has received wuch less attention. This is somewhat
surprising, since edge-supported plates having additional point supports
elsevhere have, besides their intrinsic mechanics interest, a wide field of
practical application. An obvious example is that of simply supported
plates such as the slabs frequently encountered in civil engineering
construction, where the element sides are often stiffened by edge beams
possessing high flexural - but relatively low torsional - properties.

The main contribution to the free-vibration problem of a plate hinged
along its contour and having point supports inside its span appears to be
that of Nowacki, whose early work ([l11) was later incorporated into his
classic textbook [12]). Nowacki only deals with one point support and even
this leads to a cumbersome characteristic equation. Its awkwardness is
apparent from the fact that the value of fundamental frequency calculated
for a square plate with a central point support shows considerable
disagreement with the corresponding result stemming from the more general
computation in which the support 1is allowed to relocate along the
centreline; this was already noted by Leissa [13], who summarized the seven
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values of lowest frequency for plates with point supports worked out by
Nowacki (one of which is, as just pointed out, incorrect). It is clear,
therefore, that in view of the cumbersome nature of the characteristic
condition, Nowacki's method requires considerable care even in the case of a
single point support while its use becomes far too cumbersome for practical
application if more than one support is present (unless all the supports lie
on a line parallel to either pair of sides). The reason for this is that
the method is based, essentially, on Levy's technique, so that additional
points will, in general, require a larger number of regions (and associated
integration constants) to be matched, leading to very lengthy and awkward
algebraic and numerical work.

An even more involved analytical investigation of the free transverse
vibrations of rectangular slabs simply supported along the periphery and
resting on interior (supporting) columns was carried out by Lynn and
Kumbasar (l4]}. Their study was aimed primarily at achieving a wore
realistic modelling of actual column behaviour and thus improving on
Nowacki's method. This was to be done by taking into account the size of
the column and by imposing this element's restraining forces on the plate so
as to preserve the continuity of the plate-column system. However, the
compatibility equation used was not exact since the continuity of the system
was satisfied only at the centre of the column heads. More important still
is the fact that the stress distribution adopted does not appear to conform
to that expected to occur in a rigid plate-to-column joint (15}. Therefore,
it is difficult to judge the accuracy of the results of the two numerical
examples presented in Ref. 14. (These refer to a square plate with one and
four (symmetric) interior supports respectively.)

In the course of estimating the probable dynamic resp of ded
floors, it is often sufficient to carry out the necessary computations based
on an approximate value of the lowest frequency of natural vibration. . Such
an estimate would provide adequate data for the various simplified metho
used to predict the dynamic response of flat slabs, at least for purposes of
preliminary design (see, for example, Refs. 16 and 17). It is the aim of
the present paper to show that approximate values for the naturidl
frequencies of simply supported slabs with interior columns can easily be
obtained through the application of Rayleigh's quotient and the use of
readily available deflected shapes for statically loaded systems. The
proposed scheme is much simpler than the techniques of Nowacki, and Lynn and
Kumbasar, while it retains the key feature common to both these methods,
namely the fact that the axial deformations of the supporting columns are
negligible compared to the overall (bending) deformation of the slab.

2. ANALYTICAL FORMULATION AND EXAMPLES

2.1 Simply supported rectangular slab with a single intermediate column

The Rayleigh quotient is such an universally used concept and tool that
it needs no introduction. As has recently been remarked [18, 19), despite
more refined and accurate techniques, Rayleigh's method has retained its
appeal and usefulness, at least as a first estimate. For the problem under
investigation, the quotient formula may be written as

a (b (22w o’w]
L e e a

(1)

(]
a (b .,
PR G e
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where @ is the fundamental circular frequency, and the plate is rectangular
(with dimensions a, b), simply supported, isotropic, and having uniform
flexural rigidity D and mass per unit area u. Expression (1) is a simplified
version of the more general formula, since zero-deflection conditions apply
throughout the boundaries (20]. Therefore, the assumed deflected shape
W(x,y) must satisfy this condition for expression (1) to be used, and since
this constraint also describes the geometric boundary conditions for the
problem, such a function W will automatically comply with the basic
requirements of Rayleigh's technique [18].

In the present scheme for estimating the lowest frequency of slabs with
intermediate supports, Navier's closed-form solution for the deflected shape
of simply supported plates subject to arbitrary loading conditions will be
used [21). The basic idea is to superimpose the deflection shape for a slab
without intermediate columns on those due to point (or patch) loads which
represent the effects of column supports. Consider the case of a
rectangular plate with a single support located at the point x = ¢{a, y = 7b.
(The origin is at one of the corners, and the positive directions of the
axes X, y run along its edges; the plan dimensions along x and y are a and b
respectively. The shape W for the actual problem (with the point ({a, nb)
prevented from deflecting) is split into two components: (i) that of the
edge-supported slab under a uniformly distributed load (per unit area) q,
and (ii) that of the edge-supported slab under a point load P acting at the
column location (and opposing q). The continuity requirement at the point
of intermediate support is then met by computing the force P necessary to
cancel out the deflection produced at this point by the loading q.

The deflected shape of the slab under the action of the uniformly
distributed load q is given by

4q (1 - cos mn)(1 - cos nm) mX nwy
Vo™ A% mhi by U sin == sin 5= (2)
wn 7 + 57
while that due to the point load acting at x = ¢fa, y = nb is
4P sin mm¢ sin nmy mTx nny
w == st A
P - Dn¥ab m=1 n=1 7 V2 sin a sin b 2

™ n
G+ &)
The imposition of the compatibility condition at x = ¢a, y = 7b such that
the total deflection w(t) is zero at this point leads to ’

£L (1 - cos mm)(1 - cos nw) sin mn¢ sin nmy
p = 327 mn (m? + n2¢?)?
nTe £T sin? mm¢ sin? nmy
mZ + nied)?

(4)

where ¢ (= a/b) is the aspect ratio, and the summation limits (always
understood to extend from 1 to e) have been dropped for convenience. The
total deflected shape for the actual problem of the simply supported plate
with additional internal point support then becomes:

w(t) = LI Wy, sin — sin nmy (5)
a b
where

- 498 (1 - cos mm)(1l - cos nm) _ 4Pa?¢ sin mn¢ sin nmy 6)
wn D% wn (m? + nZe%)? Dnd  (m? + n2e2)2
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subject, of course, to condition (4). Clearly, the natural frequency is
independent of the magnitude of the loading q which appears in both the
numerator and denominator of the Rayleigh quotient and hence eventually
cancels out. This may be anticipated by defining & priori a non-dimensional
shape, and one obvious way of achieving such a result is to divide the terms
of the deflection series by W,,, i.e.

Can = 0 52

so that C,, = 1. It is then easy to show that the fundamental frequency, as
obtained from expression (1), becomes

0.9
m) 2(D)°-%|zzD3
o= ()22
-where
Dmn = Can (-: + '\a.,) (€))]

Before embarking upon the computation of expression (8) for various
aspect rstios and column locations, it is important to recall that, in its
usual form, Rayleigh's method, when used with a shape function that
satisfies at least the geometric boundary conditions, always provides an
overestimate to the natural frequency of a system (unless, of course, the
true vibrating shape has been guessed, in which case the answer is exact).
This is a result of the artificial stiffening which stems from the need to
constrain the system into the sssumed shape, leading to an overestimate of
the strain energy of the system. The present scheme, however, does not
quite conform to this general picture. For a start, it will be seen that
the assumed ‘shape’ consists of a series rather than the usual single-term
function. (This series, of course, has a single undefined coefficient, W,,,
and hence should not be confused with the series one associstes with Ritz's
method.) By limiting the series to a single term, one obtains the frequency
corresponding to the plate without the support; such a drastic underestimate
of w is due to the fact that a single series term does not allow for the
shape change due to the column, but simply gives the single half-wave wode
(along both x and y) corresponding to the free vibration of an
edge-suspended slab. Additional terms are needed to impose the
zero-deflection condition at the intermediate support but, as the number of
terms jincreases, the higher mode shapes must perforce cause an overestimate
in the fundamental-frequency value. At first sight, it might appear that
the results are highly dependent on the number of series terms retained. It
turns out, however, that as soon as the second term is considered, the
calculated frequency experiences a sudden increase which brings it up to a
value close to that corresponding to the plate with intermediate support.
Moreover, the effect of the higher wmode shapes upon the fundamental
frequency that is being sought is found to be very small: thus, once the
true frequency value is exceeded (and this is usually achieved with a small
number of terms), its overestimates increase very slowly with m and n. The
above effects will be illustrated subsequently in Table 1.

For purposes of checking the accuracy of the present wethod against
existing benchmarks, it is necessary to ensure that sufficient terms have
been included in the series so as to approach the condition of zero
deflection at the intermediate supports (say, the deflection at the interior
support should be less than one-hundredth of the value at that location

186



corresponding to the suspended-slab case). Typically, this can usually be
achieved with m, n < 20, although in some cases one may have to truncate the
series at wm, n ~ 30. Once the interior-support deflection becomes
negligible, the satisfaction of all the geometric boundary conditions has
been achieved to a sufficiently close degree for the method to yield an
overestimate of w, and hence no further terms should be considered as the
value of the calculated frequency will further overshoot the true value
(albeit, very slowly). As an example, consider a square plate with a

centrally located column support. Table 1 gives the results for the
non-dimensional frequency parameter
.S
0 = wa2(4]’ (10)

for increasing values of m and n up to and including m, n = 21. (Note that,
for this case, the only non-zero terms correspond to both m and n being
simultaneously odd.) The criterion that the total deflection at the
support, w(s), should be approximately one-hundredth of the value of the
edge-supported slab case is attained at m, n ~ 19. The corresponding 0

m, n w(s) 0
1 0.000566 19.7392
3 0.000128 48.5729
S 0.000063 50.6009
7 0.000035 51.6251
9 0.000023 52.0220
11 0.000016 $2.2650
13 0.000012 52.4004
15 0.000009 52.4937
17 0.000007 52.5549
19 0.000006 $2.6003
21 0.000004% 52.6329

Table 1. Square slab with a central column support.
Convergence of w(s) and 0 with the number of terms
in the series for the shape function.

coincides with the exact value of 52.6 (as reported by Nowacki (11, 12}).
Table 1 also illustrates the fact that, for practical purposes, the number
of terms may be less than that suggested for accurate estimates; a
reasonable value of 0 is achieved as soon as the values of m, n are
incremented beyond the clearly inaccurate case, m, n = |, and once m, n ~ 5
has been reached the error in the calculated 0 is less than 4%. To give an
idea of the overestimate rate beyond the exact value 0 = 52.6, it is
sufficient to point out that, for m, n = 101, 0 has only increased to 52.78.
Finally, one wmight mention that, if an automatic check on w(s) is not
included in the calculations, the optimum accuracy may be taken to occur for
m, n ~ 20.

The values of 0 corresponding to a centrally situated column are listed
in Table 2 for several aspect ratios. Three of these values have
theoretically exact counterparts which also appear in Table 2, showing the
proposed scheme to be accurate to within 1Z. It may be interesting to check
also the behaviour of the system for long plates. As ¢F», the plate becomes
a long thin strip, in which case the column support at its mid-length can be
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expected to provide effectively a fixed-end condition. Several frequencies
for the case of a rectangular plate with three edges simply supported and
the fourth side clamped are listed in Ref. 13; the corresponding value of Q

2

]
0' 1.0 1.5 2.0 2.5 3.0
Present method 52.6 73.6 91.9 113.4 139.7
Exact
(Nowacki (10, 11)) 52.6 73.1 91.1 = -

Table 2. Rectangular slab with a central column support.
Calculated values of 0 for various ¢'s and comparison with
the available corresponding exact values.

is given as 9.869 for ¢ = 0, which is also the asymptotic value n? for a
simply supported plate since, clearly, an increase in restraint at the short
edges becomes negligible when the ratio of the sides is large. The use of
the Rayleigh quotient (8) for ¢ = 6.0 and ¢ = 10.0 gave values of 0 of 406.4
and 1,040 respectively. When these values are converted to the
non-dimensional frequency o* (= 0/¢2), one obtains 11.2 (¢ = 6.0) and 10.4
(¢ = 10.0), showing that, as in the case of a hinged plate, o* converges to
its asymptotic value 72 as ¢e.

Consider next the case of an eccentrically located column. Before
presenting some of the results for various values of coordinates (¢a, 7b),
it is important to remark that the assumed deflected shape is still wmade up
by combining expressions (2) and (3). The use of the uniformly distributed
load in conjunction with the non-symmetric shape for the point load when ¢,
7 * 0.5 might, at first sight, appear to be a somewhat poor choice for the
first component of the shape function. Nevertheless, the results of an
extensive investigation, which was conducted for a wide variety of
non-symmetric loadings, have shown that, while other shapes may sometimes
prove superior to that corresponding to the uniform load, the latter was
always within 5% of the best frequency estimate, and was often the most
suitable choice even in those cases of marked column eccentricity. In view
of the approximate nature of the method adopted, it is clear that the shape
for the uniformly distributed load may be used irrespective of the column
location since it constitutes the simplest general shape while, at the same
time, providing results which are well within engineering accuracy. Table 3
illustrates this, showing the predicted frequency for a square slab as the
column location is moved along the centreline 7 = 0.S5. The approximate
results obtained through formula (8) compare quite well with their exact
counterparts, these also appearing in Table 3. (The slight underestimate in
0 at ¢ = 0.125 is either due to the criterion for w(s) not being stringent
enough for this case, or it may be a result of a possible inaccuracy in the
'exact' value quoted in Ref. 12, which certainly gives an incorrect 0 (=
49.3) for ¢ = 0.5 in the same figure.) It will be noticed that the
frequency decreases steadily as the column is moved from the centre to the
edge of the plate, the last point corresponding to a hinged slab without
internal point support (0 = 19.7). The same effect is observed when the
column is moved from the centre to the corner of the square slab (i.e. along
the line ¢ = 7), the relevant results for 0 being 52.6, 28.7, 20.7, 19.7
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which correspond to ¢ = 73 having the values 0.5, 0.3, 0.1, O respectively.
Thus, the method correctly predicts the loss in stiffness of the plate
system as the point support nears an edge. (This, of course, would not be

Q
¢ 0 '/a '/ 3/a 1/a
Present method 19.7 25.4 30.9 41.0 52.6
Exact
(Nowacki [10, 11]) 19.7 25.5 30.4 38.9 52.6

Table 3. Square slab with a column support situated at various
locations along the centreline 7 = 0.5. Calculated values of 0
and comparison with the available corresponding exact values.

the case in the one-dimensional instance of a beam, since then the

intermediate support would effectively produce a clamped end as it
approaches the support.)

2.2 Extension of the method to various other types of slab

So far, consideration has only been given to slabs that are simply
supported, tectaﬁgular and isotropic, and which are stiffened by a slngie
point support. While these conditions are often relevant in practice,
especially in floor slabs, the aim of this section is to explore whether the
present approximate method can be extended to cases of material anisotropy
(e.g. such as reinforced concrete floors with non-isotropic reinforcement),
multiple internal supports, and to plates that are non-rectangular and which
may be subjected to boundary conditions other than those corresponding to
hinged supports.

First, it is evident that the proposed Rayleigh quotient should readily
be applicable to anisotropic plates. Of practical relevance are simply
supported orthotropic slabs for which deflected shapes are available in the
form of Navier's solutions. In fact, the previously derived expressions for
transverse deflections are applicable upon modifying D(m?/a? + n2?/b2)2 in
the denominator to (D(x)m*/a* + 2Hm?n?/a?b? + D(y)n*/b*), where D(x), H,
D(y) are the relevant orthotropic constants [20].

Another potential extension of the approximate method outlined in this
paper is to cases involving several intermediate supports. There are no
apparent conceptual difficulties since the deflected shape can be made up of
a number of Navier-solution components which, when superimposed, give zero
deflection at the column location as well as, of course, satisfying the
boundary conditions at the edges of the slab. Such problems, however,
require an increasing amount of computational effort, especially if accurate
estimates of the fundamental frequency are to be obtained. In the case of a
large number of internsal supports, there is a proportionally high number of
simultaneous linear equations that must be solved so as to adjust the values
of the various column reactions. (However, multiple interior columns within
a slab are often placed on a regular grid, and the ensuing symmetry then
permits some of the columns to be grouped as a single variable, thus
decreasing the numerical effort in solving for the various interior support
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reactions.) On the other hand, a small number of interior columns may cause
the lowest-mode shape of a slab to exhibit a ‘'chequer-board' pattern so that
similar (i.e. 'chequer-board') loading patterns provide a better
approximation than the uniformly distributed load case used so far, and then
more complicated series coefficients are needed.

The above remarks on multiple interior columns wmay be illustrated by
means of the following three examples. The first of these refers to a slab
with four internal supports situated symmetrically with respect to the
centrelines x = a/2, y = b/2 (i.e. forming a rectangular pattern analogous
to the rectangular boundaries of the system). While this symmetry obviates
the need to solve any simultaneous equations, it is found that, when the
distance between two columns that is parallel to one of the edges of the
slab exceeds about one-tenth of the size of this edge, the uniformly
distributed load used to initiate the computational process begins to lose
accuracy (unless, conversely, the columns approach a position close to the
boundaries). To obtain a wore accurate answer, a ‘chequer-board' pattern of
patch loads is required. However, even the uniformly distributed load case
is adequate for purposes of reaching an important conclusion regarding the
effect of column size (a parameter hitherto ignored). Namely, 1if one
considers the four point supports to represent the corners of a single
column, it appears that there is no need to allow for the latter's size
provided its dimensions do not exceed approximately one-tenth of the
dimensions of the slab itself, a finding consistent with that of related
work [l4]. For instance, for a square plate, with a square column
arrangement in which the distance between columns is set at one—tenth of the
sides, one obtains 0 = 59.6, i.e. a difference of 13%Z from the value
corresponding to the point-support case. Similar conclusions are reached by
studying the second example, which consists of a rectangular plate with four
internal supports located symmetrically on the centrelines x = a/2, y = b/2
(i.e. forming a rhomboidal pattern with the rectangular boundaries of the
system). Once again, a 'chequer-board' pattern of loading should be used
for high accuracy unless the columns are either close to each other or near
the edges. Furthermore, the effect of column size for this interior-support
arrangement is even less marked than in the previous case since, for a
square column, one obtains 0 = 55.9 when the distance (measured along the
centrelines) between each pairs of columns is one-tenth the side of the
(square) slab; this represents an increase of only 6% over the single
central-support case. The third example consists of a rectangular slab with
¢ = 2 and having six interior columns: four of these are located
symmetrically with respect to both centrelines, the distance between each
pair of columns being 0.4a and 0.4b respectively; the remaining two columns
have coordinates (0.2a, 0.55b) and (0.9a, 0.45b). The fundamental-frequency
value obtained by using the uniformly distributed load shape for the first
deflection component is 0 ~ 150, as compared with the 'exact' value of 0 =~
125 (obtained by means of the finite element method). With increasing
number’ .of interior supports it appears that the accuracy in 0 improves, and
hence it would seem that the increasingly difficult alternative of adopting
more and more complex patch-load patterns for obtaining reasonably accurate
Q estimates is then not needed.

Finally, although the present paper has concentrated on rectangular
slabs with hinged external boundaries, there are no conceptual difficulties
in envisaging its extension to other contours and/or boundary conditions
provided the statical solutions for uniformly distributed and point 1loads
are readily available or derivable. (In this respect, the system ALTRAN
gould prove of use in providing explicit closed-form solutions (22].) As a
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tentative exawple, consider s circular plate of radius a, with the origin at
its centre r = 0, and clamped along its circumference. The deflections
under a uniform load q and a centrally applied point load P are,
respectively (20, 21]:

o " 3%5 (a? - r2)3 (an
v = if?ﬁ [r'ln—: +; (a? - r*)], (12)

The condition that the combined deflections should satisfy w = O at r = O
leads to

2
P -ﬁ: . 13)
4
Rayleigh's quotient formula in polar coordinates (assuming axisymmetric
loading and clamped edges [20]) can be written as:

2n Ia My 1 nw]’
*+ - —
D Io o lag? T ot r dr de

m IZR I‘ W2 r dr de
° °

(14)

When the shapes (11) and (12) are cowmbined in accordance to (13) and the
result substituted into (14), one obtains 0 = 22.88 (with 0 as defined by
(10) but with & now denoting the radius - rather than the side along x - of
the plate). This result compares rather well with the exact value 0 = 22.7,
as quoted in Ref. 13 (taken from the work of Sakharov [23), based on the
formal use of Bessel functions), the error being less than 1X.

3. CONCLUDING REMARKS

The present article has explored the possibility of obtaining quick
Rayleigh estimates of the fundamental frequency of slabs with interior (as
well as boundary) supports. The key requirement is the ready availability
of statical solutions which, when superimposed, satisfy at least the
geometric boundary conditions at both edge and internal points. In this
respect, Navier's solution provides the means for tackling simply supported
rectangular slabs. Both isotropic and orthotropic piates can be dealt with
and, in principle, any number of internal supports may be present. However,
the latter instance may require a wore accurate visualization of the
vibrating system (with consequent increase in the complexity of the loading
pattern) unless the number of interior columns be large but, then, this case
leads to what is possibly too large a number of simultaneous equations for a
programmable calculator and the wethod soon becomes one of rapidly
diminishing returns when compared, say, to finite elements. Otherwise, the
wethod 1is amenable to other plate contours and/or boundary  supports
provided, again, statical deflected shapes be known. As regards this
aspect, the potential use of the system ALTRAN might, in the future, not
only increase the range of analytical expressions available, but it should
also provide the weans for performing the tedious integrations associated
with energy methods (especially in the case of non-orthogonal functions).
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LINEAR PROGRAMMING APPROACH TO LIMIT ANALYSIS OF THIN-WALLED
STRUCTURES

&#. Dunica

University of Belgrade, Faculty of Civil Engineering
11 000 Belgrade, Yugoslavia

The paper presents a procedure for plastic analysis of thin-
-walled structures subjected to bending and torsion. The static
theorem of limit analysis is used, which, in general, involves
the following conditions:

= Equilibrium conditions, expressed by squations correspon-

ding in number to the degrees of freedom of the structure,
and

- Plasticity conditions, expressed by inequalities to guaran-

tee that the yield conditions are respected. '

The plasticity conditions for tree different cross-sections
( I, [ -sections and rectangular box) subjected to warping torsion
and bending are derived. These conditions are then linearized 1in
such a form which is convenient for plastic analysis of structu-
ral systems by using the linear programming.

On the bases of the proposed algorithm the computer program
is developed and the results of a numerical example solved using
that program are presented.

1. INTRODUCTION

The study of the behaviour of thin-walled structures, parti-
cularly their plastic strength is of great importance in design,
especially of steel structures. Their complex behaviour including
warping has obtained an interest of many authors. The plastic
behaviour of thin-walled beams has been particularly thoroughly
studied by Kollbrunner and Hajdin [8].

This paper outlines a method for plastic analysis of thin-
~walled frames introducing the following assumptions:

= The frame is composed only of straight members.

- The dimensions of the cross-sections are s8mall in
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comparison with the member length.

- The equilibrium conditions are formulated on the undeformed
system (first order theory).

= The cross-sectional shape remains unchanged.

- A rigid-perfectly plastic behaviour of the material is
assumed.

= The structure is subjected to constant loading and propor-
tional 1loading defined by the load factor, acting only at
the joints of the system.

Existing methods for plastic analysis are based on either the
kinematic or static approach. A corresponding solution of the
problem has to satisfied the following conditions:

- Eguilibrium conditions.

- Plasticity conditions, which imply that the sectional
forces exceed nowhere the plastic resistance of the
cross-section.

- Mechanism condition, which is satisfied when sufficient
plastic hinges are developed forming a collapse mechanism.

If the static theorem of limit analysis is used, the solution
is reduced to determination of the greatest value of the 1load
factor, satisfying the equilibrium and plasticity conditions.

The most suitable approach for computer application is based
on the fact that the plastic analysis problem can be cast in a
linear programming form.

Firstly, the plasticity conditions for tree different
cross-sections ( [, [ -sections and rectangular box) subjected to
warping torsion and bending are derived, and then, the linear
programming approach of the problem is presented.

2. CROSS-SECTIONAL RESISTANCE - PLASTICITY CONDITIONS.

Now, the plasticity conditions for tree different cross-sec-
tions subjected to warping torsion and bending are derived. In
order to simplify the mathematical approach the effect of shear
stress in yield condition is neglected.

2.1 J-section
Congider the beam of a symmetrical [-section subjected to
warping torsion and bending about y axis (Fig. l1.a). The diagrams

of the coordinate z, sectorial coordinate w and 1longitudinal
normal stress ox for fully plastic section are shown in

b2/2 bib2 s .
¢
(13 Sx
w % . =h7) ch3)
z — e{ (5eh.2) (sch3)
b) < d T e t)

Fig. 1

4]
NE L >
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Fig. i.b-d. For the stress distribution shown in Fig. 1l.d, the
bending moment M and warping moment Mm can be expressed in the
following form:

M tlo z dF = e, b (20t + - b t )
y L)

M =-Ioud? 'abzt‘(‘ ‘.) ceesesssccsesssccccccce(l)

r
(0 £ e =< ; b‘)

where o ig the yield stress for uniaxial tension. Eliminating
the para‘eter e from these equations we obtain the relation
M
[(1ra)L - al ™
M

= 1 aoo..oo000000..o.o.ooo'.oo.'.0..000(2)

x| =
€ 46

Yy

where

»
M = (10«)0 b b t
b4 121 } ceeees(3)

=»
uh) = : “, btbztl

are the values of plastic
bending moment and plastic

warping moment, and
1 b:t:
(sch.2) - cecesscccsseces
a = 5t . (4)
(sch.3) 11
-t 0 My Graphic presentation of
w LU eqguation (2) is given in Fig. 2
Fig. 2 by curve AB. Line BD corres-

ponds to the case when a total
plastification of the flanges only occurs (e=0 in Fig. 1.d), 8o
that the section is s8till capable to carry the bending moment.
The state of stress in the web, then, 'can be elasto-plastic
(Fige 1.@) - line BC in Fig. 2, or elastic (Fig. 1.f) - line CD
in Fig. 2. The linearized form of plasticity conditions is
presented in Fig. 2 by bold lines.

2.2 [ -section

Consider now a beam of [ -section (Fig. 3.a). The diagrams of
the coordinate z, sectorial coordinate w and stress o, for fully

H LT B

M Ly

Fig. 3

plastic section are presented in Fig. 3.b-d. The position of the
shear centre D is defined by
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1
d = m‘f b‘ 0.00000.000000000.0000..0000oooooooooooooooo(s)

where
b_t
1 22
d B = s 0..00000000000000.0000000000000000000000000000(6)
P ) t‘

According to stress distribution shown in Fig. 2.d we have
1 .2
Hy = oy [bzt‘(ze-b‘) Ay b’tz]
Hw = Oybzt*(% b:-.’) + Myd o-oo-ooooooo-ooooo.oooo(7)
< <
(0 < e =< b‘)
Eliminating the parameter e from these sguations we obtain

M 2 uw-u d
[(1"“)—: + l‘al + ‘(1*0)—: -2 =0 ooo.o'ooo'oooonoooo(s)
M
y 1y
where M; is the plastic bending moment given by
M: = (1*a)ayb*b’t‘ 000....."000.0'00000.0000000'000.00.0(9)

Graphic presentation of equation (8) is given in Fig. 4.a by
curve ABD for a £ 1, or in Fig. 4.b for a > 1.

My sl

Fig. 4

For stress distribution according to Fig. 3.e we obtain the
following expressions

e e -
M, = - 2o {1 -alt - ss:u - q)]) M
M = L— [1 - ‘9—'(1 - e‘—)] b M. ..........'..(10)
w (1+a)2 b’ bz 1y
b

(0 %o x5

which, after elimination of parameter e become

Hw M

2(1*“) - -—y'= 1 ooooo.o.ooo..00000000000000'00000000(11)
b M M
1y Yy

Equation (11) in Fig. 4.a and Fig. 4.b is presented by line DA’'.
The 1linearized form of plasticity conditions in Fig. d4.a,b i=s
presented by bold lines.
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2.3 Rectangular box section

Fig. 5 presents a rectangular box section with corresponding
diagrams of coordinates z and w and stress o, for fully plastic
saection.

- I -

LU e

Fig. 5

For stress distribution according to Fig. 5.d, using the
conditions N=0 and M,=0 we obtain
M =20 b_t e
y y 2 4 18
1 2 2 2 2
{5—: [w‘t‘(b‘-4o‘) - wzt.(b‘-le')] +

t 2 2 2 2 F ccccocee (12)
+ F: [ws(‘bz.z'z.z'bz) + wz(2¢z-bz)]) .
b‘
(0 < e, < 5—) J
where
1 1-6‘ t‘(1-e‘)
ozs 3 b:+ T b‘+ 5T 5 e, . e = e‘a‘ ceccseesces(l3)
2 24
and
e = * 6. = =2 iieienneen (14)
t 'a t ® 9 0000000 0090 RGOPRROLEOIOIOSEOIOSDS
] ]
Similarly, for stress scheme given in Fig. 5.e we have
Mysay[b‘t‘.z+2¢.t.(bz-e:) + n‘tz(ZQz- .‘)] h
_ ] 2_.2 2 . - - R
Hu-oy{ 55 (40. b‘) + 5 (n: o‘)[Zw‘b: (w‘ w:)(u‘+a:)]
1 2
t b (15)
2
- E:(bz"a)[bz(wt*w:)-°z(ws-wz)])
1- 9‘
< < z
(0=e, = =25, ") |
where
1 b, 1 °y 1
.’=i b:§ 86 —(1le 6 )+ E . (1-6 -6: q)’ e.=§- e‘b‘*ezﬂ‘ (16)

Finally, for stress scheme according to Fig. 5.f we have
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< t
My=c'y{b‘[t.bz-e:(t'-t‘)] +t [bl-2e (b -e )-2e]1}

W -
1

o.oo(17)

M =2¢
« y

where
1-6
1

1

.2-5 b:’Tb‘ eescccece(18)
The graphic presentation of

equations (12), (15) and (17)

is given in Fig. 6, where the

linearization of the plasticity

conditions is also performed.

Figo 6

3. EQUILIBRIUM CONDITIONS

Fig. 7 shows an arbitrary member m in local coordinate system
xXyz with corresponding member end forces.

y
r Equilibrium conditions for
% $Myi element m are
~a Nj (foyi )
.@Iw ) 0, .=-0 = im_m_)
Mzi, i Qyj yi vi ) i 2
z | azi> \'i\l" Q,,=-0,.= ~T(M_.+M )i (19)
A
Fig. 7 Nj=-N ‘

Using the solution of differential equation of thin-walled
beam due to warping torsion given in textbook [7] we can vwrite
the following relations:

Too 1 Mwo To 1
=— = shkl + aR—(chkl-l) + ER(I- = shkl)

Pi T P EK k Kk
1 1
My, = Tyo i Shkl + M chkl - T_ L shkl vees(20)
T =T
j o

where ¢ 1is the rotation around the beam axis x, T is the §&t.
Venant '8 part of torsional moment, M is the warpiﬂs moment and
T is the total torsional moment at the end i of element m,
noting that the sign convention for Hw is taken opposite than in
work [7] .

The conditions ¢b=0 and pjso give

1
To=Ty= 1 My
where, according to sign convention for member end forces shown
in Fig. 7, we have taken

+ MQJ) .................................(21)
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T = =T

(-] i 22

M = =M 000000‘0000‘0‘00‘0000000000000000000QQQQ.Q.Q( )
wi

Equations (19) and (21) can be written in matrix form

Q- -A-.s- .O.......0....‘0..0..00..000......0.00.0'....(zs)
where A‘ is the force matrix, and

v
Q’ =[N Qvioltrl "vtnsﬁnwinj ijosjr.i uvju-jnwj]
S- - [Nt 0o 0 O Hyi":t"ulo y itz iMoj

3.1 Modification of the force matrix due to member releases

secce(24)

Let write the matrices Q-, S- and A- in the form
\ ' 14
Q- - [Q‘onooo“]' S- - [S‘Bz...s“]' A- - [A‘J]‘ ;0000(25)
If member end force Q =0, the matrix equation (23) can be
written in a modified fork
<C1) (1)
Q- - A. S- Q.........Q.0..0..0...0..0‘....“"O.'....(zs)

where x:*)- [::}’]:‘1- the modified force matrix due to member

release Qkao, which elements are given by
A
(1) - k j
A‘.j = A\j Ai.t x:: 3 Ak‘ = 0 3 (1,5.1'2,000'1‘) 0000(27)
If more than one member release exists, this procedure can be

repeated unless the final form of the matrix relation (23) is
obtained, i.e.

Q-

vhere A‘ is the modified force matrix due to all member
releases.

-
A.'S-ooao.aoooooooooo.oo.ooooo;ooooooo‘o..ooooooo.o.(28)

3.2 Transformation of the force matrix with respect to global
coordinate system

Denoting by the force vector in global_coordinate system

XYZ, we can express this vector by vector Q‘ in the following
form:

o =
Q: - T-'Q- Cececccccssescsescsscsescscccscccssssccscsce(29)

where T is a gquasidiagonal transformation matrix depending on
the dtrostionl cosines of the individual axes of local coordinate
system with respect to the global gystem.

Substituting (28) in (29) follows

Q: - A:'S‘ O0.0000“0‘OOOOOQOQQQQQ.O..OOO0.0.QQ.OQQQQCO(ao)
where

-
A: - T-'A. ooooooooooo..oooaa0000000000-ooooo-ooooo-ooo(al)

3.3 Transformation of the force matrix with respect to master
nodes

The ends of the beam can be geometrically constrained to a
master or slave nodes. Slave degrees of freedom at the end of the
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beam are eliminated from the formulation and replaced by the

transformed degrees of freedom of the master node. This technigue

reduces the total number of joint equilibrium equations of the
system. Two master nodes r and
jJ and a slave node i are shown
in Figo 8.

The equilibrium conditions
of the rigid part r-i give

Q:‘-B-'Q: eecccccsccscee(32)
or using (30)

Q:'-A:.'S- eecsssscscccscee(33)
where

A:‘-B-'A= cecccccsccccce(34)

is the force matrix in global
coordinate system with respect to master nodes r and j.

’igo 8

3.4 Joint equilibrium equations

Equilibrium oguationt of whole system can be written in the
form

1]
zQ:‘ -P OOOQ..O..00...00..0.000.000000000000.......(35)
m=1
where M is the total number of members.

If we present the load vector as
P- P0+XP1 .Q...Q000..000.00‘00.00.0QQ.OOO.’.OO.Q..'.(36)

where A is the load factor, using the relation (34), the joint
equilibrium equations (35) can be written in the following form
1]
8 A:*'Sm - KPI - Po oooooaooao000000000.oooooooaooooooo(a.,)
m=4q
or briefly

A'S - kP‘ - Po ........................................(38)

4. PLASTICITY CONDITIONS OF WHOLE SYSTEM

In paragraph 2. we derived the linearized plasticity
conditions for three different cross-sections.

Writing the force vector Sm in equation (37) as

S&t)

where (1) and (j) indicate the end joints of member m, the
plasticity conditions of whole system can be written in the
following form

S . < .
ci‘) Sﬁ" < Dé"
cl(nj) Sé}) SD&]) ececcccceccscsccsccscccccescccccce(40)
(m = 1’2’00"’M)

Scin
m
Sm- [ ] ..........................................(39)

‘'or briefly



c’s 5 D 00000000000000000000000000000000000000000.000000(‘1)

5. SOLUTION BY LINEAR PROGRAMMING

Formulation of plastic analysis problem is based on the
static theorem giving the lower bound of the load factor A.

Based on equations (38) and (39), the following Linear
Programming (LP) problem is formulated: find A and § such that

(max)f = A

A‘S - API - Po etccccceceseccsccseccccccccssscccse(42)

c-S =D

If we represent _he force vector § by difference of two
nonnegativ variables § and S, i.e.

S m S = S§%  cecccccecscecccscsccccscccsccccsccscccasss(43)

where S® is the vector of limit values of member forces, the LP
problem (40) becomes

(max)f = A
A'S - AP, = Pg

Py 0.0.0....Q.O............OQQQ.00.0...0(“)‘
C-S = D=

Sz20

The 8Solution of this LP problem can be significantly
simplified by using the decomposition method, where, the member
forces are expressed as linear combinations of extreme points of
pPlasticity conditions.

6. NUMERICAL EXAMPLE

On the basis of the presented procedure the computer program
is written. Using that program the limit value of the 1load
eccentricity e in the numerical example shown in Fig. 9.a is
obtained. The @eccentricity e can be considered here as a load
factor (Fig. 9.b). For given geometry of the system the 1limit

i

-

3)
—lg
I 0m Y ,,,'%‘ @ ® o
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value of @ is @ _=1.08 m, and the corresponding diagrams of member
forces are presented in Fig. 10. The plastic hinges are formed in

joints 1, 2

1.

2.

3.

5.

6.

8.

9.

10.

11.

12.

13.

»5 and 9.

Fig. 10
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COLLAPSE OF PLATE GIRDERS SUBJECTED TO PATCH LOADING
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SUMMARY

The paper describes theoretical and experimental study of behaviour of
slender plate girders subjected to localised edge loading to investigate the
influence of co-existent bending stresses on the collapse load. Simple closed form
equations for predicting the collapse load, based on a mechanism solution, are
presented together with a reduction factor to allow for the influence of
co-existent bending stresses.

The relaiionschip between the collapse load and the elastic critical load
of the web is also investigated.

NOTATIONS

b width of web panel
width of flange
loaded length

depth of web panel
standard deviation
thickness of web
thickness of flange
Young’s modulus
buckling coefficient
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load

elastic critical load
experimental collapse load
predicted collapse load
collapse load for op = 0
Poisson’s ratio

S bending stress

Of flange yield stress

Oy web yield stress

P
PC?‘
Pex
PU
PUO
v

1. INTRODUCTION

The problem of increasing practical importance is that of determining the
collapse load of plate girders subjected to patch loading.

This paper describes tests on two girders |1| carried out as part of a
continuing investigation at University College Cardiff and University of Belgrade
into a collapse of plate girders subjected to localised edge loading.

The purpose of the tests was to investigate the influence of co-existent
bending stresses on the collapse load.

For slender plate girders, where failure is induced by bending of the web,
the relationship between the collapse load and the elastic critical load of the
web is also investigated.

2. DESCRIPTION OF TESTS

Details of the girders test%d are shown in Fig.1.
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Fig. 1. DETAILS OF TEST GIRDERS
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Each girder comprised three panels with aspect rations b/d=2. In the first
test, the girders were simply supported at A-A and the middle panel was loaded by
a concentrated load P applied through a 50 mm wide bar at the centre of the panel.
The load was then increased up to failure.

The girder was then simply supported at B-B and the end panel tested in the
same way.

In each test the girder was restrained laterally (Fig.2) so that it did
not become laterally unstable. Varying the span induced different values of the
co-existent bending stress o, at collapse. The typical mode of failure is shown in
Fig.3 and the test data is given in TABLE 1.

GIRDER | SUPPORT t" bf tf c Oy ) O¢ 'Pex °b/°w
mm N/mm N

D2-3S B-B 1.96 | 80 | 3.05 | 50 178 | 272 | 33550 0.26

" A-A " " " " " " 32000 0.77

D3-6S B-B 3.0 " 16.25 " 245 | 298 | 84100 0.25

" A-A " " " " " " 84000 0.74

TABLE 1. DETAILS OF TESTS

P - JACK LOAD P

b

!
]
I | 4

prro ey

Fig. 2. DETAILS OF LOADING MEMBERS
3. THEORY

In |2] Roberts and Rockey presented a mechanism solution for predicting
the collapse load of plate girders subjected to localised edge loading. Two
alternative forms of the mechanism solution were presented, one considering
failure to occur due to web bending and the other considering failure to be
initiated by direct yielding of the web. '

In |3| the mechanism solutions have been slightly modified and reduced to
simple closed form equations. For web bending, the collapse load Pu is given by
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1
t
P, =05¢t2 [Eo, to/t] 2 [+ 3 e (1)

Fig.3. TYPICAL MODE OF FAILURE

where an upper limit of 0.2 is imposed on the value of c/d and a lower limit of 3
is imposed on the value of tf/tw used in equation (1). For web yielding the
collapse load is given by
7
- 2
Pu=2[ogbs 0, t] “+o, ¢t c (2)

The collapse load is taken as the lesser of the values given by equations (1) and
(2).

When failure results from web bending, it can be deduced theoretically
that a conservative estimate of the effect of co-existent bending stresses % is
to reduce the collapse load given by equation (1) by a factor

1

[ - (o/0)% 2 (3)

and it is recommended that this factor be used for web yielding also.
If the last term in equation (1), which defines the influence of the loaded
length c, is omitted (this term is of only minor significance) equation (1)
reduces to
1
P, =05t7 [Eo, t/t)] 7 4)

Equation (4) has been shown to provide a lower bound solution for over one

hundred tests on slender plate girders giving a mean value of Pex/Pu of 1.54 and

a coefficient of variation V of 17.8%. If therefore equation (4) is modified to
1

2 7
P, =0.77 4" [E o, te/t,] (5)
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equation (5) would give a mean value of Pex/Pu of unity. -

The elastic citical load PCr of a web panel subjected to localised edge
loading, assuming all edges of the panel to be simply supported (Fig.4) is giver
by |Ref. 4|

2 3
m E t"

P =K 6
cr 12(1-v2)d ®)

a

Fig. 4. WEB PANEL WITH SIMPLY SUPPORTED EDGES.

where K is a factor which depends on the girder dimensions and the loaded length
c. If K is taken as 3.5 which is the value for a panei having b/d = 1 and ¢/d =
0.25, and typical valued of E, v and o, are assumed to be 210000 N/mmz, 0.3 and
250 N/mm2 respectively, equations (5) and (6) give,

Pu d

2
Pcr(tf/tw) ,

The implication of equation (7) is that if Pex/Pcr(tf/tw)2 is plotted against
d/tw, all experimental results should be distributed about a mean line, haying a
gradient of 0.0077 and passing through the origin, with a standard deviation
relative to the mean line of 17.8%.

4. RESULTS AND CONCLUSIONS

The test results given in TABLE 1 are plotted in Fig. 5. Puo is the value
of the collapse load for 9 = 0 which is deduced from the test results when the
girder was simply supported at B-B. It can be seen that the reduction factor
0 - (cb/ow)z] 1/2 provides a conservative estimate of the influence of
co-existent bending stresses.
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(o TEST RESULTS)

Fig. 5. INFLUENCE OF CO-EXISTENT BENDING STRESS

In Fig. 6 over one hundred test results from various sources are compared
with equation (7). The test girders had tw varying from 1 to 5 mm, te varying
from 3 to 20 mm, b/d varying from 0.6 to 8 and d/tw varying from 75 to 500. In
Fig. 6, the mean line is shown together with two other lines, spaced at two
standard deviations on each side of the mean line, which define the 95% confidence
limits. There is good agreement between theory and experiment
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Fig. 6. COMPARISON OF TEST DATA WITH EQUATION (7)
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RISIKOANALYSE UBER DEN BETRIEBSZUSTAND
DER 109-JAEHRIGEN SCHWEISSEISERNEN

WETTSTEINBRUCKE IN BASEL (SCHWEIZ)

J. GROB
Universal Ingenieur AG
Zirich, Switzerland

ZUSAMMENFASSUNG

Das aus dem Jahre 1879 stammende schweisseiserne Bogentragwerk der Basler
Wettsteinbriicke weist gravierende Schiden auf. Selbst unter den heute 2zugelas-
senen, reduzierten Verkehrslasten mit Gewichtsbeschr#nkungen filr Strassenfahr-
zeuge ergeben sich 1lokal sehr hohe Beanspruchungswerte und Sicherheitsmargen
unterhalb der verlangten Normwerte. Deshalb und, weil Uebertretungen der Ge-
wichtsbeschréinkungen vorkiommen, wurde eine Risikoanalyse {iber den Betriebszu-
stand der Wettsteinbriicke durchgefilhrt. Die Risikobeurteilung wurde aufgrund
rechnerischer Sicherheitsmargen und Eintretenswahrscheinlichkeiten vorgenommen.

1.  AUFGABENSTELLUNG

Im Auftrag des Tiefbauamtes Basel-Stadt filhrte die Arbeitsgemeinschaft der
Ingenieurbliros Jean Gut, Kiusnacht ZH und A. Aegerter & Dr. O. Bosshardt AG, Ba-
sel, eine Risikoanalyse {iber den Betriebszustand = der Basler Wettsteinbriicke
durch.

Ein Grossteil der dreifeldrigen Flussbriicke und der beiden Vorlandbriicken
stammt aus dem Jahre 1879. In den Jahren 1936 bis 1939 wurde die urspriingliche
Bogenbriicke umgebaut und durch den Anbau von zwei getrennten seitlichen Balken-
briicken im Fluss- und von massiven Stahlbeton-Konstruktionen im Vorlandbereich
verbreitert. Dabei wurde auch die urspriingliche Zoreseisen-Platte im Flussbe-
reich durch eine massive Stahlbetonplatte ersetzt. Bild 1 2zeigt einen Quer-
schnitt der heutigen Flussbriicke. Bemerkenswert ist, dass Strassenfahrzeuge und
Tramziige Uber den alten Briickenteil fahren, die neueren seitlichen Anbauten je-
doch nur den Fussg#énger- und Veloverkehr aufnehmen.

x -
21,50 \ Wahrend die Vorlandbriik-
ken sowie die Pfeiler, Wider-
An 1936/ 3 lager und seitlichen Balken-
briicken des Flussbereichs eine
ausreichende Tragféhigkeit auf-
weisen, geniigen die Tragreser-
ven der alten schweisseisernen
Bogenbriicke mit Ausnahme der
Fahrbahnplatte den Normlasten
bei weitem nicht mehr. Die hier
vorgestellte Risikoanalyse be-
inhaltet aus diesem Grunde nur
eine Untersuchung der 109 Jahre
alten Schweisseisen-Konstruk-
tion. Bild 2.

Bild 1: Briickenquerschnitt
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Bild 2: Schweisseisen-Konstruktion

2. UEBERBAU DER BOGENBRUECKE

2.1 Tragwerk

Der Ueberbau der dreifeldrigen Bogenbriicke ist ein komplexes r#umliches
Tragwerk mit einer Fachwerk-Konstruktion aus Schweisseisen und einer im Verbund
hergestellten Fahrbahnplatte aus Stahlbeton. Die Schweisseisen-Konstruktion be-
steht aus fiinf Fachwerk-Bogentr¥gern, Bild 3, die ihrerseits durch Fachwerk-
Quertr¥ger in Absténden von 3,20 m und durch die aufbetonierte Fahrbahnplatte
relativ steif miteinander verbunden sind. Somit weist die Bogenbriicke ein ge-
koppeltes Tragverhalten der finf Haupttrdger auf.

2.2 Schweisseisen-Konstruktion

Entsprechend dem damaligen Stand der Technik ist die Schweisseisen-Kon-
struktion genietet. Die aus kontinuierlich gekrlimmten Untergurten, Pfosten,
Streben und Obergurten bestehenden Fachwerkbdgen sind aus Breitflachstahl und
Winkeln zusammengesetzt, zweiteilig ausgebildet und durch Bindebleche oder Ver-
gitterungen ausgesteift. Pfosten und Streben sind ohne Knotenbleche an den BY¥-
gen und Obergurten angenietet, wobei die Obergurtknoten sehr kurze Anschluss-
ldngen aufweisen. Als Bogenlager sind Keil-Stemmlager aus Grauguss eingebaut.
Die B8gen k&nnen, solange die Bogenresultierenden zwischen den Lagerkeilen lie-
gen, als eingespannt betrachtet werden.

RAufgrund der vorgenommenen Untersuchungen an Ort und von Materialpriifungen
kann der Zustand der Schweisseisen-Konstruktion wie folgt beschrieben werden:

Im Grundmaterial der Schweisseisen-Konstruktion konnten von Auge keinerlei
Anrisse entdeckt werden. S#mtliche Quertrdéger-Diagonalen, die urspriinglich nur
an die Knotenbleche angenietet waren, wurden beim Umbau 1936/39 zus#tzlich durch
Kehlndhte mit den Knotenblechen verschweisst. Trotzdem konnten im Bereich die-
ser nicht materialgerechten Schweissnihte visuell keine Anrisse entdeckt wer-
den. Die Nietverbindungen sind auch heute noch einwandfrei; alle 1984 ausgebau-
ten Niete O 25 mm befanden sich in einem erstaunlich guten Zustand und waren
nur leicht angerostet.
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Verschiedene Bauteile haben durch Korrosion eine deutliého Schwichung er-

litten, wie dies die Zustandsuntersuchung 1984 zeigte:

Die Gurtlamellen der Rand-Bogentr¥ger sind vielerorts stark abgerostet,
bei einem Lamellenstoss am Oberflansch ist sogar ein 16 cm langes Lamel-
lenstiick infolge Durchrostung abgebrochen.

Durch Zwischenrostbildung sind die Gurtlamellen der Rand-Bogentr¥ger stark
verformt. Die Rostauftreibungen erreichen dabei zwischen den Gurtlamellen
und -Winkeln Werte von maximal 33 mm, Bild 4.

Die Stegbleche der Rand-Bogentr¥ger weisen wellenf¥rmige Verformungen bis
15 mm auf.

An den ¥usseren Pfosten und Streben beim Anschluss an die Oberkante der
Rand-Bogentr¥ger haben sich maximal 4 bis 5 mm tiefé Rosteinkerbungen ge-
bildet. Von den urspriinglich 8 mm dicken Profilen verbleibt also ¥rtlich
eine minimale Wandst¥rke von nur 3 bis 4 mm.

Es f¥llt auf, dass die gravierenden Korrosionsschéden fast ausnahmslos auf

die ober- und unterwasserseitigen Randtr¥ger der Schweisseisen-Konstruktion be-
schrénkt sind, Bild 4. Diese Bauteile waren bis zum Jahre 1936, als die seitli-

chen
voll

Briickenteile filr die heutigen Gehwege und Velostreifen angebaut wurden,
der Witterung ausgesetzt.
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Die im Jahre 1984 durchgefiihrte Untersuchung hat im Vergleich zur Kontrol-
le des Jahres 1975 eine fortschreitende Verschlechterung des Bauzustandes der
Schweisseisen-Konstruktion als Folge von verschiedenartigen Korrosionserschei-
nungen ergeben. Nebst anderen Faktoren hat auch das durch die undicht gewordene
Fahrbahn dringende Wasser zu dieser Entwicklung beigetragen. Die kritischen
Stellen der Schweisseisen-Konstruktion wurden aus diesem Grunde im Rahmen der
konservierenden Sofortmassnahmen 1985 gereinigt und mit einem neuen Korrosions-
schutz versehen. Seitdem konnten an der Schweisseisen-Konstruktion infolge Kor-
rosion keine weiteren bedrohlichen Schadenentwicklungen mehr festgestellt wer-
den.

2.3 Schubverbindungen

Die Schubverbindungen sind ilber paarig angeordnete Stahlkldtze mit Kehl-
n¥hten auf den Obergurten angeschweisst. Sie sind unzweckmissig konstruiert und
kdnnten die Schubkréfte bei voller Verbundwirkung nicht aufnehmen. Durch
Schwinden des Betons und durch Temperatureinwirkungen sowie durch die vermin-
derte Bewegungsmglichkeit der Fahrbahnlager infolge Verschmutzung und Rostbil-
dung entstanden durchgehende Querrisse in der Fahrbahnplatte. Diese verminder-
ten die Verbundwirkung und damit auch die Beanspruchung der Schubverbindungen
in starkem Ausmass.

An diesen Schubverbindungen treten seit wenigen Jahren und in beschleunig-
tem Masse Schweissnaht-Risse auf. Die Ursache fiir diese Risse liegt nicht in
der Schubiilbertragung, sondern in Zwangsbeanspruchungen, die durch das unter-
schiedliche Verformungsverhalten von Fahrbahnplatte und Schweisseisen-Konstruk-
tion bedingt sind. Die massgebenden Zwdngungen sind durch Temperaturunterschie-
de sowie durch lokale Plattendeformationen verursacht, welche infolge der fort-
geschrittenen Schadenentwicklung (lokal verminderte Steifigkeit der Fahrbahn-
platte in Querrichtung) zugenommen haben.

L Anteil schadhafter Schubverbindungen
oo Sobald eine Schubverbindung
. Fahrbahnplatte infolge Reissen der Schweiss-
Schubverbindung ndhte ausgefallen ist, werden
o die benachbarten Schubverbin-
» Obergurt dungen st#rker beansprucht,
. was 2zu einem beschleunigten
s - Aufreissen der Schweissndhte
se} schadnatt total > an diesen  Schubverbindungen
e::f""____1 fuhrt. Die entsprechende Scha-
b - denentwicklung geht aus Bild 5
% mit Rissen hervor.
* T
T II I ||| Hé*ﬁk{??}aggqll || ll Bild 5: Schweissnaht-Risse an
. TN total abgerissen|| il | I " I ” ” den Schubverbindungen
Nov|Oez. | fan | Fen. [Maca[apeit] Mai [suni [1uti [ Aug] Sep | Okt | Nov.[Oex
1986 1907

3. BERECHNUNGSGRUNDLAGEN

3.1 Statisches System

Das Tragsystem der alten Bogenbriicke ist in Bild 3 schematisch darge-
stellt. Eine ausfiihrliche Berechnung dieses r#umlichen Tragsystems wurde in den
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Jahren 1980/81 mittels des Computer-Programmes NASTRAN durchgefithrt. Bei der
Nachrechnung konnte auf diese Berechnung 2zurlickgegriffen werden, die auf fol-
genden grundlegenden Annahmen beruht:

- R¥umliches Fachwerk mit fiinf auf Zweipunktlagern abgestiitzten Bogentr#gern
und Fachwerk-Quertr¥gern im Abstand von 3,20 m

- Biegesteife Knotenverbindungen

- Zusammenwirken Stahlkonstruktion/Fahrbahnplatte:
Kein Verbund fiir Eigengewicht und st¥ndige Lasten;
fir Verkehrslasten jeweils der unglinstigere Fall aus O%-igem bzw. 50%-igem
Verbund (100%-iger Verbund bedeutet elastische Schubverbindungen und unge-
rissene Fahrbahnplatte)

- Fahrbahnplatte als biegeweiche Scheibe
- Linear elastisches Materialverhalten

Die Schnittkr¥fte in der Schweisseisen-Konstruktion und in der Stahlbeton-
Fahrbahnplatte sind in bestimmtem Umfang von der Verbundwirkung zwischen der
Stahlkonstruktion und der Fahrbahnplatte abh¥ngig. Im heutigen Zustand der
Fahrbahnplatte mit den vielen Querrissen ist diese Verbundwirkung stark redu-
ziert. Die Verbundwirkung der Fahrbahnplatte 1liegt aufgrund der Kri¥fte in den
Schubverbindungen irgendwo zwischen 0% und 50%. Flir die Nachrechnung wurden
deshalb die jeweils unglinstigeren Beanspruchungswerte fiir 0%-igen bzw. 50%-igen
Verbund verwendet.

Es wurde angenommen, dass die Rostsch¥den zu lokaler Schwdchung der Stahl-
querschnitte ftihren, die Steifigkeitsverh¥ltnisse im Briickentragwerk jedoch
nicht wesentlich beeinflussen. Somit konnten die Schnittkr¥fte von der fritheren
réumlichen NASTRAN-Berechnung tibernommen werden.

3.2 Bauteile

Die Ueberpriifung der Tragfdhigkeit der Fachwerkstiébe erfolgt n¥herungswei-
se durch einen Vergleich der rechnerisch vorhandenen Stahlspannungen mit dem
Rechenwert der Streckgrenze, Grenz- oder Knickspannung. Die Pfosten, Streben
und Obergurte der Bogentr¥ger sowie die Quertréger werden ohne Beriicksichtigung
der sekundlren Biegemomente iiberpriift, flir die biegesteiferen Untergurte hinge-
gen werden die Biegemomente berlicksichtigt.

Die Obergurtknoten sind ohne Knotenbleche ausgefiihrt, Pfosten und Streben
sind exzentrisch am Stegblech des Obergurtes angenietet. Im Krafteinleitungsbe-
reich des Stegbleches wird das 1lokal vorhandene Schubfeld durch Vergleich mit
jener Grenzspannung liberpriift, die sich aus der Fliessbedingung nach v.Mises
ergiht.

Wihrend die gemessenen Rostkerben an den Streben und Pfosten eine direkte
Bestimmung der entsprechenden effektiv wirksamen Stahlquerschnitte ermglichen,
konnte die Wirkung der Rostschéden an den Untergurten nur iiber umfangreiche Be-
rechnungen erfasst werden. Die Verformung der Gurt- und Stegbleche der Unter-
gurte wurde rechnerisch mit Verformungsansitzen erfasst, die mit den Konstruk-
tionsdetails geometrisch vertr#glich sind und mit den gemessenen Rost-Abtr#gen
und Rgst-Auftreibungen tbereinstimmen. Die Mitwirkung der verformten und teil-
weise abgerosteten Bleche am Tragwiderstand wurde mittels dieser Verformungsan-
siitze aus der Fliessfigur flir exzentrisch beanspruchte Rechteckquerschnitte ab-
‘geleitet.
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3.3 Materialkennwerte des Schweisseisens

Die Festigkeitswerte des Schweisseisens sind, abgesehen von den bekannten
anisotropen Eigenschaften, mit dem heutigen Baustahl Fe 360 vergleichbar. 1In
Walzrichtung kdnnen aufgrund der Untersuchungen [1) folgende rechnerische
Streck- bzw. Fliessgrenzen angenommen werden:

- Streckgrenze fiir Quertriger: 00 2 = 210 N/mm2
’

- Streckgrenze fiir iilbrige Bauteile: = 220 N/mm2

%0,2

In Anlehnung an die Versuche [2] und [3] wurde fiir eine Abschitzung der
Ermidungswirkung infolge Verkehrslasten folgender Vergleichswert der Ermiidungs-
festigkeit fiir die genietete Schweisseisen-Konstruktion der Wettsteinbriicke an-
genommen:

- Ermtidungsfestigkeit: b0, = 60 N/mm2

Eine Ausnahme bilden die stark gekerbten Pfosten und Streben der Randtri-
ger. Fir ihre Ueberprtifung wurde der Vergleichswert der rechnerischen Ermii-
dungsfestigkeit vorsichtigerweise reduziert auf:

- Ermtidungsfestigkeit: Ao R = 50 N/mm2

3.4 Annahmen filir Lasten und Zwdingungen
Eigengewicht und st#ndige Lasten:

- Stahlkonstruktion:
Gewicht fiir theoretische Abmessungen nach Plan. Keine Zuschlége fiir Ver-
bindungsmittel, Knotenbleche, Vergitterungen usw.

- Fahrbahnplatte, Geleisebett:
Gewicht fiir theoretische Abmessungen nach Plan.

- Isolation, Strassenbelag:
Gewicht fiir Abmessungen nach Plan und Zuschlag von 2 cm Belagsstérke zur
Berticksichtigung von Ausfithrungsungenauigkeiten.

Reduzierte Verkehrslasten (entsprechend dem heute zugelassenen Betriebszu-
stand):

- Strassenfahrzeuge mit 3,5 t Maximalgewicht:
Gleichmidssig verteilte Last von 0,135 t/m2 pro 3,00 m-Fahrspur
(gemliss Unterlagen von Herrn Prof. Dr. M. Hirt, EPFL).

- Tramziige:
Kreuzungs- und Folgeverbot flir sémtliche Tramziige.
Schwerster vorkommender Tramzug (Gesamtgewicht 76 Tonnen):
Linienlast von 1,90 t/m auf 40 m L#nge.

Sonder-Verkehrslasten (unerlaubte, aber m8glicherweise vorkommende Strassen-
fahrzeuge):

- Einzelnes Schwerfahrzeug:
Fahrzeug mit 28 bzw. 38 t Gesamtgewicht: -
Zwei Lastpaare von je 14 bzw. 19 t im Abstand von 1,30 m (Annahme auf si-
cherer Seite). .
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Zwiingungen aus Temperatur#nderungen:

- Temperaturunterschied Beton/Stahl von + 10°C

- Gleichm¥ssige Temperatur#énderungen von + 20°C
(Diese Zwidngungen sind im wesentlichen gleichbedeutend
mit Widerlager- bzw. Pfeilerverschiebungen).

4. GEFAEHRDUNGSBILDER

Den Tragfdhigkeitsnachweisen sind folgende Gef¥hrdungsbilder A bis D fir
die heute zugelassenen, reduzierten Verkehrslasten sowie fiir nicht erlaubte,
aber nicht v8llig auszuschliessende Lastfélle zugrunde gelegt:

A: Grundlast:
- Eigengewicht und sténdige Lasten
- reduzierte Verkehrslasten, d.h. ein schwerer Tramzug und Strassenfahr-
zeuge von max. 3,5 t Gesamtgewicht auf beiden Fahrspuren.

Zwincungen aus Temperatur¥nderungen je nach Fall.

B: Grundlast und zus#tzlich ein trotz Verbot kreuzender schwerer Tramzug auf
der Brticke.

C: Grundlast und zus#tzlich ein unerlaubtes Strassenfahrzeug von 28 t Gesamt-
gewicht. :

D: Grundlast und zus¥tzlich ein unerlaubtes EG-Strassenfahrzeug von 38 t Ge-
samtgewicht.

Bei den Gef¥hrdungsbildern B bis D werden die Zwdngungen infolge Tempera-
turfinderungen nicht berticksichtigt. Ebenso spielt die Ermidung fiir diese F#lle
keine Rolle, weil sie nur sehr selten auftreten.

Die Risikobeurteilung der Gef¥hrdungsbilder erfordert ausser der Kenntnis
der Tragsicherheitsreserven auch eine Absch#étzung der Eintretenswahrscheinlich-
keiten, welche auf folgenden Annahmen beruhen:

- T8glich eine Nichtbeachtung (Vergessen) des Tram-Kreuzungsverbotes auf der

Wettsteinbriicke.

- Ein Strassenfahrzeug von 28 Tonnen pro Woche auf der Wettsteinbriicke trotz
Gewichtsbeschrénkung.

- Ein EG-Strassenfahrzeug von 38 Tonnen alle drei Monate auf der Wettstein-

briicke trotz Gewichtsbeschr¥nkung. Bei der Ueberlagerung mit der Grund-
last, Fall D, wird vorausgesetzt, dass jeder vierte Tramzug ein schwerer,
die anderen leichte Tramztige sind.

S. HAUPTERGEBNISSE
5.1 Schweisseisen-Konstruktion

Die Sicherheitsmargen, die sich aus Vergleich der rechnerischen Stahlspan-
nungen mit den Rechenwerten der Streckgrenze, Grenz- oder Fliesspannung erge-
ben, wurden flir alle Bauteile vorerst als Gesamtfaktoren ermittelt. Dabei wurde
die durch Rostabtrag und Rostauftreibung erfolgte Schwichung der Stahlquer-
schnitte berficksichtigt. Bild 6 gibt einen Auszug der wichtigsten Ergebnisse
fir das Gefd¥hrdungsbild A mit den heute zugelassenen, reduzierten Verkehrslas-
ten.
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Bauteil ,S“':?;::"":' ort Versagensart
Bogen 1,62 1/Y ,42-43 |] Plastitizierung
. der Gurtungen
:‘;; 0/Mv,e2-43 durch Dvuc'k und
. o, 62-63|| Blegung
Plastitizi p N
Ptosten 2,43 1Y, &3 “'::“"g:::'agm Getahr - ] Sicherhei 9 Obergurt - |Eintretenswahr -
:,;: Ilnlll!, :: Knicken dungsbild 5 ¥ as *]Knoten  |scheintichkeit
A 2,06 9,60 | m/m,ce [Mehimats
. Plastitizierung téglich
Streben 2,65 1/1Y,45-46 des Kerbbereichs
4,66 1/%,45-46 Ermidung des 8 1,53 7,50 m ,46 | atle & Monate
3,07 H/DE, &4-45) 0o rbbereichs (Zug)
3,07 m ,&3-44 c 1,46 o/IX, &6 le 2 Jah
149 Jrrx,es |2 th
smvgun - 1,56 112, &6 Lokale Plastiti-
noten 1,47 O/IN, 46 zierung des Ober- 1,32 o/, 46
1,52 m, 46 |} gurt-Stegbieches ° 115 | 113, g |20 100 Jahre
#® mit Zwingungen aus Temperaturknderungen ¢ ohne Zwingungen aus Temperaturénderungen
Bild 6: Sicherheitsmargen als Gesamt- Bild 7: Minimale Sicherheits-
faktoren flir Gef¥hrdungsbild A margen als Gesamt-

und Teilfaktoren

Fiir die massgebenden Bauteile berechnete man die Sicherheitsmargen zusitz-
lich als Teilfaktoren, um aussagekrdftigere Ergebnisse zu erhalten. Dabei wurde
folgender Vergleich der Stahlspannungen durchgefiihrt:

[+ +0 +0

6 " Yot %t Yor*%sYos = %R/ M
mit: o : Spannung infolge Eigengewicht und st#ndigen Lasten
[ : Spannung infolge Tramlasten
c : Spannung infolge Strassenlasten
[ : Rechenwert der Streckgrenze, Grenz- oder Knickspannung
Yg ¢ Lastfaktor fiir Eigengewicht = 1,20 (Annahme)
Lastfaktor fiir Tramlasten = 1,00 (Annahme)

: gr8sstmdglicher Lastfaktor flir Strassenlasten;
wird rechnerisch aus obiger Gleichung ermittelt

Yp ¢ Materialfaktor = 1,15 (Annahme)

Die Abschétzung der Eintretenswahrscheinlichkeit erfolgte mit den im Ab-
schnitt "Gef#hrdungsbilder" getroffenen Annahmen.

Bild 7 zeigt die Hauptergebnisse fiir das Gef#hrdungsbild A mit den heute
zugelassenen, reduzierten Verkehrslasten sowie fiir die Gef#hrdungsbilder B bis
D mit nicht erlaubten, aber nicht v8llig auszuschliessenden Sonderlasten. Inte-
ressant ist, dass die Obergurtknoten bei allen Gef#hrdungsbildern die gering-
sten Sicherheitsmargen aufweisen.
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5.2 Schubverbindungen

Die Schubverbindungen wurden nicht nachgerechnet. Ihr Totalausfall fiihrt
zu Kr#éfteumlagerungen, welche die Schweisseisen-Konstruktion ohne weiteres ver-
kraften kann. Dagegen werden durch das sukzessive Abreissen der Schubverbindun-
gen die von Fahrzeugen stammenden Schlige auf die Schweisseisen-Konstruktion
verstirkt. Dies ergibt eine Vergrdsserung der Spr&dbruchgefahr in unbekanntem
Ausmass.

6. RISIKOBEURTEILUNG

Die Ueberwachung des Briickentragwerks l#sst eine von Jahr zu Jahr be-
schleunigte Schadenentwicklung, insbesondere an der Fahrbahnplatte und den
Schubverbindungen, erkennen. Deshalb geht die Risikobeurteilung von der Annahme
aus, @ass das alte Bogentragwerk der Wettsteinbriicke bis um das Jahr 1990 er-
setzt sein wird. Eine Weiterbentitzung der Briicke tiber diesen Zeitpunkt hinaus
wlirde zus3tzliche Ueberlegungen und mdglicherweise weitere Kostenaufwendungen
und sogar Lastbeschrinkungen oder ein Fahrverbot fiir Tramziige erfordern. Die
bisher angeordneten Massnahmen sind notwendig und auch ausreichend, um die
Funktionstiichtigkeit der Wettsteinbrilicke bis um das Jahr 1990 sicherzustellen.

Fiir Lastwagen bis 28 Tonnen kann die Uebertretung der Gewichtsbeschrinkung
mit der bisher festgestellten geringen H&ufigkeit noch toleriert werden. Die
Ueberfahrt eines EG-Fahrzeuges mit fiber 28 bis 38 Tonnen Gesamtgewicht ist in
Kombination mit den erlaubten Verkehrslasten jedoch kritisch. Bei Auftreten
dieses Gefdhrdungsbildes D sind lokale Schd#den an den Obergurtknoten nicht mehr
auszuschliessen. Die minimale Teil-Sicherheitsmarge fiir die Strassenlasten ' be-
tr8gt in diesem Falle geméiss Bild 7 nur noch 1,15. Wegen der mdglichen Krifte-
umlagerungen muss bei Auftreten eines derartigen lokalen Schadens noch kein To-
taleinsturz der Brlicke beflirchtet werden. Dagegen kdnnten &rtlich die Fahrbahn
einbrechen sowie einzelne St#be und eventuell ein einzelner Bogentriger der
Schweisseisen-Konstruktion in einem Masse verformt werden, so dass die betrof-
fene Fahrspur ohne vorgingige Reparatur nicht mehr gebrauchstauglich wére.

Die Eintretenswahrscheinlichkeit, dass trotz Lastbeschr#nkung ein EG-Fahr-
zeug mit 38 Tonnen gleichzeitig mit einem Tram die Brfiicke bef#hrt, ist jedoch
sehr gering (ca. einmal in 100 Jahren). Dabei ist zu beachten, dass dieser kri-
tische Lastfall nur eintritt, wenn ein vollbeladenes EG-Fahrzeug in gleicher
Richtung und neben einem vollbeladenen Tramzug die Briicke bef¥hrt, was allein
schon wegen der knappen Platzverhdltnisse (schmale Fahrbahn neben dem Tramtras-
see) eher urwahrscheinlich ist.

Das geringe Restrisiko fiir diesen kritischen Sonderfall mit einem EG-
Strassenfahrzeug von 38 Tonnen scheint angesichts der Feststellung, dass ein
Totaleinsturz nicht befilirchtet werden muss, und angesichts der sehr geringen
Eintfetenswahrscheinlichkeit fiir die Bauherrschaft als durchaus tragbar.

7. LITERATURVERZEICHNIS

[1) EMPA-Untersuchungsbericht Nr. 50'568 vom 19. November 1984 betreffend
Schweisseisen-Konstruktion, EMPA Dilbendorf ZH

[2) ICOM (EPFL)-Untersuchungsbericht "Ermiidungsversuche an genieteten Blech-
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Schriigkabelbriicken mit Paralleldrahtkabeln
Hans Rudolf Miller, dipl. Ing. ETH Bureau BBR Ltd. / Stahlton AG, Zirich

Unter der Leitung von Prof. Dr. N. Hajdin, Belgrad, wurden zwei Schrigkabelbriik-
ken von europdischer Bedeutung projektiert und ausgefiihrt. Bei beiden Briicken
kamen Paralleldrahtkabel zur Anwendung. 1979 wurde die erste Eisenbahnbriicke mit

beln fir zwei Vollgeleise als Weltpremiere iiber die Save in Belgrad er-
'stellt [1]. Ihre Mittelspannweite von 254 m wurde bis heute bei reinen Eisen-
bahnbriicken in Europa nicht {iberschritten (Bild 1).

H g N
— il
_.[l T
ili AB—
| om0 300 s
[ [y

Bild 1 Eisenbahnbriicke {iber die Save, Belgrad.
Die Brilckenkonstruktion hat sich als ein hervorragendes Bauwerk bestens bewihrt.
Zur Zeit steht eine weitere Eisenbahnbriicke mit grosser Spamnweite kurz vor der

Vollendung. Es handelt sich um die Briicke {iber den Frazer in Vancouver (Spann-
weite 340 m) (2].

Bild 2 Strassenbriicke (iber die Donau, Novi-Sad.
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1. HiAm-Kabel

Die Bereitstellung von grossen Paralleldrahtkabeln hoher Schwingweite, wie
sie die in der Schweiz entwickelten und hergestellten HiAm-Kabel (high ampli-
tude) und -Verankerungen darstellen, hat dazu gefihrt, dass Schrigkabelbriik-
ken bei Spanmweiten ab 200 m solchen vom Hingebriickentypus wirtschaftlich
{iberlegen sind. Es ist heute m3glich auch Eisenbahnbriicken, also Briicken mit
hohem Anteil an Nutzlast, als Schrigkabelbrilcken zu verwirklichen.

Die im Bereich der Gebrauchsspammung (0.45 fu) ertragbare Schwingweite von
HiAm-Kabeln betrigt etwa 200 bis 250 N/mm2, bei einer Lastwechselzahl von
2-106 (Schwellfestigkeit).

Kritisch beziiglich wechselnder Lasten sind bel allen als Zugelemente verwen-
deten Draht- oder Litzen-Biindeln die Ankerzonen.

Unterwirft man ein mit einer guten Vorspannverankerung ausgeriistetes Kabel
einem Ermidungsversuch, 90 wird es in der Ankerzone 2zu Bruche gehen. Dies
gilt auch fUr die mit Zamak (fliissiges Metall) warm vergossenen Seilveranke-
rungen. Die erwihnte HiAm-Verankerung (Bilder 3 und 4) an Paralleldraht- oder
Litzen-Blindeln errreicht die Schwellfestigkeit des Blindels, d.h. die Dridhte
des Biindels gehen im Ermidungsversuch nicht an der Ankerzone, sondern irgend-
wo, statistisch verteilt, in der freien Linge zu Bruch. (Bild 5)

& e
il r _J
+—
?o
-
_| Bild 4 Querschnitt durch Parallel-
Bild 3 drahtbiindel mit 163 ¢ 7 mm.

HiAm-Anker im Lingsschnitt.
°r et Die Dauerfestigkeit

des Bindels selbst

1 Am-Ankerkop! _kann also ausge-
oben

niitzt und als
H Dimensionierungs-
/4 grundlage verwendet

. ¥ werden. 250 N/mm2
/ als Amplitude ent-

sprechen  ungefihr
300 : der 1 %-Fraktile
! der Dauerfestigkeit
] eines patentiert
200, kaltgezogenen Drah-
AT * 226 Njmm? tes.

Anz.Orlnte: 2085 Tmm Die HiAm-Veranke-

[T rung besteht aus
Lostwechsein einer Kombination
von endgestauchten

0 . Y ase7Tmm BBRV-KSpfchen mit
Stahlplatte und ei-

M Am-Ankerkop! nem Kaltverguss mit

unten Epoxid-Harz, ge-

Bild 5 Lage der Drahtbriiche beim Ermiidungsversuch an einem Parallel- fasst in einem mit

drahtbiinde]l mit 295 ¢ 7 mm. (EMPA Bericht Nr. 73844) konischer Bohrung

versehenen Ankerkopf. Das Kabel selbst besteht aus einer beliebigen Anzahl (bis
etwa 400) paralleler Drihte, versehen mit einem Xusseren Poly4ithylenmantel. Es
wird nach der Montage und dem Spannen mit InjektionsmSrtel oder anderen korrosi-
onshemmenden Materialien verfullt. (Bild 6)
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Bild 6

Zusanmenbau einer HiAm-
Verankerung im Werk.
Montage der BBRV-Kdpfchen.

2. Beurteilungskriterien fUr Paralleldrahtkabel

Fir die Beurteilung der Gite von Paralleldrahtkabeln sind folgende Kriterien
massgebend:

- statische und dynamische Festigkeit

- Herstellungsprozess und Korrosionsschutz

- mechanischer Schutz

Fur die Beurteilung der Dauerhaftigkeit wihrend des Betriebes ist der Korro-
sionsschutz von ausschlaggebender Bedeutung. Dies ist beim Herstellungspro-
zess geblhrend zu ber{icksichtigen.

Statische und sche Festigkeit

Paralleldrahtkabel bestehen aus einer den erforderlichen Kriften ents

den Anzahl von hochwertigen, kaltgezogenen und thermisch behandelten Stahl-
drihten mit der Normfestigkeit von 1670 N/mm2 bei blanker Ausfihrung. Bei
verzinkter Ausfihrung werden ca. 1600 N/mm2 erreicht.

Die Ausniitzung bei Schrigkabeln liegt bei 0.45 ftk als Obergrenze. In diesem
Bereich ist das Drahtmaterial wenig empfindlich auf Spannungsrisse. Die Ermii-
dungsfestigkeit der blanken Drihte liegt bei etwas 300 N/mm2 (giiltig fur
O max. = 0.45 ftk und Probenlingen von 1.00 m und dariiber). Erf

liegt die entsprechende Schwingweite flur verzinkte Drihte ca. 10 bis 20 % hi-
her.

Als weiteres Kriterium flir das Paralleldrahtkabel ist der hohe und mit klei-
ner Toleranz garantierte E-Modul anzuftihren, welcher fUr die Verformungen un-
ter den nicht st#ndigen Lasten giinstige Bedingungen schafft. Dies gilt ebenso
bei der Montage, die meistens vor Aufbringen der gesamten stindigen Last aus-
gefuhrt wird. Auch hier erlaubt der klar bestimmte E-Modul die zuverlissige
Berechnung von erforderlichen UeberhShungen.

Sicherheit gegen Korrosion

Die Sicherheit gegen Korrosion ist zu gewdhrleisten durch den Herstellungs-
prozess fUr die Kabel sowie durch den Aufbau des gesamten Kabels (Korrosions-
schutz-System).

Herstell

Es ist ein Verfahren zu wihlen, bei dem die fertigen Paralleldrahtkabel in
einer Fabrik hergestellt werden, wo sowohl alle Einrichtungen zur laufenden
Qualititskontrolle bestehen sowie gewdhrleistet ist, dass wihrend der Fabrik-
ation keine korrosionsfirdernden Einwirkungen bestehen.

Durch einen Schutzfilm aus Korrosionsschutzdl, der wihrend der Fabrikation
auf die blanken Drihte aufgebracht wird, ist der Schutz der Driéhte innerhald
des PE-Rohres bis zur Injektion der Kabel gewihrleistet.
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Es wird immer ein System verschiedener Komponenten als Korrosionsschutz ver-
wendet. Diese erginzen sich in ihren Funktionen gegenseitig. Ihre Vertrig-
lichkeit muss gewihrleistet sein. Neben dem klassischen Korrosionsschutz-Sy-
stem (A) fur Paralleldrahtkabel sind auch in einzelnen Fillen Varianten be-
kannt und auch angewendet worden. In der untenstehenden Tabelle sind die bei
HiAm-Paralleldrahtkabeln verwendeten Korrosionsschutz-Systeme 2zusammenge-
stellt. Als wirtschaftlichstes System ist nach wie vor der Schutz mit Msrtel
und PE-Rohr zu bezeichnen (A). Neuerdings finden auch ' Fettfillungen Eingang
(B). Als sehr hochwertig und entsprechend mit hohen Kosten verbunden gilt Sy-
stem (C), welches insbesondere in Belgien zur Anwendung gelangte. Die ersten
Anwendungen gehen auf das Jahr 1961 (Schillersteg) zuriick, wobei der Zustand
dieser nunmehr 27 Jahre in Betrieb stehenden Kabel vom Otto-Graf-Institut im
Jahre 1973 eingehend untersucht wurde. Die Feststellungen dieser Ueberpriifung
sind: "Die augenscheinliche Untersuchung an zwei Stellen der Haupttragkabel
ergab, dass innerhalb der Langzeitbewitterung von rund 12 Jahren seit der Er-
stellung des Bauwerkes keine Korrosion an den Spanndrihten eingetreten ist
und der aktive Korrosionsschutz durch den Einpressmirtel noch wirksam ist".

Korrosionsschutz-System
Draht T Zwischenraum Hillrohr
Ty Schutz

spezieller

A blank Motorex Portland- PE
Zement-MSrtel

B blank — Fett PE

Cc verzinkt — Teer-Epoxy PE
oder Fett

Die Verfullung des Zwischenraumes zwischen Hilllrohr und Drahtbiindel bei ver-
zinkten Dr¥hten kamn nicht mit Portland-Zementmirtel erfolgen, weil die Bil-
dung eines galvanischen Elementes zwischen den einzelnen Drihten und dem noch
nicht vollstindig ausgetrockneten MSrtel beflirchtet werden muss. Die Verful-
lung muss daher mit einem chemisch neutralen Stoff erfolgen. Vereinzelt sind
in Japan auch andere Stoffe (Polybutadien) verwendet worden. Diese Verfillun-
gen sind sehr teuer (10- bis 20-fache Kosten der MSrtelinjektion), so dass
sie nur bei speziellen Voraussetzungen in Betracht gezogen werden kinnen. Er-
fahrungen bei der Anwendung von Teer-Epoxy liegen seit 10 Jahren vor.

Verankerung

Die Verankerung von blanken und verzinkten Dr#hten mit Kunststoff-Verguss
(beim Verfahren HiAm mit Zinkstaub und Stahlkugeln angereichert) unterbindet
die Anwesenheit von Feuchtigkeit vollsténdig und gewdihrleistet einen einwand-
freien Korrosionsschutz im Ankerbereich fUr beide Drahtsorten.

Bei Ausfithrung mit verzinktem Draht ist die Mglichkeit eines metallischen
Kontaktes ausserhaldb des Kunststoff-Vergusses zu vermeiden.

Massnahmen bei der Montage von Paralleldrahtkabeln

Die bei der Montage vorzusehenden Massnahmen bestehen im allgemeinen darin,
Knicke der Kabel zum Schutz der PE-Hilllrohre und der Dr#hte durch geeignete
Umlenkkonstruktionen auszuschliessen.

Dabei besteht kein Unterschied zwischen blanken oder verzinkten Drihten. We-
sentlich ist, dass es sich bereits bei der Anlieferung um ein geschlossenes
System handelt.
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3. Qualitastskontrollen

Neben dem Briickentriger und seinen Fundationen gehSren die Tragkabel zu den
wichtigen Bauelementen der Schrigkabelbriicken. Die Gewfhrleistung ihrer Trag-
funktion ist entscheidend flir die Gebrauchsf#higkeit und Lebensdauer der Ge-
samtkonstruktion. Die sorgfiltige Abklirung der technologischen Eigenschaften
der Abspannungen mittels Bruch- und Ermiidungsversuchen an ganzen Kabeln ist
wohl eine der Voraussetzungen zur Bewertung der Gebrauchseigenschaften, ent-
scheidend aber ist die Auswahl und Priifung der Komponenten der eigentlichen
Kabellieferung und die Ueberwachung und Kontrolle der Herstellung.

FUr den Nachweis der geforderten Eigenschaften ist vom Kabelhersteller ein
umfangreiches Kontrollsystem-Verfahren anzuwenden.

Ankerkbpfe und Stiitzmttern

Jede Charge des geschmiedeten Materials ist mit Festigkeits- und Z#higkeits-
proben zu (berpriifen. Ermittelt werden:

- Zugfestigkeit
-3

= Dehnung nach Bruch
- Einschniirung
- Kerbschlagzihigkeit bei -20°

Die Probenentnahme erfolgt an den bereits geschmiedeten Rohlingen. Die Anker-
hillsen und Stiitzmuttern werden nach der mechanischen Vorbearbeitung mit Ul-
traschall auf Unginzen {iberpriift.

Draht

Stmtliche Drahtringe werden sowohl beim Drahtlieferanten als auch beim Kabel-
hersteller untersucht und die erhaltenen Resultate pro Charge statistisch
ausgewertet und verglichen.

Bel Schrigkabeln ist der Schwingfestigkeit besonderes Augenmerk zu schenken.
Diese bildet bei Briickenkonstruktionen das wichtigste Dimensionierungskrite-
rium. Die Ueberpriifung ist so zu planen, dass auf verschiedenen vorgewihlten
Spannungsniveaus die Anzahl der Brilche und Durchliufer (fuUr 2 Mio. Lastwech-
sel) bestimmt werden kann. Die im Wahrscheinlichkeitsnetz eingetragenen
Bruchwahrscheinlichkeiten gestatten dann die Bestimmung ausgew#hlter Frakti-
lenwerte der Schwingweite %glld 7. [5)

Anzohi der Proben: 216
Araohi der Niveous: 6
Proben pro Niveou! 36
Obersponnung honstont: 795 kp/Amm
Anzohl der Lostwechesi 2-10
Probenidnge : 200 mm

Mogso * 45,5 hp/om’
Bogy * 35 Wp/omt

Bruchwohrscheiniichhalt in %
o35 3888838 838

Bild 7 Emittlung des Ermiih idk des des Drah ials fir die Save-Briicke.




HiAm-Kugelkunststoffverguss

In der Regel werden pro Verguss zwei AnkerkBpfe verfullt. Die einzelnen Ver-
gusskomponenten, bestehend aus Epoxidharz und Hirter, Zinkstaub und Stahlku-
geln, sind mit Werksattesten von den Lieferanten ausgewiesen. Fir jeden Ver-
guss wird ein Protokoll erstellt, in welchem die angewandten Temperaturen und
die Aushirtungszeit aufgezeichnet sind. Die Gewichtsbilanz der Zuaohla@st.offe
gibt Auskunft {iber die genaue Zusammensetzung der einzelnen Vergussstufen. An
separat vergossenen Probeprismen wird die Druck- und Biegezugfestigkeit er-
mittelt.

PE-Rohre

Jede Rohrcharge wird mit Zeitstandinnendruckversuchen (berpriift. Zudem werden
der Schmelzindex bestimmt und die Masshaltigkeit untersucht.

Injektionsmirtel

Vorversuche haben Aufschluss {iber die zu wihlende Rezeptur des MSrtels zu ge-
ben. Dabel sind Zementqualitit, Anmachwasser und Kunststoffzusitze sorgfiltig
gegeneinander abzustimmen. Die Viskositit der MSrtelmischung wird mit dem
Fliesskonus {ilberwacht und die Druckfestigkeiten an separat abgefillten Proben
bestimmt.

4. Schlussbemeriung
Schrigkabelbriicken gehSren heute zu den meist angewandten Briickentypen im
Spannweitenbereich von 200 m bis 800 m. Es 1ist das Verdienst von
Prof. Hajdin, Entwurf, Berechnung und Konstruktion der Schr#gkabelbriicken
nachhaltig gefSrdert zu haben. Die von ihm entworfenen Bauwerke zeichnen sich
aus durch Wirtschaftlichkeit, Aesthetik und Dauerhaftigkeit.
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FATIGUE CRACK GROWTH AT IARGE DEFLECTIONS (F WEB LOADED IN SHEAR
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SUMMARRY

The fatigue crack growth is plotted in the form da/dN = B (AS)™ and
the number of cycles is considered in (5.4). Conditions of crack growth are
described in chapt. 5 and the stress o, at the stable crack arowth is ob~
tained in (5.3). i

Before the crack propagation the large web deflections ar the maximum
tensile stresses (memtrane and bending) are calculated. The differential
Kérmdn-MArquerre s equation are used. To the solution of the system (1.1)
Gnletkinneﬂndofhighmmberofwmarﬂqmmba‘sissolved.Thecoef-

ficients & mﬂ%famhranearﬂberdmgstreasesareobtamed.'me
unrestrain®d and restrained edges are discussed. For cyclic plasticity
the uniaxial and miltiaxial case of deformations is considered.

INTRODICTION

Fatigue crack growth considered historically as an empirical discipli-
ne by the mechanical engineers, meanwhile stability of members loaded in
shear ar of campression members has been solved by structural engineers.

The problem of large deflections of elastic isotropic or elasto-plas-
tic webs is usually solved in static loading e.g. solution of the system
Rérmén-Marquerre”s differential equations, ultimate load theories of web
loaded in shear, etc. In the paper the effect of shear stresses is conside-
red and the first attention is focused to the maximum tensile stresses on
the opposite web carners ar generally on the web boundary. The crack ini-
tiation starts at the points of maximum tensile stresses. Stability of web
in cyclic loading at global instability sinks that means the structure reachs
the limit state. At maximal loading stresses, the residual stresses do not
reach, as a rule, the maximal value of tensile stresses.

The crack growth rate, denoted as the slope of crack growth curve
da/dN 1is considered as extension of a crack occurring in one cycle.

The fatigue crack growth is plotted in the form

da/aN = B(AS)"
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where A S is the range of strain energy density factor, B and m are con-
stants. :

1. LARGE DEFLECTIONS OF WEB

For large web deflections we suppose that the load history may be the
kind of structural and geometrical imperfections. For an elastic range the
differential Kdrmén-Marguerre’s equations

32(ped)) d%w 32<¢+¢0) %
() %
My oy

2 %
AAg-E 55~ o2 &=

Bzwo 2 azwo Bzwo }
153, 32 32
dxdy d2  x

can be used, if satisfactorilly large number of cycles is occurred. In the
equations @ being the stress function, W and w the initial and additonal

E t3 the flexural rigidity, E the Young's modulus, t
12(1-v2)
the web thickness and v the Poisson ratio.

Let us have the simply connected domain € = (0,a) x (0,b). The crack is
supposed to be on the boundary of the domain where the maximal values of ten—
sile stresses occur.

ror the web loaded in shear, which example for the web of a/b = 2 is
given in the paper, the unrestrained edges solved by Galerkin method are dis-
cussed. To obtain an overall picture of the problem the influence of restrain-
ed edges in the webplate plane is shortly described.

It is necessary to distinguish the low and high width-to-thickness ratio
of the web. In the case of lower width-to—-thickness ratio the deflections of
the web are distributed relatively uniformly and the influence of membrane -
stresses on the edges is negligible. For lower width-to-thickness ratio there
is no difference between flexible and inflexible edges in the web plate pla-
ne.

DAA(w-wo) =t [

(1.1)

deflections, D =

If the web slenderness increases the position of maximum membrane web
stress for flexible edges is changed. For inflexible web edges maximm membrane
stresses are at the web corners x = 0, vy = 0, or x = a, Vv = b. For flexible
(unrestrained)edges the maximum membrane stresses are concentrained (except for
the small slerdernesses) at x = 0,4a - 0,6a for v = C,b,respectively. Maximum
membrane and bending stresses for unrestrained edges are at x = 0, y = 0 or
X = a, y = b. The maximum difference of menbrane stresses for restrained or
for unrestrained web edges is at the critical loading. At the web loaded in
shear for wo/t = 0,7 the difference is 17%, for wo/t = 1,05 is 19%.

In the solved example the homogeneous boundary conditions were used, e.g.

32, Ay
w-wO-O/r,azt a—n-z-ouo (1.2)
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vhere T is the boundary of the orthogonal domain and n is the independent
variable in the direction of the normal to the domain boundary.

The biharmonic function ¢013chominthem
ﬂol'X%xY (1.3)

. 2
E t
vhere A is the load and . In the web te pla-
parameter dnnm plate p

% _, ¥ _, % _,
- - - / 1.4)
o /xno,al a2 /yuo.bl 2Dy r ¢

are used.
2. SOLUTION TO THE SYSTEM (1.1)

The Papkovich or Galerkin method is succesfully used in a solution to the
formilated problem. In the former case it is the differential equation of de~
formation compatibility that is solved exactly, while the differential equat-
ion of equilibrium is solved approximately. In the latter case both equation
are solved apmroximately. In both cases, however, the problem leads to a so-
lution of a system of nonlinear algelraic equations. Further we will use the
Gnlerldnneﬂndofm.ghmnberofwmand%mbers.

. The functions of the initial and total deflections are considered in the
‘oxm

we LY g sn %X an O -
(2.1)
Vo T Vo oin " sin B

The stress function is assumed as follows
g Y Zzsa [cosi‘i’!-oosu-(-l)‘)"-‘]
re2 o= rs a 2a
[eoa ‘—;! - co8 (1-(-1)%) %]

The nonlinear algelraic equations (1.1) as Euler equations are computed
from the functional

Q(A, 8 W -f{g-[A(won -x a9’
2 2
[ Zom &7, ooy * , Yoy ;'w_]

(2.2)

*3

x? u o x 2dy d:x By 23,
R@a,) ™ UM, M, 2 OAPP) v, D :
-%[__;29_(5;0)4 -—&30-(-&-9(—)-2 —a-@y-o- gnsiq]}dn

The system of algebraic equations is obtained and the coefficients Ym
and @, for a/be1l, 2, 3 are solved in /17 (the author Sadovskf, 2.),
Nurerical solution of algelraic equations is given in tables, from which as

229



Table 1. Web loaded in shear, a/b = 2, |w)l/ t = 1,05

w w i "] d
oa ° 3,21 6,54 9,81 - 3,41, 6,54 9,81
wp | “0-257005 | -u.418517 | -0.T06628 | -1.137978 | B,, | -0.02697110| 0.08520671 |-v.18244752
vie | -0 004171 | -0.011280 | -0.030877 | -u.070399¢ | 4, ¢ | Y 00164724 [-0.0063237¢ | -0.0159308¢
wyy | 0.932341 | 1.348351 | 1.969763 | 2.669109 | B | -0.00018651 [-0.00080328 |-0.00226820
wyy | 0.064905 | -0.105133 | -0.192290 | ~0.358193 | B4 | -0.0U006834 [~0.00031561 |-0.00094986
wa5 | =V. 004245 | -0.0U7632 | -0.0L6404 | -U.036426 ﬂ” 0.00409500 | 0.01008262 | 0.01322097
wy, | ©0.284098 | 0.479523 | 0.834c16 | 1.343306 [ #ys | 0.00071234 | 0.00198776 | 0.U0253110
wie | ©.00465¢ | 0.009936 | 0.019875 | 0.0¢7947 |y, | 0.00020957 | 0.00056302 | ©0.00062305
Wey | =0-109037 | -0.131243 | ~0.134411 | -u. 106¢20 | 8,5 U. 00806839 |-0.U2550077 | =0.05485996
¥y | 0-026743 | 0.053102 | 0.116385 | 0.240989 | 4, } 0.00092800 | 0.00398378 | C.u1005881
wes | ©.002369 | 0.004385 [ 0.009904 | 0.021175 | g, | v.00022508 | V.00114539 | ©.00332002
wsg | 0014507 [ 0.0:7356 | 0.0682<9 | 0.166637 | .5 | 0.00004919 | 0.00024946 | 0.0v072227
w5, V. 001802 0. 03870 0.v12753 0. 041421 “53 -U. 3630<5 |-0. 01066000 |-0.01973441
wey | -0.00¢337 | -0.u23840 | -0.050986 | -0.092121 | g5 [ -0.U0051357 [-0.00117047 |-0.0C079423
we3 | ©-008556 | 0.010733 [ 0.020919 | 0.051510 | My, | ~0.U0016872 [-0.00044642 | -0.00054543
Y65 0.000845 0.0V1613 V. u04170 0.013893 | £ | -0.00113246 |-0.00524009 | -0. 01400503
wia | 0.003634 | 0.007¢55 | 0.011331 | 0.009106 | 4, | -0.00070142 |-0.00298¢15 |-v.00681017
Y14 0. 000895 0.001601 0.002785 0.0U5¢93 | dgs | ~0.00020082 |-0. G0N9019 | -0.002) 1880
w81 0.002890 | -0.003934 | -0.LO5657 | ~0.UL4941 | My | ~U.0O043865 |-0. 00284891 | ~0. 0907984
wey | ©-00:155 | G.u04353 | 0.009353 | 0.013742 | A5 | -0.00003755 [-0.00070246 (-0.00305404
wgo | O.col181 [ O.002462 | 0.006594 | 0.011936 | #g, | -0.00u10169 [-0.000369 | -0.00058775
Mg, | -0-00008486 [-0.00097096 -0.00532794
Py | 0-00003456 |-0.00004318 |-0.00096569
Yy | =0-00010589 |-0.00040518 | -0.00187269
¥, 4 | -0+ 00004839 |-0.00025075 |-0.00100253
‘113 -0, 00010061 [-0.00045858 | -0.00115453

an exanmple the Table 1 for a/b = 2,

9,61 is presented.
The stresses on digigraph D& 1712 in Camputer Centre of SAS were plot-
ted according to which the coefficient

9-

oy I

was calculated.
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The stresses dx' 6y"txy in (2.4) express either the membrane stresses

3% @y ) Py
%m = byi ' 6y,n - &ci
32 @) @2.5)
Txym *° Oy

or the membrane and bending stresses.
The bending stresses are written in the form

. 4 Bt (bz(wo) .y ¥%(wwiy)
x,b 20 o2 w2

- 2
Y»b v T Y VTR (2.6)

where w is the total deflection function of the web.
'meobtainedresultsﬁota/bnz(rcr-&ﬁ JE)areahominl’ig. 1.

]
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T/ Ter
Fig. 1 Coefficlents g and g,
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In the solution the web flanges were not assumed, e.g. that the membrane
and bending stresses are considered as maximum possible value of the web.

3. CYCLIC PLASTICITY
3.1 Uniaxial case of defcrmation

The total strain can be decamposed into a plastic rate and elastic rate
é‘ée'.'ép' (3.1)

where ¢ , €ar € are the total, elastic and plastic strain respectively and
ﬂ:edotovereacgmedentesﬁ\emterialumderivativesorrate.sm
e = O/E, ee-O'/Eeani ep-G/EP,where C is the stress rate, Et,Eeand
Ep are the total, the elastic and the plastic moduli respectively.

Fram (3.1) we have

+

mli-'
o™

3.2)
t

|

3

When the elastic
(3.2)E -Eeo When

forma takes place, the value is infinite and from
t
a.xlusi‘batﬂmeonset

is constant or changing continuocusly, the plastic mo—
yielding must be infinite for such a smooth transition.

Qo™ B

6/Ry

20
e/g,

Fig. 2 Cyclic tensil and campressive stress of web

Numerous experimental investigations onto the behaviour of metals have been
carried out. The experimental results frequently differ fram each other and sarhe—
times the results of various tests even seem contradictory. However, when taking
account of different experimental conditions, we can conclude that there exist
straininduced anisotropy of material in the damain beyond the yield limit.
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As an exanple the numerical results for an anedimensional element in elas-
toplastic cyclic loading are shown in Fig. 2.

The greatest buckling coefficient in camression G/R_ = 0.6 and that
ane in tension O/R_ = 0.7. The total and the elastic us is considered

in the farm nt.sxoonpaman = 210 000 MPa.

3.2 Myltiaxial cape of deformation
A basic relationship for the theory of elasto-plastic deformation is / 2/

G=F (ce) (3.3)

where the effective stress G and the effective deformation € _ for two
axial case is e e
2

2 _ 2 |12
A +0 6x6y+3t )

(o, Y Xy V2

2 2 2 2,3 2
- -g [(u:x - ty) + (ey - ez) +* (ez - ex) +t3 ny ] (3.4)
'Benlaﬂmdxip(3.3)anhedebaﬁndformmmm, for example

S =0 . = T -0, wp detﬁx,

v\
.-v.ex v -'> te- 2-(—1;; €

cy'cz

¥when the dependance o’x- €x is cbtained fram tensile tests for the uni-
axial case of a static and cyclic loading, the relationship de—ce is then
found out by miltiplying 6, by the quantity 21 +v')/3.

'nnnomtimofahuicsysunofmhmmsdﬁfmmm
generalized for elasto-plastic web for ane static loading can be found in /27,
p. 178.

Generally speaking failure does not ocowr instantaneously. It initiates
with subcritical crack growth priour to reache the unstable crack propagation.
Before the unstable crack the web deflections or tensile stresses not comnected
aelse with mcro- or micro crack may be calculated.

The limit state of the web for static loading is defined by that load under
vhich the maximm menirane stress reaches the yieid stress /2_7, p. 95. Elastic
menkxrane and bending stress Fig. 1 which we use for cyclic loading would be -
very near to fatique live stress O,

It is very important to know much is the maximm tensile effective
stress (membrane and bending) before the crack propagation.

_4. RESIDUAL STRESSES

4.1 Welding residual stresses

First, the residual stresses developed.as a result of the welding process
are considered. Welds as well as their immediate vicinity are subjected to ten—
sion equal to the yield stress and the remainder of the cross-section is subjec-
ted to residual compression. As the web has been cooled the longitudinal stres-
ses near the weld remain very close to the yield stress of the material.

It is advantageous to work with idealized rectangular residual stresses,
which satisfactorily describe the stress distribution. In civil engineering struc-
tures, the tension zone is assumed to extend the distance c = 2t to c= 4t, vhere
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t is thickness of web sheet. The residual stress on loaded boundaries of the
web is of the farm n, = x2c/(b - 2c), where n, is the campressive resi-
dual stress and b is ~the Yweb panel width. If we “assume the value ¢ = 3t,
the yield stress of the material = 230 MPa, the geametrical imperfections
wo-b/IOOamiflad.bleintheweb unloaded edges, the resulting mascdmum
residual stresses n, for width-to-thickness ratio of the web, calculated

according large deflection theory, are as follows:
b/t | 30 45 60 90
nR %[ 206 813 6.8  3.02

For lower Wy the residual stress would be smaller. So, for example, if
wo = b/200 and b = 30, the residual compressive stress nrmY-Q.83% and for
b/t = 60, nx/Ry = 3.44%.

These results for geametrical imperfection w, = b/200 are in very good
ag’eamtwitha)eofmemlusimofﬂxemtamgtimalhskerwpmleran-
ces in Steel Plated Structures / 3_7. It should be mentioned that the welding
residual stress depends not only of the web slenderness but also fram the geo—
metrical imperfections.

4.2 Canressive residual stresses and fatigque crack clousure

Consider a plate with a central hole loaded in tension shown in Fig. 3.
For technical material and sufficiently high load, plastic deformation occurs
near the edge of the hole. The unloading
will cause elastic deformation and cam-
COMPRESSION d} pressive residual stress distribution ex-
. ceeding the campressive yield limit will
occur near the hole. The remainder of the
AFTER cross-section is subject to residual ten-
UNLOADING sion.

The fatigue crack investigated is an
extremely sharp notch consequently unload-
ing cause plasticity immediately after re-

! version of the load direction. During un-
loading and after full unloading campres-
Fig. 3 Residual stress at fatigue ﬁamﬁmi ;ﬁ the cr' ;ﬁk
crack clousure no longer fully opened. The phenomenon is
called crack clousure and was first cbserved by Elber, W. / 4_/. The prablem is
how to calculate the stresses in the tension zone. Effective stress intensity
factor of the crack arisesand empirical results are used founded on crack clou-
sure measurements.

The same procedure could be used as in welding residual stresses where
would be the tensile residual stress. As in welding residual stresses, the ma=
ximum residual stresses n, for width-to~thickness ratio of the web may be calcu-
lated.

It should be mentioned that tensile residual stresses in fatigue crack clou-
sure go to zero with increasing width-to-thickness ratio b/t.

5. STRAIN ENERGY DENSITY THECRY
5.1 Conditions of crack growth

To study the problem of initiation, stable and unstable growth of crack the
strain energy density function, &W/dV, is used. For continuum element we have
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cij N
% -] 61j da cij (i'j - 1,2,3 'ooo) ! (5-1)

iuﬂcjmﬂnmmmmmts,respectiwly.mﬂn
linear range dW/dV-dj 3/2
Material damage is time dependant. It can be expressed by the relation

%’ -2 (5.2)

vhere S is the strain density factor and r is the linear distance of
studied crack growth. Cmedv/dv) and S_ are known from tests, the critical

distance parameter r, followsﬁ:anequ ?52) According to (5.2) the stress at
the begimning of stable growth is cbtained / 6 /s
' 1 2 Ex,(awWw/av) 1/2
o, = —=2 ) (5.3
F(a/b) (1+v)(Q-2v )ag

us have a steel with the following properties :
E=5l0 oowg ve 0,3, C, = 520 MPa, (&W/&V) = 187.734 m/m3,
10 N/m

= 13,485.

The values ucalmlabedur -Sc/(al/dV) = 7,183. 10 + in while

= 3.1073, Miscmsideredtobaamterialmtant.!etushmn
Pb/h)-l then the stress at crack initiation according to (5.3) is
6 = 427,62 MPa. Critical stress at global instability at crack length
ao-Z,Sm(forh-oo)o‘ = 580 MPa / 5_7. The difference 6 -o‘ = 165 MPa.

5.2 Fatique crack growth

The crack growth rate denoted as the slope of crack growth curve (da/AN)
is considered as an extension of a crack occurring in one cycle. The crack
growth is plotted in the farm da/aN = B( AS)™, where A4S is the range of
strain energy density factor, a is the crack length and N the nunber of cyc-
les.

a0 qa
[MPa] [mm]
650 — § 40
o
-% g g 6 Lo
-]
600—\ q 120
T 10
550 /
T T T T T T T T T 1 -0
0 S

10
N (x108cycles]

Fig. 4 Fatiqgue life curve for edge cracked web
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It is supposed that the stable crack growth is not connected with the web
deflection changes.

For simple solution we assume that the fatigue crack at the length 2a,(in
the web thickness direction) on the web boundary grows in the direction to the
web centre.

The nutber of cycles is considered in the form

ag = a;_
N = )_2_ e S Y (5.4)
1. BA®"

The constant are as follows: B = 6181.10"11, m = 1,414, the number of ele-
ments j = 26 and AS = 50 to 8000 J/m¢, The material properties are given by
Og = 517 MPa, (aW/&V)_ = 48,46 MI/m3, K, = 103,52 MPa [m, S_ = 13,485 ki/m,
£l (] 1c c
c=2tand At = 1 mm.

Some results are analysed in Fig. 4.
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New Lighting Technologies in TV and Film Studios and Their
Reflexes to The Structural Steelwork

Slobodan Cvetkovic
Mostprojekt, Palmira Toljatija 11
11070 Beograd, Yugoslavia

Summary

This paper / gives the basic idea of structural steelwork for
lighting grids in TV and film studios which ought to be assembled
in very narrow tolerances even for 1000 sqm studio area.

The lighting must give an illusion of reality and spectator must
enter without restraint into the screen of his receiver or of his
cinema. Therefore to recreate this illusion it is necessary to
place light sources around and above the sets so that they
cannot be seen in the line of vision (always an illusion), and
they must be independent of the work area in the stage.

In order to get the most economical use of expensive
multipurpose studio space,it is very important to reduce the
spotlight adjustment time. The new studio 1lighting technology
developed by Telestage, practically was used first time in
Belgrade Television about twelve years ago. It gives the
opportunity to get flexible spotlight arrangement in very
short time. The new technologic requirements need new type of
lighting grid structure - ie. some kind ‘of suspended ceiling.It
is formed of numerous platforms (dimensions appr. 1,50 x 1,00 m)
which cover the whole studio area of 300 to 1000 m2.

All these platforms are arranged in the way to get free space of

65 mm between each platform, forming orthogonal system of

slots (figure 2). This slot system carries many telescope units

for spotlights (figure 3).

Every new scene or stage in the studio has new reguests for
lighting arrangement, ie the spotlight shall be then rearranged.
All light adjustments practically are carried out over
grid platforms. During the light arrangements, each
spotlight telescope unit which is properly positioned, is
translatory transferred to the parking slot for further 1light
focusing leaving the main slot for next telescope unit. This
brilliant idea should be followed with adequate grid steelwork.
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Figure 1. Spotlights in studio

The rigidity of whole grid structural system is necessary,
together with requests for very narrow tolerances in slot
assembling: distance between two platforms ought to be 65 mm +/-
1 mm followed with maximal differences in adjacent platform
levels of 0,5 mm due to specific construction of spotlight units
with telescope suspension lenght of appr. 10.000 mm.

The author's solution of grid steelwork for few TV studios which
have been built in Yugoslavia (figure 1, 2), compromise necessary
accurancy in grid steelwork assembling with tolerances in
studio building structure. At the same time, the future
reassembling of platform positions (each 5-10 years) is very
easy and does not need long brakes in studio use.

The main elements of lighting grid are:

1. Grid_overhead beams placed at the distances of 3-6 m; cross
section two channels. They have rigid connections with roof
supporting structure. )

2. Grid hangers and grid supporting beams. The crosssection of
these elements allows assembling of electric cables, contact
sockets and 1lighting equipment. The are spaced at 1500 mm
distances.

3. Grid cantilevers which supports the grid platforms.

(figure 4).
4. Grid platforms formed of two parts:
a) frame - path for telescope units (as main part of grid

structure) and

b) grating. (figure 5) .

The templates and welding process control shall be used in frame
fabrication in order to prevent shrinkage and distortion. The
grating is connected to the frame by screws.
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Figure 2. Plan view of lighting grid with parking slots

Figure 3. Troley of telescope unit in parking slot
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GRID PLATFORMS’ SUPPORTING STRUCTURE Figure 4.

GRID PLATFORM

Figure 5.

The assembling of the lighting grid steelwork shall be done in
following order: ’

- grid overhead beams, hangers and grid supporting beams are
placed and properly adjusted. It is necessary supporting
beams to be horizontal together with plan tolerances of +/- 2 mm.
- G6rid cantilevers assembling. Their adjusting in plan shall be
done by means of templates in order to get proper accurancy in
plan for grid platform supports. The final levelling of grid
platforms shall be done over supporting threaded studs (each
equipped with washers and nuts) which are welded in each corner
of platform frame.

240



- 28 ANTIAQUSTIC CEILING

GRID OVERHEAD BEAMS

ELECTRIC CABLES ' GRID STRUCTURE
1 4 PLAN OF ADJUSTMENT
p

CONECTING BOLIS: MV 10.9 DIN 287

Figure 6.

* % * %

The film lighting technology and equipment are not the same as
for TV, but the basic principles are similar. The new film studio
of Jadran-film Zagreb are completely equipped according to the
author's design which was based on the owner's requirements
for modern and flexible lighting positioning. The studio is in
use about one year and basic ideas for lighting grid and
equipment are veified through more then six movies.

Along studio walls, the galleries are placed at levels +4.00 m
and + 6.60 m. They are used ase ‘"cat-walks" and their tube
railings can carry spotlights and flood 1lights equipped with
standard clips. The lighting grid structure consists of 7 pairs
of rails (channels) going parallel to the 1longitudinal studio
axis, cat-walks at the grid level and at level of + 11,0 m and
one pair of transverse rails placed paralel to the gable wall
(figures 6, 7, 8, 9, 10, 11).
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Figure 7. Grid layout

The rail system carries the number of platforms. There are two
types of platforms:

A. TELESCOPE PLATFORM (cca 3.0 m2 in plan) in form of rigid
"cage" which is suspended on motorized troley which is moving
along the rails. The cage is formed as two-part telescope with
two degrees of freedom: +/- 90 rotation in plan and platform
lifting between + 4.00 m and + 6.70 m levels. If it is necessary
to have some spotlights under + 4.00 m level, the platform may be
equiped with hoist system - steel tube suspended by two cables
and winch drums, lowering light sources at necessary level. The
comunication with plattorm is possible over grid cat-walks,
aither from the ledder or special girafe platforms (standard
studio equipement) from the floor level. Each platform is equiped
with two remote control boxes:

- fixed remote control box on the platform level with comands:
platform moving up and down, platform rotation and connection for
hoist comand system. .

- portable remote control box at grid cat-walk 1level with
comands: platform moving up and down, platform rotation, troly
moving. Troly moving comand is effective only when platform has
no rotation.
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Figure 8. Platforms in studio
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CROSS SECTION

L 2400072 i
Figure 10. A

B. FLEXIBLE PLATFORM - suspended by four cables (one in

each corner) moving up and down by mean of pulleys fixed on the
troley. winding on winch drums. This type of platform has the
same functions as fiist one. It may be lowered from + 10.0 m
level to the floor level. When platform is properly positioned,
it ought to be horizontaly braced by means of ties or standard
tube scafolding elements. Few of this platforms may be connected
in the way to form some kind of bridge. Comunication with this
type of platform is from floor level. This type of platforms is
used when it's necessary to have high concentracion of spotlights
in limited space.

The transverse pair of rails, paralel to the gable wall, carries
special troley in order to have transfer system for units A and
B. It allows to have full concentration of platform units along
only one or two pairs of rails in very short time, which gives
maximal flexibility to the lighting positioning according to the
film director's requests. Paralel to the transfer system, just
under the studio roof structure, the overhead single rail crane
is assembled - it allows lowering whole platform units in case of
repair. :
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Figure 11. Detail of telescope platform-type A.
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CONTRIBUTION TO THE NUMERICAL SOLUTION OF THE CABLE
Dragoljub Grbi¢

Department of Applied Mechanics and Structural Analyses,
Faculty of Civil Engineering, University of Belgrade

SUMMARY

In the present paper the elastic cable subjected to its dead weight,
following distributed and live distrubuted loading is investigated. Numerical
solution for the displacement and forces is described using the integral matrix
and Newton-Raphson’s method. Finally, numerical example is presented.

1. EQUATIONS OF THE PROBLEM

Consider the catenary loaded with its dead weight only. Cartezian co-
ordinate y(x) determinates position of arbitrary point of the catenary. The
horizontal force Ho is given. Required boundary conditions for the inextensible
chain are: x=0, y=0 and for x=1, y=h.

— =
A‘(UA.VA) :
>
B(l,h)
- C(x,y)
. ' B’(loua,hov’)
C'(xeu, yov)
— -
X u
y 1

Fig. 1 Geometry of the catenary
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Considered catenary is under the action of distributed loading: dead weight

gy, following forces Py and Pn and live loading Py and py. see Fig. 2.

pn(l.f.)ds

Py (1+€) ds
———

Fig., 2. Element of the cable

The equations that describe the problem are:

g% = (1 +¢€)secacos(a+¢)-1, (1)
g% = (1 +¢)secasina+¢) -tga, (2)
%; =-p*rseca, @)
g¥ = - py* sec a , 4
s=v+V (5)
e--g?+atAt, (6)
tg a = % s (7

where: ds - differential length of the cable arc, € - dilatation, E - Young~s
modulus, F - cross sectional area, a - temperature coefficient and At - temperature
increment.

Boundary conditions are:

for x=0 u=u, v=vp

for x=1 u=ug vavg

where Ups Ugs Vps Vg are prescribed displacements of the catenary end sections.
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The solution of the above described boundary-value problem represents the
state of the stress and deformation of the catenary under prescribed geometrical
and mechanical conditions, given loading, temperature increment and boundary
condi tions.

To the differential equations (1), (2), (3) and (4) the integral matrix is
applied. Unknown end forces at x=0 may be obtained from the boundary conditions.
Loading Pe and P, 3re applied in the increments from zero up to the final level.
For any increment the iterative process is performed and for every iteration the
corresponding partial derivatives are determined.

2. NUMERICAL EXAMPLE
The problem given in Fig. 3 for the following numerical data is investigated:

1=400m

y(0) =0m

y(1) =100 m

u(0) = u(1) =y(0) =y(1) =0m
| g = 0,03732 kN/m
Ho = 15,75 kN

F = 1107.08 x 10
E = 68.65 x 10° kn/m?

p = 0.001 (y + v) kN/m
calculated H(0) = 50.15 kN

-6 2

80 160 240 320 400 x(m)

88.0546

107.3543
100.0000

111.2888

y(m)

Fig. 3. Geometry of the inextensible catenary
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Numerically, the problem is solved in the sequence of the cross sections.
The ordinates y and angles a for undeformed state and displacements and forces for
the extensible catenary have been found. The results of the numerical solution are
shown (diagram and Table) in Fig. 3.

i Sisin (°i+ ¢i) A a,

kN m
1 34.43377 0 .6588371
3 33.35758 . 14.89132 .6208327
5 32.03132 28.61738 .5817667
7 30.47433 41.20902 .5416706
9 28.70386 52.6945 .5005834
" 26.73587 63.09962 .4585516
13 24.58578 72.44774 .4156294
15 22.26905 80.75984 .3718785
17 19.80159 88.05461 .3273682
19 17.20001 94.34841 .2821749
21 14.48181 99.65537 .2363818
23 11.66537 103.9874 .1900779
25 8.769957 107.3543 .1433579
27 5.815592 109.7635 9.632075€-2
29 2.822878 111.2205 4.906888E-2
31 -. 18711971 111.7286 1.707131E-3
33 -3.193484 111.2888 -4.565845E-2
35 -6.174906 109.9003 -9.292176E-2
37 -9.110691 107.5598 -.1399779
39 -11.98058 104.2622 -.1867241
4 -14.765 100 -.2330611




i Si vi uy

kN m m
1 60.83061 0 0
3 60.30945 -.9154845 .6756152
5 59.81629 -1.416977 1.034869
7 59. 35332 -1.593342 1.16768
9 58.92233 -1.521466 1.147815
11 | 58.52486 -1.268099 1.034334
13 | s58.16221 -.8912464 .8731083
15 | 57.83545 -.4412184 .6983647
17 | 57.54553 3.858023E-2 .5341853
19 | 57.2932 .5110593 .3959539
21 57.07911 .9449963 .2917236
23 | 56.90377 1.314697 .2235014
25 | 56.76758 1.599733 .1884495
27 | 56.67084 1.784743 .1800079
29 | 56.61372 1.859279 .1889489
31 | 56.59633 1.817694 .2043755
33 | 56.61864 1.659068 .2146798
35 | 56.68057 1.387166 .208478
37 | 56.78189 1.010439 .1755409
39 | 56.92234 .5420595 .1077369
a1 | s7.1015 -5.513895E-6 7.358612E-6
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A FINITE ELEMENT SIMULATION OF 2D FLUID FLOW AROUND
RIGID STRUCTURES - IBM PC/AT IMPLEMENTATION

Stanko Bré&ié

Faculty of Civil Engineering, University of Belgrade
Bulevar revolucije 73, 11000 Belgrade, Yugoslavia

SUMMARY

The paper presents a brief outline of the finite element
solution of the Navier-Stokes equations in two dimensions. Some
results of the stationary fluid flow around rigid circular cylinder
are presented as numerical example.

Presented discussion is a part of a wider fluid-structure
analysis which is not yet in its final stage. The particular goal
is to utilize a small personal computer like an IBM PC/AT and to
determine its possibilities and limits in the fluid-structure
interaction analysis.

1. INTRODUCTION

One of the very important aspects of various fluid-structure
interaction problems is the case of external fluid flow, i.e. the
fluid flow around solid bodies. The presence of the structure in the
fluid flow clearly imposes certain boundary conditions for the flow
and is therefore affecting the flow. On the other hand, fluid flow
imposes a ldading onto the structure. If the structure is flexible
enough it will deflect or rather move under the action of fluid
loading. Such structural motion means the change of fluid boundary
conditions and consequently, the change of the flow itself.
Therefore, the fluid loading onto the structure is different then
it was previously. As a consequence, the fluid and the structure
are in the constant state of mutual interaction in the sense that
motion of one medium is affecting and also dependant on the motion
of the other one.

If the structure is relatively rigid, i.e. if its motion
under the influence of surrounding fluid is negligable, previously
discussed interaction does not take place now. Rigid structure
represents fixed boundary conditions for the flow and any change in
fluid flow is due to other reasons, not to the presence of the
structure.
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This paper is dealing with the finite element simulation of
two-dimensional fluid flow around rigid structures. Basically, it
represents the finite element solution of the Navier-Stokes equations
in 2D. Corresponding computer code was developed, implemented and
tested first on the medium sized computer such as DIGITAL DEC 20/40,
and later on the personal computer IBM PC/AT. Mentioned computer
code was developed to simulate 2D interaction between flexible
structures (which are modelled as a rigid lamina undrgoing planar
motion with 3 DOF) and surrounding fluid flow. Therefore, presented
numerical example is just a branch (an option) in the wider computer
code.

2. GOVERNING EQUATIONS

The fluid is considered to be a constant property, incompre-
ssible Newtonian fluid. Consequently, its equations of motion may
be expressed as:

=p, -1
R N A LA ARl a.n
u; i = 0 (,3§=1,2) (1.2)
These equations, the Navier-Stokes equations and the continuity
equation, are written in the so-called primitive variables of velo-
city components uj;=u and up=v, and pressure p. The fluid properties
of mass density and kinematic viscosity are denoted by p and v. The

bounded domain @ of the fluid flow around rigid structure and
corresponding boundary surfaces (i.e. lines) is represented in Fig.1l.

Oemain

Boundary Soundary
L} ra
Beundary

Fig. 1 Domain of the fluid flow around a structure
The boundary conditions assotiated with equations of motion

(1) may be:
- essential (Dirichlet“s)

u, = ;i boundaries r;, Ts (2)
- natural (Neumann“s)

Uy Vg boundary r, (3)

where n is the outward normal on the boundary Ta2.

In the case of a stationary (i.e. rigid) Btructure which is
not changing its gpatial position due to the flow, velocity compo-
nents u; related to the boundary r3 fluid-structure contact surface,
i.e. line in 2D) are equal to zero. Also, it is possible and some-
times usefull to define the natural boundary conditions in terms of
traction force components.

If the fluid flow is considered as nonstationary, as presented
in egs. (1.1), initial velocity conditions are specified as:

u (t=0) = uy, (4)
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where initial velocity field u;, satisfies the continuity equation
Uso, £=0.

3. FINITE ELEMENT APPROXIMATION

One of the most widely used approaches to obtain numerical
solution of the Navier-Stokes equations is the so-called integra-
ted primitive variable formulation in which the velocity components
and pressure are solved simultaneously. Usually, the spatial finite
element discretization of egs. (1) is performed via the Galerkin
wighted residual method (mainly in the weak formulation). This
approach is used in this paper too.

It is possible to employ various types of elements, but what-
ever elements used, it is now the well known fact that the velocity
shape functions are to be one degreee higher than those for pressure
approximation (in integrated velocity - pressure approach). In the
numerical example presented here eight-noded parabolic elements are
used: eight velocity and geometry nodes and four corner pressure
nodes. However, the computer code supports four types of 2D elements.

Discretized form of eqgs. (1) may be Obtained as:

M){a} + ((x(2)) + (B))a} + (C){p} = (&} (5.1)
(0){a} = {0} (5.2)

where the matrices M, XK(a), B, C, D are mass, convective, diffusive,
pressure gradient and divergence matrices, respectively, while a and
p are unknown nodal velocity and pressure vectors. Vector d is a
load vector resulting from body forces (which were neglected in this
work) and specified natural boundary conditions.

Obtained equations are nonlinear and nonsymmetric due to
convective acceleration terms - matrix X(a). The continuity equation
(5.2) is actually the incompressibility constraint equation. Since
it involves only velocity unknowns, integrated velocity - pressure
approach becomes non-positive definite, thus adding a bit more to
numerical difficulties. Furthermore, nonstationary fluid flow
simulation expressed by egs. (5) requires some implicit time integ-
ration, since there are no pressure time derivative terms.

At last, but not the least, the number of finite elements
necessary for reasonable spatial approximation of the flow domain
should be sufficient. Therefore, the number of unknown nodal quanti-
ties may be quite substantial - say, well over 1000 unknowns.

4. NUMERICAL SOLUTION

In the case of a stationary fluid flow the nodal accelerations
vanish (local accelerations in the continuum are zero), so eqs. (5)
may be represented in the form

(ky(a)){ay} = {d;} (6)

The nonlinear nature of algebraic equations (6) requires some form
of iterative solution. Various forms of successive substitution and
Newton-Raphson“s procedures are provided for in the computer code,
together with the frontal method of assembly and solution.

In the case of transient (nonstationary) flow, implicit time
integration is required. Computer code supports the Wilson 6 method
or the predictor-corrector (Adams-Bashworth”s) procedure. In either
case, equations are reduced to nonlinear algebraic equations
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(&, (@) 1a,} = {dp} (7)
for each time step.
5. NUMERICAL EXAMPLE

Laminar fluid flow around rigid circular cylinder is conside-
red. Such an example was analyzed in literature (see, for example
2) or (3)), so it is convenient for comparison and verification
purpuses. Since the flow is stationary with small velocities, only
symmetrical part of flow domain is considered, Fig. 2

usl.0, v20.0
>
]
n
2 . [ ™
E 2 ! 2|30
<
5 Reh y
=0
fi.02 us¥s0 [,y L
- :
0, o R0 xu  vi0,
0 %’:“’
%0 . 20.0 L
1 b . I

Fig. 2 Flow domain of laminar flow around circular cylinder
and boundary conditions

Spatial discretization of the flow domain in Fig. 2 was
adopted exactly the same as in (2): 73 eight-noded parabolic elements,
see Fig. 3.

*
o
s |0 [15] 20 |20 3¢ ]| 9| | 53 |8 | 63 “ 73 o
->
¢ |9 |e] 19 J2s|33 | |e3| 52 | s7] 62 7 72 s
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12|y | e
L L L B b e st |se| & | s¢ 7 3
7 3038 & 3
2 |7 ]n]n ) Q S0 | ss| 60 | es 70 §‘
y X T
1 ¢ |n | \a\o| 8¢ | 88 1 (1) -
x 0
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1 9.0 N 200 ke
1 k] -1

Fig. 3 Finite element mesh (8-noded parabolic elements)



For adopted finite element mesh the total number of unknown
nodal values is 624, or rather 490 when essential boundary conditions
are extracted.

Considered example is the main numerical example presented in
(2), so it was well documented (complete input file and main part of
output file were included). Consequently, it was very convenient for
close comparison. In short, two indentical results were obtained
using two different and independent computer codes: in this work
(or rather in (1)), and in (2.

Convergent flow field was obtained after five cycles of succe-
ssive substitutions in nonlinear equations. The total run time on a
12 MHz IBM PC/AT compatible computer was about 24 minutes. Some of
the results are presented in the following figures.

Velocity field in the vicinity of cylinder is presented in
Figs 4 and 5. As may be observed especially from Fig. 5 (which is a
close up of Fig. 4), two symmetrical stationary vortrices (Fdppl~ s
vortrices) are formed behind cylinder. Such vortrices are formed in
the flow regime characterized by Raynolds number: 5-15<Re<40. I