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Abstract

Building Information Modeling (BIM) representations of bridges enriched
by inspection data will add tremendous value to future Bridge Management
Systems (BMS). This paper presents an approach for point cloud-based de-
tection of spalling damage, as well as integrating damage components into
a BIM via semantic enrichment of an as-built Industry Foundation Classes
(IFC) model. An approach for generating the as-built BIM, geometric recon-
struction of detected damage point clusters and semantic-enrichment of the
corresponding IFC model is presented. Multiview-classification is used and
evaluated for the detection of spalling damage features. The semantic enrich-
ment of as-built IFC models is based on injecting classified and reconstructed
damage clusters back into the as-built IFC, thus generating an accurate as-is
IFC model compliant to the BMS inspection requirements.
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1. Introduction1

The cornerstone of the modern, global society is the affordable transporta-2

tion of people and goods. According to [1] and [2], more than 90% of inland3

passenger transport and more than 75% of inland freight transport in the4

EU in 2015 is carried out using road infrastructure. Proper management of5

the road infrastructure is the prerequisite for good quality transportation.6

Being a critical component of the road infrastructure, bridges require spe-7

cial treatment. Management and maintenance of bridges is an important8

concern in countries that depend heavily on road transport infrastructure to9

accommodate increasing volumes of commercial transportation as a result of10

economic growth and globalization [3].11

Currently, most countries use highly sophisticated information systems12

specialized for managing bridges, named Bridge Management Systems (BMSs).13

A BMS comprises an inventory, inspection and intervention database equipped14

with analytical tools to perform various predictions (e.g., maintenance cost,15

bridge condition). Although the rigid structure of a relational database pro-16

vides high system robustness, the alphanumeric data format in BMS fails in17

describing geometric information. According to Mirzaei et al., none of the18

existing BMSs include geometric representation of bridges [4].19

The idea of Building Information Modeling (BIM) is a few decades old [5],20

however, only recent mandates in certain countries promoted it in the con-21

struction industry as the most efficient technology to create, store and modify22

data for the built environment throughout its entire lifecycle [6]. BIM is envi-23

sioned as a comprehensive, accurate and up-to-date digital representation of24

a building. As shown by Sacks et al., such a comprehensive data repository25

could easily provide a BMS with an inventory of data as well as structural26

component visualization and enhanced decision making (using the 3D model27

in order to enhance decision making through visualization) [7].28

Inspections are periodical quality assessment procedures. Even though29

the implementation of these procedures varies among the countries, the basics30

are common all around the world. Visual inspections are the most frequent31

and the most cost-effective ones. They can trigger an in-depth investiga-32

tion, or even maintenance intervention. During the inspection, the inspector33

examines each element of the bridge, searching for visible damages. Apart34

from equipment related defects (e.g., bearings, expansion joints), concrete35

spalling, cracks, and reinforcement corrosion are the most frequent damages36

on the reinforced concrete bridges.37
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1.1. Problem Statement38

Updated after each inspection, a BIM can be used to represent a current39

state of the bridge. However, while commercial BIM software is capable of40

creating 3D bridge models with highly accurate geometry, there is a paucity41

for IFC compatible software tools for updating model content. The IFC42

format is a neutral format for the exchange of digital building models. The43

use of IFC as a BIM standard file format aims to solve the interoperability44

issues — though the current version of the format does not include provisions45

for inspection findings by default.46

With the advances in deep-learning within the field of AI, sophisticated47

methods based on computer vision principles can be implemented for detec-48

tion of potential damage elements contained in the as-is representation of49

structural components of bridges. Specifically, image-based multiview clas-50

sification can be used to detect potential damage features contained in the51

point cloud representation of a bridge.52

1.2. Research Contributions53

The presented research addresses the problem of generating as-is IFC model54

representations of bridges with structural damage features obtained from a55

point cloud. The proposed solution to this problem is using image-based56

multiview classification to detect and extract concrete macro damage fea-57

tures. Furthermore, an IFC semantic enrichment framework is proposed to58

inject the extracted and reconstructed damage features into the as-is IFC59

model. Finally, the proposed damage detection, feature extraction, and se-60

mantic enrichment approach are validated in the presented case study. The61

contributions can be summarized as follows:62

1. Image-based, multiview classification is used, where point cluster re-63

gions are spatially divided using an octree data structure. Each of64

the octree nodes is used to generate a cubemap representation of the65

point cluster inside it. These cubemap images are then classified using66

a retrained Convolutional Neural Network (CNN), and the damage-67

classified clusters can then be extracted.68

2. Geometric reconstruction methods of points from damage-detected clus-69

ters are evaluated and discussed.70

3. Geometric and semantic enrichment of the IFC model is achieved by in-71

jecting the reconstructed 3D meshes representing damaged regions and72

corresponding BMS catalog-based damage information. The proposed73
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method uses Constructive Solid Geometry (CSG) Boolean operations74

to geometrically enrich the IFC geometry elements, which align with75

corresponding damage regions from the as-is point cloud. Damage76

information (e.g., type, extent, and severity) is structured so that it77

complies to the BMS data structure.78

2. Related Work79

2.1. Bridge Point Cloud Inspection80

Currently, bridges are inspected mostly manually. The idea of substituting81

human visual perception with an automated, systematic and quantitative 3D82

point cloud assessment is currently an intensively investigated topic. This83

extends to the idea of using Unmanned Aerial Vehicles (UAVs) to acquire84

point cloud representations for further evaluation. Several commercial UAVs85

specialized for inspection were developed in the last ten years. Wells and86

Lovelace analyzed a state of the art hardware and software solutions for87

photogrammetry-based bridge inspection [8]. Although the improvements of88

UAVs are remarkable (e.g., protected propellers, multi-directional camera,89

high-resolution image acquisition, distance lock, additional thermographic90

camera, etc.), the output data is not post-processed. The UAVs are usually91

provided with additional software for the 3D scene geometric reconstruction.92

None of the analyzed software includes damage detection. Instead, the dam-93

age is manually detected and modeled as a pinned location with attached94

photos of the damaged region. Even though such as-is point cloud repre-95

sentation can be considered semantically poor, it still significantly decreases96

inspection costs. Wells and Lovelace further compared traditional and UAV-97

based inspection in terms of cost and duration, inspecting 12 bridges of dif-98

ferent types and sizes [8]. Whereas both approaches took roughly the same99

time, in the same report, it was claimed that the UAV-based inspection was100

averagely 40% cheaper than the traditional one.101

Damage detection for concrete bridges has been exhaustively investigated102

in the past two decades. Jahanshahi and Masri developed a state of the art103

method for extracting an accurate two-dimensional geometry of a concrete104

crack from the image [9], whereas German et al. established a concrete105

spalling detection method providing the length and depth of the spalling106

region [10]. None of the image-based damage detection techniques provides107

the damage location relative to the inspected structure. The latest research108
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tends to systematize imagery acquisition techniques with damage detection109

and feature extraction methods into an automated bridge inspection system.110

Morgenthal et al. proposed a conceptual framework for utilizing the state of111

the art UAV-based bridge inspection techniques [11]. Instead of inspection112

standardization, the authors suggest defining tasks and assessment criteria113

for each inspection. After the UAV flight path planning, the authors propose114

the use of multi-scale crack centerline detection, also proposed by Sironi115

et al. [12], as well as the structural condition assessment by integrating the116

detected spalling damage into the previously generated finite element model117

of the bridge. Research by Hüthwohl and Brilakis focused on the image-based118

classification of concrete surfaces of highway bridges for damage detection,119

and used morphological operators to highlight the damage in surface textures120

that are then projected on to the given as-is model [13]. Research by Xu and121

Turkan (2019) propose a framework for implementation and integration of122

BIM and UAV technologies for bridge maintenance. The proposed framework123

makes use of an image-based processing technique for detecting concrete124

cracks, and links this information with a string description field of the bridge125

IFC representation [14].126

The benefits and challenges of using point-cloud data alongside BIM has127

been researched by Qu and Sun [15] and Tuttas et al. [16]. In these studies,128

the automated generation of an semantically-rich model for further geometric129

reconstruction to as-is BIM models, are noted as the main benefits. These130

semantically enriched models can further be converted into BIM data or used131

for other type of data analysis. Additionally, Anil et al. state that the use132

of point clouds alongside the as-designed or as-is BIM representation allows133

for the assessment of any conflicting differences [17]. The use of point clouds134

can benefit the generation of digital documentation of new building features135

that are added in the post-construction phase [18].136

2.2. Multiview Classification137

The use of machine learning applications has gained momentum in the last138

few years, especially in the field of construction automation [19]. The most139

notable progress is with the use of deep-learning methods that rely on the140

use of 2D or 3D CNNs [20]. CNNs can be trained on 3D geometry or 2D141

image data to classify elements from the built environment [21]. The in-142

creased use of CNNs for other important computer vision solutions has led143

to the development and release of Google’s Inception V3 CNN model and the144
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TensorFlow API, which allow for more practical implementation and appli-145

cation of deep-learning-based methods for classification of 2D and 3D data146

[22], [23]. 3D CNNs make use of voxelized representations of 3D geometry147

models for training and classification [24], while 2D CNNs can be trained to148

classify grayscale or RGB images - most commonly photographs, including149

those featuring structural damage [25], [26]. Research by Wang et al. has150

shown that the use of 2D image-based classification, particularly 2D CNNs, is151

optimal in terms of performance and classification accuracy [27]. A specific152

method for classifying 3D objects using 2D images is known as multiview153

classification [28]. Multiview classification is based on the concept of taking154

several consecutive images of a 3D object, or part of the 3D scene, and using155

the classification results generated by a 2D CNN to classify the 3D object.156

Such an approach can be used for classification of both 3D geometry, as well157

as point cloud representations of built environment features [29], [30].158

2.3. Point Cloud Geometry Reconstruction159

Geometric reconstruction of 3D point cloud geometry to a 3D triangular160

mesh representation requires the use of various 3D spatial approximation al-161

gorithms that can detect a minimum number of vertex primitives in order162

to triangulate mesh surfaces. The simplest and least accurate method is163

the approximation of a 3D convex hull [31]. This approach is useful for ap-164

proximating the overall bounding-shape of the 3D shape represented by point165

extremities in a given cluster, but does not preserve any required details such166

as surface curvature. A more robust method that can preserve the surface167

curvature to varying level of detail is the Poisson surface geometric recon-168

struction method [32], which is generally more suited towards reconstructing169

organic shapes due to its nature to smoothen hard edges in its 3D shape170

approximation. Alternatively, the Ball-Pivoting Algorithm (BPA) is another171

surface geometric reconstruction algorithm that approximates a triangular172

mesh by connecting every three vertices that touch the radius of a rolling173

sphere [33]. The BPA method can preserve the hard edges often found in174

the physical built environment, therefore it is more suitable for 3D mesh ge-175

ometric reconstructions. Another common geometric reconstruction method176

is based on Delaunay triangulation, where the circumcircle of a triangle is177

used to detect 3 + n vertices for triangulation. A modern version of this178

approach has been adapted in various configurations, including a meshing179

algorithm suited for reconstructing partial point clouds [34].180

6



The final important element of 3D triangular geometric reconstruction181

from point clouds are the ability to use the reconstructed meshes in adding,182

subtracting or merging operations with as-designed BIM geometry. This re-183

quires the use of CSG operations [35]. CSG allows for the approximation184

of cavities and merged geometry using Boolean operations. The quality of185

CSG results depends largely on the implemented partitioning and tessellation186

schemes, but often 3D meshes that have CSG operations performed on them187

will increase in geometric and visual complexity. The use of CSG allows for188

the introduction of explicit 3D geometries into the implicit building compo-189

nent geometry representations, which is used in the IFC file representation190

(B-Reps — Boundary Representations) [36].191

2.4. Semantic Enrichment of IFC Files with Bridge Damage192

Integrating the geometry and features of the detected damage into the Bridge193

Information Model (BrIM) has been a subject of research for a decade. Some194

researchers try to use the existing BIM software solutions to model damage195

elements and therefore commit to the proprietary data modeling formats.196

Others develop openBIM-based data models. There are differences in damage197

data input as well. Whereas some tend to keep the manual input based on198

inspection reports, others use digitally captured images and/or point clouds.199

McGuire et al. investigated the damage modeling capabilities of com-200

mercial BIM software [37]. They tried to model damage features such as201

location, type, severity, and volume by using LEAP Bridge [38], Tekla Struc-202

tures [39] and Revit [40]. However, since none of the analyzed software203

had an embedded functionality to model damage, they developed a Revit204

plugin. The proposed plugin models damage as a parametric solid — a par-205

allelepiped. Relying on the traditional inspection procedure, the inspector is206

asked to detect damage and estimate the location and dimensions of a corre-207

sponding parallelepiped. Additionally, the inspector is expected to rate the208

damage severity according to AASHTOWare Bridge condition state ratings209

[41]. McGuire et al. afterwards proposed an Excel-based structural condition210

assessment tool [37].211

As opposed to a proprietary format (such as the one used by Revit), IFC212

is a neutral format for the exchange of digital building models developed by213

buildingSMART International (bSI). The content and structure of each IFC214

file must comply with the IFC schema, written in the EXPRESS data mod-215

eling language, defined in STEP standard (ISO, 2004) [42]. The IFC schema216

7



specifies the definitions of all the objects, their properties, and mutual re-217

lationships. The IFC schema strictly separates the semantic and geometric218

representation of objects. Physical objects are defined in the Product Exten-219

sion of the Core layer of IFC data model. Objects defined in the Product220

Extension can have single or multiple geometric representations [43]. Target-221

ing buildings, IFC schema is not appropriate for the description of bridges.222

For this reason, efforts on extending the existing schema for bridge modeling223

are ongoing. The development of the IFCBridge specification, containing224

definitions of bridge-specific entities started by an initiative of Yabuki et al.225

[44], is planned for future finalization and release [45].226

Hüthwohl et al. describe both the inspection details, as well as the defect227

type, nature, and properties [46]. They distinguish the defect as a deteriora-228

tion process (defect) from the defect as visually observable damage on a sur-229

face of the bridge structure (element defect). Therefore, the defect semantics230

are modeled as IfcElementAssembly, capable of containing the aggregation231

of several element defects. The condition rating of an element defect is rep-232

resented by IfcPropertySet of predefined type Pset_Condition. The defect233

is connected with a damaged IFC element using the relationship IfcRelAg-234

gregates, so that the assignment of a single defect to multiple IFC elements235

is possible. For an element defect geometric representation, the IfcSurface-236

Feature entity is proposed. This work was further expanded by Hüthwohl et237

al. (2019) , where image-based CNNs were used to detect and categorize the238

severity of structural damages and defects in bridges (e.g., spalling, cracks239

and varying combinations of both) [47]. Recent research by Isailović et al.240

proposes the method for feeding the inspection database of BMS by BIMs241

enriched with damage information [48]. They insert the manually detected242

point cloud-based damage geometry into the existing BIM by performing the243

CSG boolean difference operation on damaged bridge elements.244

3. Proposed method245

The method for generating the as-is BrIM is described using the Business246

Process Modeling and Notation (BPMN) [49] (Fig. 1). The prerequisite input247

for the proposed process is an as-designed IFC and point clouds. The first248

two activities prepare the input data for further processing. To be mutually249

comparable, the as-built bridge geometry representation should be aligned250

to the as-designed one. For this reason, the BrIM geometry is converted to251

a 3D triangular mesh (Wavefront OBJ file format) by using IFCOpenShell252

8



library [50], and the point cloud is manually registered to the mesh by using253

CloudCompare software tool [51].254

Figure 1: Proposed BPMN process map of as-is BrIM generation.

3.1. Damage detection255

Figure 2: Damage detection sub-process.

3.1.1. Point Cloud Preparation256

Before further analysis of the bridge point cloud, it needs to be verified to257

enable more accurate damage analysis. The acquired point cloud model258

should meet the following criteria:259

1. The point cloud is spatially aligned with the as-designed or as-built260

IFC model Level-of-Detail (LOD) 200 [52]).261
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2. The point cloud is complete, and no major components are missing.262

3. The quality of the point cloud is acceptable, and the surface noise is263

acceptable.264

4. The point is of high resolution, so as to portray important graphical265

elements required for classification.266

The most critical criteria items are (1) the correct alignment of the IFC267

model and the point cloud, as well as (4) using a point cloud with a high268

resolution (to preserve the visual fidelity required for correct multiview clas-269

sification). Incorrect alignment can lead to the injection of semantics into270

false spatial regions of the as-is IFC model, while using a point cloud of low271

resolution can obscure and distort the possible damage features required for272

the identification of damaged elements.273

3.1.2. Image Classification-based Damage Analysis274

Since 3D geometry types can be classified using their 2D image projections,275

the use of multiview classification can easily be extended for classification276

of images of point clouds. The presented approach is focused on classifying277

images of point clouds containing RGB color attributes, in addition to their278

spatial positions. A 2D CNN can be trained using real-life photographs of279

various built environment elements or artefacts, and used to detect these280

features contained in a given 3D RGB point cloud representation. The clas-281

sification accuracy when using a multiview approach to classify 3D point282

clouds largely depends on the quality of the point cloud, the amount of vi-283

sual noise and clutter, as well as the entropy of the given image used for284

classification (e.g., how much of useful visual information can be captured in285

a given multiview image).286

Using a 3D point cloud model of a given bridge, the proposed multi-287

view approach can detect spalling damage regions from partitioned 3D point288

cluster regions of the model - by generating consecutive images of the given289

point cluster region, classifying them using a retrained CNN, averaging the290

classification result by the number of multiview images of the given point291

cluster, and streaming the classification result back to the point cluster as292

a new semantic. This enables the detection of spalling damage regions, and293

semantically enriches the corresponding point cloud model at the same time294

(Sec. 5.2).295
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3.1.3. Multiview-Classification Implementation296

The approach described by Stojanovic et al. is used to generate a cubemap297

representation of the contained point clusters [53]. The use of an octree-298

partitioning scheme that generates multiview cubemap was selected, as it is299

adaptable to varying point cloud complexity, and provides acceptable clas-300

sification results for RGB point cluster classification [53]. At each octree301

node that contains a point cluster, a virtual camera position is computed.302

This virtual camera generates a cubemap of the location, while the visibility303

of other octree nodes is disabled. This approach allows us to capture the304

complete environment around each node center as a single image. Cubemap305

faces, whose average RGB value is higher than 250 are disregarded, meaning306

that they contain mostly white space. If the scene contains bright surfaces,307

the RGB average value for discarding faces can be lowered (usually to an308

average RGB color channel value of 123). The summation of the classified309

cubemap images (six in total), is then used to create the final classification310

score for the given node. If the majority of cubemap images feature ele-311

ments that are classified as damaged, then the given node will be classified312

as containing point clusters that represent potentially damaged elements.313

3.1.4. Multiview CNN Retraining and Classification314

A CNN (Inception V3) that is retrained on numerous photo examples of315

damaged and non-damaged reinforced concrete elements is used for spalling316

damage detection. The Inception V3 CNN model was retrained using Tensor-317

Flow in Python 3.6. Only the last bottleneck layer of the CNN was retrained318

with the new image categories. The training data input vector size is 300 ×319

300× 3 elements (3 RGB color channels). Random distortion of training data320

(brightness, scale, and cropping) was not utilized. A linear softmax function321

for generating the classification probability scores for the input image data322

was used.323

Several factors influence the classification result outcome, and these fac-324

tors concern both the way the 3D point cloud clusters are presented as 2D325

images, and the way the CNN model is retrained. First, the size of the RGB326

points in 3D space needs to be considered. Since the classification approach327

captures images of point cloud clusters and uses them for classification, the328

selection of an optimal point size for the representation of the point cloud is329

required. This means that the selected size of the points does not introduce330

too much space between points, so that the scene background color (whites-331

pace) is not pronounced or dominant in the generated multiview images of332
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the point cluster — but at the same time does not make the points too large333

so that aliasing artifacts become pronounced.334

Once the selected point cloud segments have been processed and the op-335

timal point size selected, the density of the octree partitioning scheme of the336

3D point cloud needs to be decided. Since cubemap images for classifica-337

tion from each of the octree nodes are generated, the density of the octree338

directly affects how many points we will be able to capture and project as339

perspective-view 2D images in each of the generated cubemap faces for a340

given node. A cubemap is projected from the center of each octree node341

in all six directions. If a low octree resolution is chosen (resulting in coarse342

octree partitioning), the generated 3D perspective-view cubemap faces will343

feature large portions of the point cloud captured within the horizontal and344

vertical field of view of 90 degrees. Therefore, if a large portion of the point345

cloud in the perspective view of a cubemap face is captured and classified,346

it may contain both damaged and non-damaged regions. Depending on the347

physical size of the damage features in the training data, the classification348

system may miss the damaged regions because they are too small in the cap-349

tured images. In that case, a higher resolution octree has to be used, and350

the point cloud has to be partitioned into smaller node regions for cubemap351

image generation (thus increasing the processing time).352

3.1.5. Damaged Cluster Geometric Reconstruction353

Regions of the point cloud model that have been classified as damaged can be354

extracted as point clusters. The classification value of an octree node, which355

is set either as damaged or healthy, can be used to determine if the points356

contained in the Axis Aligned Bounding Box (AABB) of that node are to357

be extracted. The points in each node that is classified as damaged can be358

copied into system memory and exported as tabulated Cartesian world coor-359

dinates and RGB values encoded in a simple ASCII text file. This file format360

can easily be interpreted by point cloud processing software such as Cloud-361

Compare. The extracted points representing clusters that contain potential362

damage features can further be reconstructed as triangulated geometry, and363

used for CSG operations on the IFC geometry. Otherwise, they can simply364

be used alongside either the point cloud or IFC geometry for comparative365

visualization.366

Normal vectors for each of the point clusters need to be pre-computed367

prior to any kind of geometric reconstruction. This can be accomplished by368

analyzing the local neighborhood of a point [54], where the normal vector is369
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oriented according to the represented neighboring points. The neighborhood370

of a point can be computed using the co-variance matrix of the k -nearest371

neighbors, and corresponding eigenvectors and eigenvalues [55].372

The two evaluated geometric reconstruction algorithms (Poisson and BPA373

(Sec. 2.4), have advantages and disadvantages when it comes to reconstruct-374

ing point cloud representations of bridge structural elements. BPA can pre-375

serve the sharper edge features in the reconstructed geometry result, but376

often also introduces holes into the mesh as a consequence of generating377

non-manifold edges (Fig. 3(a)). Poisson geometric reconstruction does not378

preserve sharp edges typically found in man-made structures such as bridges,379

thus cannot be used for complete model geometric reconstruction but is380

potentially suitable for smaller damaged element geometric reconstruction381

(Fig. 3(b)). Both geometric reconstruction methods usually require further382

manual editing of the reconstructed geometry. This can be seen in Fig. 4,383

where an automated hole-filling method is used [56], to try and reduce the384

number of surface holes in the reconstructed mesh using the Ball Pivoting385

algorithm.386

(a) (b)

Figure 3: comparison of geometric reconstruction using the BPA and Poisson methods.
(a) BPA surface geometric reconstruction example, and (b) Poisson surface geometric
reconstruction example.
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(a) (b)

Figure 4: Example of post-processing the geometric reconstruction mesh in order to close
any holes. (a) Reconstructed mesh with open holes, and (b) closed hole regions (red).

3.2. BrIM geometric and semantic enrichment387

The term semantic enrichment used here complies to the definition given388

by Sacks et al. [57]. Once the damage geometry is inserted into the BrIM,389

it is enriched with the corresponding semantic information (e.g., damage390

type, severity, and extent). This information adheres to the BMS damage391

classification.392

The as-built BrIM represents the bridge at the time of completion. Al-393

though the geometry of the constructed bridge should comply with the de-394

signed one, this rarely happens in reality. Newly constructed concrete bridges395

contain various imperfections, mainly caused by the construction inaccuracy396

either due to slightly misplaced formwork, or the formwork deformation due397

to the weight of the fresh concrete. The settlement of the foundation can398

be also a less common cause. Before the as-designed IFC is adjusted to the399

as-built one, a triangular mesh is reconstructed based on the registered 3D400

point cloud using the MeshLab software tool [58].401

The proposed sub-process for geometric and semantic enrichment of IFC402

representation of the bridge is shown in Fig. 5, where damage is represented403

as a voided volume in IFC geometry. The damage is previously detected on404

the as-is point cloud. Therefore, the damage geometry must be injected into405

the as-built IFC, rather than into the as-designed one. The damage mesh406

that is subtracted from the bridge element can be unfortunately outside the407
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element (due to the deviation of the as-built comparing to the as-designed408

geometry).409

Figure 5: BrIM geometric & semantic enrichment sub-process.

Once the as-built IFC is generated, the detected damages are manually410

paired with appropriate damage catalog types from the database of a specific411

BMS. Finally, the previously generated damage meshes with its catalog types412

and accompanying semantics are injected into the as-built IFC, producing the413

as-is IFC.414

3.2.1. As-designed adjustment to as-built BrIM415

The as-built geometry of the bridge is assessed by slicing the reconstructed416

photogrammetry-based mesh equidistantly in two orthogonal directions using417

MeshLab. The transverse and longitudinal bridge cross-sections are shown in418

(Fig. 6(a)). Exported in the DXF format, the cross-sections are overlapped419

and the centerline is manually fitted using Autodesk AutoCad. The cross-420

sections centerline represents the actual bridge contour in two orthogonal421

directions. Detail of cross-section overlap and fitted centerline is shown in422

Fig. 6(b). The actual bridge dimensions are measured, and the BrIM is423

remodeled using Autodesk Revit [40]. Finally, the BrIM is exported to IFC424

format (as-built IFC).425
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(a) (b)

Figure 6: (a) Transverse and longitudinal bridge cross-sections: slices of photogrammetry-
based mesh. (b) Detail of beam cross section contours overlap (dotted lines) and fitted
centerline (continuous line). The actual beam width is measured 52.44 cm, whereas the
designed width is 50 cm.

3.2.2. Injecting damage into BrIM426

Once the damage elements are detected and their geometry extracted as427

triangular meshes, the as-built IFC can be enriched with damage information428

to form the as-is IFC. The enrichment of as-built IFC is two-fold: geometric429

and semantic. Semantic enrichment needs to meet two requirements: damage430

features need to comply with BMS damage classification, and semantic data431

structure need to comply with IFC schema.432

BMS-based damage semantics.433

The damage data structure is implemented differently in various BMSs around434

the world. Each BMS has a unique condition rating system, the format of an435

inspection report, damage types, etc. The method for including BMS-based436

damage semantics is inspired by the Swiss Federal Roads Authority BMS437

named KUBA [59]. Without going into details of Swiss bridge inspection438

procedure, only the required damage data will be listed and explained. Ac-439

cording to [60] and [61], for each noticed damage, the following information440

needs to be assessed and documented:441

• Damage type: classification of a visible surface defect, selected from442

the BMS catalog.443
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• Deterioration process: physical-chemical process causing surface de-444

fects, selected from the BMS catalog (KUBA distinguishes nine deteri-445

oration processes).446

• Damage position: rough distance measure, relative to the dimension of447

the inspected element.448

• Damage extent: an approximate measure of the damaged region (areal449

dimension or percentage of the damaged region relative to the overall450

element surface).451

• Damage severity: damage condition rating complying with BMS dam-452

age rating system (KUBA distinguishes five ratings: 1 (good), 2 (ac-453

ceptable), 3 (defective), 4 (poor), 5 (alarming)).454

The position and the extent will be implicitly determined by the as-455

is IFC geometry. State of the art tools for BIM analysis, such as spatial456

query language QL4BIM [62], are capable of sophisticated analysis of mutual457

relationships between IFC objects. Nevertheless, no straightforward solution458

appropriate for damage severity assessment for bridges is currently available.459

In most cases, due to the complexity of the task and the required expertise,460

the deterioration process has to be manually assessed by an experienced and461

in some countries licensed structural engineer.462

Observations made in course of inspections are not necessarily damages.463

These observations can be thought of as symptoms of damage processes, even-464

tually leading to structural damage. It is therefore that in KUBA 5.0 the465

term Inspection finding is used instead of damage. Fig. 7 depicts the proposed466

class diagram of Inspection finding, compliant to the data structure of KUBA467

5.0. Attributes of Inspection finding are the textual description and 3D ge-468

ometricRepresentation. It is associated with Inspection, described by date469

and type. Furthermore, the Inspection finding is associated with Damage470

severity, as well as Catalog type of damage and Damage property. Whereas471

the first two are catalog entries, defined by hierarchyCode, the Damage prop-472

erty is optional, added only if the damage extent cannot - at the moment -473

be precisely derived (e.g., crack width) from the geometricRepresentation of474

Inspection finding. BMS Catalog type includes information both on damage475

type, as well as corresponding deterioration process.476
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Figure 7: Inspection finding class diagram.

Proposed IFC structure.477

Rather than proposing the schema extension, the existing schema (IFC4 Ver-478

sion 4.0 - Addendum 2 [63]) definitions are used. KUBA 5.0 groups mutually479

close damages related to the same deterioration process. Therefore, the In-480

spection finding is modeled as IfcElementAssembly of the user-defined type481

INSPECTIONFINDING, an aggregation of damages represented by IfcSur-482

faceFeature instances of user-defined type DAMAGE. The IfcSurfaceFeature483

is able to accurately and meaningfully represent damage geometry. There-484

fore, the missing volume due to damage can be subtracted from the original485

volume of the bridge elements. Damage (IfcSurfaceFeature instance) is con-486

nected with the damaged element of the bridge (represented by the instance487

of IfcElement) by the relationship IfcRelVoidsElement. The proposed IFC488

structure is shown in Fig. 8. Colors of IFC entities correspond to the colors489

of the classes in Fig. 7.490

Any of the bridge elements can be damaged, so IfcElement, an abstract491

superclass of all the structural components, is used to describe damaged492

elements in Fig. 8. The way the damage (IfcSurfaceFeature) is associated to493

the damaged element is shown in Fig. 9.494

Damage severity and Catalog type of damage are modeled as instances495

of IfcPropertySingleValue, members of IfcPropertySet, connected with dam-496

age by relationship IfcRelDefinesByProperties. KUBA partitions each bridge497
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element based on damage groups found at that element. Furthermore, the498

condition rating (e.g., Damage severity) refers to the damage extent, which499

includes damages of the same group. Thus, Damage severity is represented500

by AssesmentCondition, IfcPropertySingleValue of the predefined IfcProper-501

tySet named Pset_Condition, connected with Inspection finding by relation-502

ship IfcRelDefinesByProperties. The best IFC match for modeling Inspection503

is found to be the IfcTask. Its attributes TaskTime and user-defined Ob-504

jectType perfectly correspond to the proposed definition of Inspection class.505

Inspection (IfcTask) is connected with Inspection finding (IfcElementAssem-506

bly) by relationship IfcRelAssignToProcess.507

Figure 8: IFC structure for description of inspection findings.

Damage geometry in IFC. Once the point clusters have been reconstructed508

and adjusted, they can be used as CSG elements to perform Boolean op-509

erations on a given extracted geometry mesh from the BIM dataset. The510

triangulated mesh also needs to be generated from the BIM representation,511

and each of the CSG operations need to be performed for each bridge element512

separately. Geometric representations in the IFC file are stored as boundary513

representations (B-Reps), so specified geometry segments are subsequently514
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extracted at the desired LOD. The parsing and extraction of the BIM geom-515

etry from the IFC file were enabled by using the IFCOpenShell library [50].516

In the final pre-processing step, the CloudCompare software tool can be used517

to align and verify the transformed point cloud data with the extracted BIM518

geometry data using its built-in deviation analysis features.519

Fig. 9 shows the IFC structure for damage representation. The chosen520

IFC entity for the geometry representation of damage is IfcTriangulatedFace-521

Set. Defined this way, geometric representation of the defect is self-sufficient522

for any kind of further structural analysis or condition assessment. Further-523

more, IfcTriangulatedFaceSet is a straightforward IFC entity for the descrip-524

tion of triangular meshes. Whereas the CoordIndex attribute represents the525

indices to three vertex points of the same triangular face, the IfcCartesian-526

PointList3D stored in the Coordinates attribute represents coordinates of527

the indexed mesh vertices.528

Fig. 9 illustrates the IFC representation of concrete spalling on the bridge529

girder. The IFC objects describing spalling are colored green, whereas the530

objects describing girder are colored grey. The IFC objects defining the531

relationship between the spalling and the girder are colored red. The IfcSur-532

faceFeature instance must be hosted by an instance of a child of an IfcEle-533

ment (in this case IfcBeam). This is implemented by the IfcRelVoidsElement534

relationship between the IfcSurfaceFeature and IfcBeam. This relationship535

ensures an automatic computation of the result of CSG difference between536

geometric representations of those two objects every time the model is to be537

rendered in IFC viewer. The local placement (IfcLocalPlacement) of both538

objects refers to the same instance of IfcCartesianPoint, so the previously539

performed alignment between IFC and point cloud model representation is540

preserved (e.g., the volumes of the objects overlap). Although nested in the541

geometric representation of a girder (IfcBeam), reinforcement bars (IfcRe-542

inforcingBar) are not voided. Instead, they stick out of damaged elements.543

They also mostly correspond to real spalling geometry, therefore this repre-544

sentation allows computation of the extent of exposed reinforcement.545

20



Figure 9: IFC structure for geometric representation of damage.

4. Case Study546

The main objective of the case study was to evaluate the use of the octree-547

based, multiview classification approach, for the detection of spalling dam-548

age point clusters. These damage point clusters can then be injected into549

the as-is IFC model (Sec. 3.2.2). The proposed approach is applied for a550

photogrammetrically acquired point cloud of a bridge over the river Gročica,551

located in the Grocka municipality of the city of Belgrade, Serbia (Fig. 10).552

It is a 12.5 meter spanned simply supported double girder bridge built in553

the 1930s. Neglect in addition to an inappropriate designed and poorly554

maintained drainage system has caused large spallings, accompanied by ex-555

tensively corroded reinforcement on girders, abutments, and curbs. Thus,556
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extensive defects (larger than approximately 10 cm), detectable by the pro-557

posed method are present. Detected damage corresponds to the following558

damage types from KUBA catalog [59]:559

• Cracks due to reinforcement corrosion560

• Spalling561

• Chipped off patched spots562

• Fractured reinforcement563

• Chipping-missing pieces564

• Loss of chippings565

• Slightly corroded Reinforcement566

• Strongly rusted reinforcement567

The bridge is owned and maintained by the public enterprise Roads of568

Serbia (RoS).569

(a) (b)

Figure 10: Case study: Bridge over river Gročica, located in Grocka municipality of the
city of Belgrade, Serbia. (a) Aerial photograph showing the location of the bridge, and
(b) Perspective view of the bridge.

The point cloud of the bridge (30 708 690 points) is shown in Fig. 11(a). It570

was generated using aerial photogrammetry, where sequential images of the571

bridge were captured and aligned. The as-designed BrIM is modeled using572
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Autodesk Revit [40] and exported to IFC format (Fig. 11(b)). Once the573

IFC-based triangular mesh is generated and the 3D point cloud is registered574

to it, the proposed methods for Damage detection and BrIM geometric and575

semantic enrichment are evaluated.576

(a) (b)

Figure 11: Inputs for the proposed method: (a) Photogrammetry-based 3D point cloud,
(b) As-designed BrIM.

4.1. Damage detection577

Data Preparation.578

Firstly, the point cloud model is aligned with the updated as-built IFC ge-579

ometry model. This is accomplished manually using the CloudCompare soft-580

ware tool. The 3D model geometry from the as-is Grocka bridge model was581

extracted as a Wavefront OBJ model using the IFCOpenShell. Next, the582

3D point cloud is visually inspected in order to determine the appropriate583

point size for rendering the 3D point cloud (and generating the cubemap584

images that encode the 3D point representations). In the last preparation585

step, manual segmentation of components from the as-is bridge point cloud586

is performed (in order to enable the spalling damage evaluation of each of587

the main structural components separately). This kind of bridge component588

segmentation can potentially be automated [7]. The initial manual segmen-589

tation scheme chosen for the Grocka bridge model divides the bridge into590

six different point clusters (Fig 12). Specific structural elements are then591

segmented further before damage assessment (e.g., girder).592
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Figure 12: The initially segmented as-is bridge point cloud.

Damage Detection System Implementation.593

The damage feature detection method using multiview classification was im-594

plemented as a prototypical web-based application using a service-oriented595

paradigm. The prototype web-based application is mostly implemented in596

JavaScript [53]. This approach was adopted in order to deal with larger and597

more complex bridge point cloud models, and to specifically detect spalling598

damage using multiview classification. The main visualization and classi-599

fication result display systems are implemented within a client web-based600

application. The client application communicates with the back-end server601

application by sending the generated cubemap images for classification. The602

server is implemented using Node.js and communication with the server is603

established using the Sockets.io and Express.js software libraries. The server604

listens to any communication by the client from a given port, such as in-605

coming responses for receiving data and responses for sending classification606

results. The server calls the image classifier script implemented in Python607

3.5 using Tensorflow. Once the classification results have been generated in608

JSON format from Python and stored in a text file on the server, the server609

loads in these text files before parsing them and sending them to the client.610

The client application then averages the result for each corresponding node,611

from which the valid cubemap faces were generated (sec. 3.1.3). Finally, the612

server removes the generated cubemap faces and any text files containing613

classification values once the image classification has been completed.614

Three.js was used as the main software component for the client-side615

rendering system [64], as it allows for the use of the OpenGL ES 2.0 and616

3.0 API specifications within a compatible client web-browser. One limit617

of Three.js for visualizing point clouds is the lack of support for out-of-core618

rendering of massive amounts of point-cloud data, and therefore it can only619

be used to visualize point-cloud scenes in real-time with approximately 4.5620

million points, without resorting to the use of more sophisticated scene and621

memory management methods [65]. The use of out-of-core rendering refers622
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to fetching and processing data that is too large to fit into main system RAM623

or graphics card memory, and therefore has to be streamed in using various624

algorithms and techniques.625

Multiview Classification.626

A version of the Inception V3 CNN to detect spalling damage was retrained,627

where a custom spalling damage dataset was created and used for retraining.628

The spalling CNN consists of a total of 4804 images (2494 of which are629

examples of healthy structural surfaces), while the rest of the 2310 images630

are examples of spalling (Fig. 13). As opposed to cracks, spalling is usually631

accompanied by visible reinforcement bars. After the careful examination of632

the photos capturing various deteriorated bridges in the north-west region633

of Serbia, the examples of concrete spalling were extracted and used for the634

retraining of the spalling damage detection CNN. For retraining the spalling635

damage detection CNN, 4000 training steps were used with a learning rate636

of 0.01, with the final predicted accuracy of the spalling CNN is 79.6%.637

Although the resolution of the Grocka bridge point cloud is insufficient for638

detection of the miniature artifacts such as cracks, the retrained CNN detects639

any unhealthy part of the concrete surface within an acceptable minimum640

accuracy range of approximately 25 cm, which can include the minimum size641

of the detected damage elements proposed in the case study requirements642

(approximately 10 cm).643

Segmented parts of the Grocka bridge point cloud (e.g., structural el-644

ements of the bridge), were used to test the classification accuracy of the645

retrained spalling detection CNNs (Fig. 14). An effort was made to establish646

a correlation between the spatial accuracy of the classification of spalling647

damage, and the octree nodes used to generate images for classification from648

each discretized region of the point cloud (Sec. 3.1.4). Through experimen-649

tation, it was decided that the resolution of the octree should be between650

100-150 nodes that can be used for a point set of approximately 100 000651

points. This in turn translates to sampling between 700 to 500 points per652

octree node, based on the given complexity of the point cloud model. The653

approximate average physical cubic size of an octree node is 50 cm.654
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Figure 13: Examples of spalling (bottom) and healthy (top) surface images used for re-
training the CNN.

Figure 14: Example spalling damage classification using multiview classification with a
girder bridge component. The larger red cubes indicate damage clusters that will be ex-
tracted as damage features and used for geometric reconstruction and semantic enrichment
of the as-buit IFC model.

As-designed adjustment to as-built BrIM.655

The dimensions of the photogrammetry-based mesh are assessed in equidis-656

tant cross-sections. Neglecting the missing volume of the structural elements657

due to damage, the centerline of both transverse and longitudinal cross-658

section is manually fitted (Fig. 15). The only criteria were to keep the cross-659
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section symmetric after the dimension adjustment. The automation of this660

step is possible, however, it was out of the scope of this paper.661

Figure 15: Main girder equidistant cross-sections overlapped (missing volume due to dam-
age is circled in red).

After the analysis, the shape of the bottom console contours is slightly662

changed and translated for approximately 5 cm upwards. The adjustments663

of girder dimensions are shown in Table 1. Finally, the BrIM is remodeled664

according to updated bridge dimensions using Autodesk Revit [40]. The665

remodeled BrIM is exported as an updated as-built IFC model.666

Table 1: Adjustment of girder dimensions from as-designed to as-built.
Element Main Girders Middle Cross Girder End Cross Girders

As-designed cross section dimensions (cm) 50× 110 30× 106 50× 125
As-built cross section dimensions (cm) 52.44× 110 32× 110 40× 125

Injecting damage into BrIM.667

Once each damage mesh is associated with single or multiple catalog types, a668

prototype software is used to enrich the as-built IFC with damage data. The669

prototype software is implemented using IFCEngine [66]. This is a toolbox670

written in C++, featuring an application programming interface (API) with671

a set of functions and methods for reading and writing STEP files.672

To insert the damage geometry into IFC, a custom OBJ parser was writ-673

ten in C++. The parser reads vertices and faces data from an OBJ file and674

writes it into the IFC, as IfcCartesianPointList3D and IfcTriangulatedFace-675

Set. The final geometry is a result of CSG difference between the as-built676
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IFC and damage geometry, implemented through the IfcRelVoidsElement re-677

lationship between damage object (IfcSurfaceFeature) and damaged bridge678

element (IfcElement). For the model visualization, the existing IFC viewer679

developed by RDF is embedded in the prototype software. The software is680

also written in C++, using the Microsoft Foundation Class library (MFC)681

to provide basic GUI functionality.682

5. Results683

5.1. Damage detection684

The classification approach was tested using the segmented regions of the685

north and south bridge abutments, the left and right consoles and the support686

structure girders. All of these elements feature visible spalling damage. The687

damage regions were classified using the octree-based multiview classification688

method, and the extracted damage regions for each of the selected structural689

elements are shown in Fig. 16 - Fig. 19. The areas highlighted in red indicate690

possible spalling damage detected by the multiview classification system.691

28



(a)

(b)

Figure 16: (a) Detected spalling damage in the left bridge console, and (b) detected spalling
damage in the right bridge console.
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(a)

(b)

(c)

Figure 17: (a) Bottom view of the girder with detected spalling damage. (b) Back view
of the same girder with detected spalling damage, and (c) the front view.
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(a)

(b)

(c)

Figure 18: (a) Front view of the north abutment with detected spalling damage. (b) Left
view of the north abutment with detected spalling damage, and (c) the right view.
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(a)

(b)

(c)

Figure 19: (a) Front view of the south abutment with detected spalling damage. (b) Left
view of the south abutment with detected spalling damage, and (c) the right side view.
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5.2. BrIM geometric and semantic enrichment692

The geometric enrichment results were evaluated using an as-is baseline IFC,693

where spalling damage regions were manually detected. This baseline IFC694

was compared against the second as-is IFC, where spalling damage elements695

were detected automatically and injected using the presented method. The696

IFC STEP code snippet describing the girder damage, its geometric repre-697

sentation and relationship with the girder is shown in Fig. 20. Visualizations698

of the baseline IFC and the one with automatically detected damages are699

shown in Fig. 21 -Fig. 23.700

Figure 20: STEP code snippet describing the geometric representation of girder damage.
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(a)

(b)

Figure 21: (a) Bottom of the bridge superstructure with baseline results representation,
and (b) the IFC with automatically detected spalling damage geometry.
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(a)

(b)

Figure 22: (a) East girder and curb of the bridge with baseline results, and (b) the IFC
with automatically detected spalling damage geometry.

(a)

(b)

Figure 23: (a) West girder and curb of the bridge with baseline results, and (b) the IFC
with automatically detected spalling damage geometry.

The STEP code snippet and the IFC tree of the damage semantics are701

shown in Fig. 24, whereas Fig. 25 shows the STEP code snippet describing702

bridge inspection results.703
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(a)

(b)

Figure 24: Damage semantics: (a) IFC STEP code snippet, (b) IFC tree of the embedded
viewer.

Figure 25: IFC code snippet describing the bridge inspection.

6. Discussion704

Multiview Classification. The multiview classification approach for spalling705

damage detection has successfully detected spalling damage for the core706

bridge elements, without any user input. However, it can still detect false-707

negative features (e.g., defects and other environmental features such moss,708

graffiti, posters, water/rust stains, litter, shadows, etc (Fig. 18(a))). The709

detected damage clusters are then extracted and reconstructed, before being710

injected as semantics into the as-built IFC model. The presented approach711

aims to detect macro damage features, as the resolution of the point cloud is712

too low to attempt to detect finer damage elements such as surface cracks.713

36



The classification accuracy of the CNN could be improved if a larger and714

more varied spalling image dataset was used for training. The web-based715

prototype application can classify a scene of fewer than 50 nodes and 50716

000 points within two minutes average. Classification of each of the selected717

bridge components with up to 250 nodes can take on average seven minutes718

to generate the cubemap images and classify them.719

Representation of Damage Semantics in IFC Model.720

After being reconstructed as triangulated geometry, the extracted damage721

clusters are injected into the BrIM, using the proposed IFC geometric rep-722

resentation and prototype software. To generate a visible void, the damage723

mesh needs to enclose the damaged element. However, the damage mesh724

resulting from damage detection sub-process fails to fulfill this criterion for725

two reasons. Firstly, the outer surfaces of the mesh and damaged element726

coincide. Secondly, the mesh edges are chamfered as a result of a CSG com-727

putation. As the most straightforward way to overcome these issues, the728

authors chose to enlarge the damage mesh before injecting it into IFC, by729

scaling it. The scale is determined based on empirical tests and the results of730

these tests are shown in Fig. 26. Fig. 26(a) shows that the damage mesh in731

original size does not produce any visible void, whereas Fig. 26(b) shows the732

artifacts due to the insufficient enlargement of the mesh (e.g., damage mesh733

does not completely enclose the damaged element). The smallest scale which734

does not produce any artifacts is 100.5 % of original mesh size (Fig. 26(c)).735

Thus, each damage mesh is scaled to this percentage before introducing to736

the as-built IFC.737

(a) (b) (c)

Figure 26: Analysis of different damage mesh scales (the last one is used as the damage
geometry representation): (a) original size, (b) scaled to 100.2%, (c) scaled to 100.5%.

The proposed IFC structure succeeded in representing all the detected738

damages. Using the simple tree structure in IFC viewer, the damage structure739
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and semantics can easily be navigated and selected for further inspection by740

the user. Due to a large amount of added data (e.g., coordinates of mesh741

vertices, mesh indices), the IFC file size increased considerably after the742

semantic enrichment. The size of the as-built IFC file is 4.39 MB, whereas743

the size of the as-is file is 13.1 MB.744

Detection System Accuracy.745

For the system accuracy assessment, the BrIM enriched by automatically746

detected damages is compared against the baseline BrIM. Comparison of747

damages in BrIM was twofold: semantic and geometric. The semantics of748

damage information is analyzed by comparing the number of damages of the749

same type in each model, whereas the geometry is analyzed by comparing the750

missing volume due to damages for each bridge element. Results of empirical751

observation are presented in Tables 2 and 3.752

Table 2: Detection accuracy assessment, with respect to occurrences of specific damages.
Damage Catalog Hierarchy Code Damage Description Baseline Occurrences Automatically Detected Occurrences Detection Success

1303 Spalling 9 7 78%
1304 Chipped off patched spots 1 0 0%
2204 Slightly corroded Reinforcement 3 1 33%
1314 Loss of chippings 7 5 71%
2205 Strongly rusted reinforcement 6 5 83%
1313 Chipping-missing pieces 1 1 100%
1307 Fractured reinforcement 4 4 100%

Table 3: Detection accuracy assessment, with respect to elements missing due to damages.
Damaged Element Missing volume (cm3) - Baseline Missing volume (cm3) - Automatically Detected Detection Success

West curb 721426.6 430511.0 60%
East curb 87018.3 5049.8 6%
West girder 151670.6 61570.7 41%
East girder 127294.6 112051.0 88%
North abutment 17481.4 7236.2 41%
South abutment 1485.0 1485.0 100%

Economic viability of the proposed approach.753

The inspection duration analysis presented in Table 4 includes the pho-754

togrammetric survey and point cloud generation. The analysis does not755

include the as-designed BrIM generation because it is a one-time procedure.756

The total duration of the inspection was approximately 68.1 hours, of which757

56.4 hours were spent on activities dominantly performed by computer. All758

computer processing is performed on a workstation PC with the following759

hardware specifications:760

• CPU: AMD FX 8350761
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• GPU: ASUS STRIX-GTX980762

• Memory: 32GB763

The traditional routine inspection significantly varies in duration, depend-764

ing on the type of bridge structure, the number of spans, deck area, minimum765

applicable condition rating, time of the year, access equipment and inspec-766

tor. The average normalized duration of an inspection of reinforced concrete767

slab bridges is 462 min/1000 ft2 [67]. The inspection of the Bridge over river768

Gročica (133 m2 = 1440 ft2) therefore, would have taken 665 min, or 11769

hours. Besides the fieldwork, this duration refers to the report writing.770

Table 4: Inspection duration (proposed approach).
Process activity Software components Dominantly engaged Domain of expertise Duration (h)

Photogrammetric survey None Human labor UAV photogrammetry 5.0
Point cloud generation Agisoft Photoscan Computer Photogrammetry 38.0

BrIM geometry conversion to 3D triangular mesh IfcOpenShell Computer BIM 5.0
Point cloud registration to BrIM-based mesh CloudCompare Human labor Computer graphics 1.5

Multiview classification Prototype web-based app Computer Computer graphics, machine learning 0.4
Geometric reconstruction of damage clusters MeshLab Computer Computer graphics 1.0

CSG subtraction of reconstructed damage cluster from IFC-based mesh MeshLab Computer Computer graphics 2.0
Triangular geometric reconstruction from 3D point cloud MeshLab Computer Computer graphics 10.0

As-designed adjustment to as-built BrIM MeshLab, AutoCad, Revit Human labor Structural engineering, BIM 4.0
Identifying the appropriate damage types in the BMS catalog None Human labor Structural engineering 0.2

Injecting the damage into BrIM Prototype app Human labor BIM 1.0
Total: 68.1

To perform the proposed process in this case study took six times longer771

than the traditional one would. Nevertheless, whereas the traditional pro-772

cess requires permanent human labor engagement, most of the work (83%)773

in the proposed process is done by a computer. The generation of the774

photogrammetry-based point cloud is certainly the most time-consuming ac-775

tivity in the process, taking more than half of the total inspection time. Using776

the terrestrial laser scanning (TLS) instead of photogrammetry to acquire the777

point cloud is indeed much faster and more accurate. One drawback when778

using a TLS to capture a point cloud is a lack of encoded RGB values, which779

is crucial for damage detection using multiview classification. Additionally,780

the duration of a UAV-based inspection undoubtedly depends on the bridge781

size. Using UAVs is efficient in reducing the inspection time when inspecting782

large bridges, whereas small bridges are faster inspected in the traditional783

manner [8].784

In 2012, 16.4 billion USD was spent on rehabilitation or replacement of785

existing highway bridges in the USA [68]. According to Zulfiqar et al. [69],786

the USA spends only 2.7 billion USD per year on routine bridge inspections.787

Rather than reducing the inspection cost, this research intended to reduce788
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the several times higher maintenance cost, by providing the inspection deliv-789

erable with enough information for proper maintenance prioritization. The790

current inspection deliverable is a paper report with condition ratings, loosely791

related to the bridge KPIs (e.g., safety and serviceability). Even the point792

cloud with marked damages is a much more reliable basis for making deci-793

sions on maintenance interventions or bridge closure [8]. In comparison to794

a simple point cloud, the output of the proposed process, as-is BrIM is the795

object-oriented model of both the bridge and damages, with accompanying796

BMS semantics. Structured this way, the damage information is ready to797

be utilized in the calculation of damaged bridge KPIs, the base for a more798

objective maintenance prioritization.799

Finally, there are certain legal limitations for the application of the pro-800

posed inspection process. Most country’s aviation authorities, such as the801

Federal Aviation Administration (FAA), forbid UAV operating over a moving802

vehicle [70]. Due to this kind of regulation, although technically possible, the803

utilization of UAV in bridge inspection is a bit limited. The first limitation804

is related to the pavement inspection, and the second one refers to the in-805

spection of the underside of an overpass. However, the traffic lane closure806

during the inspection eliminates all legal issues of this kind.807

7. Conclusions and Future Work808

The paper shows a rational and practice-oriented method to develop a new809

generation of BMS by incorporating inspection findings into a BrIM model.810

Updated with as-is information about the bridge, the BrIM would reflect811

the current bridge condition more accurately. Targeting large spallings, ac-812

companied by extensively corroded reinforcement, abutments, and curbs, the813

presented approach managed to detect occurrences of five damage types out814

of seven, with the success rate greater than 70% (Table 2). Furthermore, the815

previously generated as-built BrIM of the case study bridge is successfully816

enriched by the damage information according to the proposal. The detected817

damage clusters are injected into the as-built IFC geometry via CSG Boolean818

operations, and related textual semantics following the requirements of a819

damage classification from the Swiss BMS KUBA — including the require-820

ments of the IFC 2x4 schema. Rather than proposing a schema extension,821

the existing schema definitions are used to describe the damage type, extent,822

and severity — as well to group them according to the location and causing823

deterioration process.824

40



To detect damages other than spalling, the current binary classification825

could be refined to include other damage types. However, the resolution826

of the bridge point cloud should be reasonably higher than the one used in827

the case study. Such a point cloud could be generated using a combination828

of laser scanning and photogrammetry. Damages detected this way could829

then be geometrically represented in a BrIM, by mapping image segments830

depicting damages onto damaged elements as textures [46].831

Since the damage data structure and semantics definitions proposed in832

the presented approach comply with the selected BMS structure, there are833

two ways to utilize it in the existing BMS: (1) It is possible to either apply834

the proposed approach on an external IFC file and simply link it with BMS,835

and (2): One can insert IFC representation of every specific bridge into the836

BMS. The latter, a more robust method, would require certain extensions of837

the current BMS software, such as an IFC viewer or custom tools for point838

cloud processing and damage detection.839

Once the data is acquired and properly integrated into BrIM, it can be840

used as a basis for the straightforward assessment of bridge KPIs such as841

safety and serviceability. Research by Isailović et al. proposes using Bayesian842

nets to assess the probability of bridge failure based on inspection findings843

[71]. Damage location and severity are roughly estimated and introduced to844

Bayesian mesh by manually updating node values. Having the BrIM that845

contains all the damage information, nodes of the Bayesian mesh can be846

automatically updated.847

Therefore, accurate and exhaustive damage information contained in the848

BrIM can be introduced to a finite element model representation of the bridge849

(eventually resulting in an accurate and up-to-date structural analysis of the850

bridge). Such an analysis would directly provide the most important bridge851

KPIs: safety and serviceability.852

Besides the benefits listed above, the limitations of the proposed approach853

should be pointed out. Due to both the legal and physical limitations, UAVs854

cannot always be used in bridge inspection without road(s) closure, implying855

additional costs. In the proposed approach, the as-designed BrIM is a pre-856

requisite. However, a minority of existing bridges have BrIM representation,857

so the creation of such models by using BIM authoring tools is required. Lack858

of digital drawings or even the paper ones makes this task rather difficult.859

Another requirement of the proposed approach is highly precise registration860

of point cloud to IFC-based geometry. For that reason, manual registration861

is proposed, rather than the automated one. Although the registration pre-862
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cision is achieved, this task increased the total inspection duration for 1.5863

hours. Even with precise registration, to be able to detect fine damage, such864

as crack, the proposed approach would require an ultrahigh-resolution point865

cloud. Last, but not least, the case study showed that the proposed ap-866

proach in the bridge inspection lasts approximately seven times longer than867

the traditional inspection.868

In terms of future work concerning the multiview classification approach,869

there are improvements and advancements that can be made:870

First, the amount of training data used to retrain the CNN can be greatly871

increased by either using existing images of various types of structural dam-872

age featured in bridges, or using the approach of synthetic data generation.873

The use of synthetic training data generation can be beneficial in increas-874

ing the classification accuracy, as a larger number of training images can875

be generated using photo-realistic renderings of structural damage features.876

Such approaches are already being used in the autonomous driving research877

community for generating training data containing various built environment878

features (e.g., buildings, road signs, traffic lights, road markings, etc) [72].879

Second, while the use of a 2D CNN has proven to be practical along with880

acceptable accuracy, it could be argued that another approach would be to881

use a 3D CNN for training and classification of point cloud representations of882

structural damage. Modern 3D CNN aimed at semantic segmentation, such883

as PointNet++, can be utilized for such tasks [73].884

Third, the image-based classification could theoretically be performed885

right after the image capture stage and before the 3D point cloud generation886

stage. Therefore the generated point cloud model could already contain887

point with visual or encoded semantics indicating the presence of potential888

damage features. The system would then just need to extract these clusters889

without needing to classify the point cloud itself, and reconstruct them into890

geometric representations that would be used for semantic injection into as-is891

BIM model via CSG operations.892

Fourth, the use of viewpoint entropy can be combined with the existing893

multiview classification approach, to better evaluate the visual information894

contained in each multiview image prior to classification (so that only images895

containing adequate and useful visual information get classified) [74].896

Finally, the methods presented in this research are applicable to a much897

broader range of challenges in designing, building and maintaining the built898

environment, including the processing of large point clouds to compile BIM899

models and to detect damage, a compilation of as-built and as-is models with900
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explicit geometry and semantics. Further development of this research aims901

to contribute to the acquiring and use of Digital Twins (DTs) for managing902

the built environment.903
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