Jugoslovensko društvo za hidraulička istraživanja (JDHI) i

Jugoslovensko društvo za hidrologiju (JDH) organizuju:

11. SAVETOVANJE

HIDRAULIČARA I HIDROLOGA

16.-18. novembar 1994.

Beograd, Jugoslavija

JDH

Organizatori:

Jugoslovensko društvo za hidraulička istraživanja (JDHI)
Jugoslovensko društvo za hidrologiju (JDH)
Gradjevinski fakultet Univerziteta u Beogradu

Organizacioni odbor:
Mr Jelisaveta Muškatirović ("J. Cerni")
prof. Dr Čedo Maksimović (GF Bgd)
prof. Dr Vojislav Vukmirović (GF Bgd)
Dr Marko Ivetić (GF Bgd)
prof.Dr Svetislav Cantrak (Mašinski fakultet, Bgd)
Dr Ljubodrag Savić (Energoprojekt)
Dr Zoran Radić (GFBgd)
Tioslav Petković (Savezni HMZ)
Mr Bratislav Stišović (Energoprojekt)
Milivoje Brajković ("J.C̈erni")
Mr Miodrag Savić (Republički HMZ)
Vladimir Taušanović, (BVK)
Dr Ratomir Živaljević (GF Podgorica)
Mr Milan Bošković (RHMZ Crne Gore)

Redakcioni odbor:
Dr Marko Ivetić
Tioslav Petković
prof. Dr Vojislav Vukmirović
prof. Dr Čedo Maksimović

Odgovorni i tehnički urednik:
Dr Marko Ivetić

Naslovna strana: Vincent Van Gogh - Most Angloisa u Arlesu, 1888
Stampa: Savezni hidrometeoroloßki zavod, Beograd
Tiraž: 200

Sadržaj

Predgovor
stranaxi
Uvodna predavanja

1. Savremeni problemi modeliranja u hidraulici 3
Marko Ivetić
2. Regionalna statistička analiza maksimalnih 13
kratkotrajnih kiša
Vojislav Vukmirović i Dragutin Pavlović
3. Integralni pristup problemu planiranja i razvoja 22
vodoprivrednih sistema
Bratislav Stišović
Hidroinformatika
4. Automatska akvizicija hidroloških podataka 33
Hidrometeorološkog zavoda Republike Srbije M. Savić, B. Milakara i B Palmar
5. Relaciona baza podataka kao deo hidrometeorološkog 39 informacionog sistema Srbije
Zoran Radić, Miodrag Savić i Bojan Palmar
6. PC sistem za obradu podataka u Republičkom 44
hidrometeorološkom zavodu Republike Srbije Bojan I. Palmar i Borjanka P. Palmar
7. Hidrološki informacioni sistem 50
Saveznog hidrometeorološkog zavoda
Vladimir Dimić, Slobodan Djoković i Dragan Tripković
8. Primena AutoCAD-a proširenog sa GIS funkcijama 58
u simulacionim modelima oticanja sa urbanih slivova Dušan Prodanović, Slobodan Djordjević i Cedo Maksimović
9. Aerovideografska metoda za prikupljanje podataka u hidrotehnici 66
Borislava Blagojević i Čedo Maksimović
10. Edukacioni softver za studente i hidrotehničke stručnjake 72 72
Cedo Maksimović
11. Hidrološki geografski informacioni sistem 78- principi i metodologija razvoja
Zoran Radié
12. Hidrološki geografski informacioni sistem - pilot studija za Srbiju 84
Zoran Radic
13. Dinamićka opterećenja pri oscilacijama fluida i cevovoda

Zdravko Stojanorić, Aleksandar Gajić i Stanislav Pejović
8. Merenje i analiza hidrodinamičkih pritisaka
u galerijama brodske prevodnice
Sava Petković, Miodrag Milovanović i Radomir Kapor
9. Rektifikacija merne opreme za merenje protoka285
na sistemu za regionalno vodosnabdevanje "Studenčica"
Sotir Panouski, Igor Nedelkouski i Cano Joševski
10. Merenje i praćenje protoka rashladne vode za TE Bitola
iz hidrosistema "Streževo"
Sotir Panouski i Vitomir Stojanouski
11. Primena serijskih pumpi u turbinskom režimu rada 296
u visoko pritisnim pumpnim postrojenjima u cilju smanjenja pogonske snage motora glavne pumpe

Miloš Nedeljković, Zoran Protić i Miroslav Benišek
12. Specifićnosti hidrauličkog proračuna 302
postrojenja za prećišćavanje otpadnih voda
Dejan Ljubisavljević i Aleksandar Djukić
13. Primena metode kinetičke ravnoteže pri oblikovanju 308
strujnih prostora sa najpovoljnijim strujnim karakteristikamaMiroslav Benišek, Svetislav C̉antrak,
B. Ignjatović i Dubravka Pokrajac
Turbulencija i transportni procesi

1. Procesi turbulentnog prenosa pri vihornom strujanju 317 u elementima hidropostrojenja Svetislav Čantrak, Miroslav Benišek i Miloš Nedeljković
2. Proračun turbulentnog tečenja u vodotoku sa bočnim ispustom 323
Radomir Kapor, Marko Ivetić i Čedo Maksimović
3. Odredjivanje trajektorija/strujnica za složene strujne slike 330
Dubravka Pokrajac i Ranko Lazić
4. Proračun transporta radioaktivnog zagadjivača 336
Ljubodrag Savić
5. Eksperimentalno ispitivanje neustaljenog tečenja 343
mešavina vode i gline
Dejan Komatina
6. Testiranje osetljivosti matematičkog modela za proračun 349
transporta suspendovanog nanosa na promene ključnih parametara Enika Gregorić i Sava Petković
7. Numeričko modeliranje diskontinualnih tokova 355
Dejana Djordjević 8. Uporedna analiza numeričkih modela linijske konvekcije 361
u otvorenim tokovima
Dragoslav Stefanović

Numericko modeliranje diskontinualnih tokova

Dejana Đordević, dipl. grad, inž, Gradevinski fakultet, Beograd

1. Uvod

Tedenje sa slobodnom povrŠinom u otvorenim tokovima opisuje se sistemom parcijalnih diferencijalnih jednacina (Sent Venant-ovim jednaCinama) za čije je numeričko reasavanje, do sada, razvijen veliki broj računskih metoda. One se razlikuju po efikasnosti postupka i tǎ̌nosti reక̌enja. Jedna od metoda je i eksplicitna računska shema razdvojenih operatora MacCormack koja je prvobitno razvijena za rešavanje problema iz oblasti gasne dinamike. Ona pripada metodama etapnog rešavanja i ima tačnost drugog reda u prostoru i vremenu. Bitne karakteristike sheme MacCormack jesu njena sposobnost da reprodukuje strmo celo talasa bez uvodenja posebnog algoritma za njegovo otkrivanje i pracenje, kao i mogućnost proračuna kada su, u razlicitim delovima kanala, istovremeno prisutni i blago, i naglo promenljivo teट̌enje. Ove osobine čine je posebno privlačnom za primenu u hidraulici otvorenih tokova.

Da bi se prikazala efikasnost izabrane računske metode, kao i moguénost njene primene u praksi, razmatrana su dva slučaja tečenja u kojima se javlja diskontinuitet toka u vidu talasa sa strmim čelom.

2. Matematički model

Linijsko neustaljeno tečenje u otvorenim tokovima opisuje se Sent Venant-ovim jednaXinama napisanim za plitke oblasti strujanja. Za prizmatičan kanal pravougaonog poprě̌nog preseka sa blago nagnutim dnom važe jednǎina kontinuiteta i dinamicka jednacina napisane u konzervativnom obliku:

$$
\begin{equation*}
\frac{\partial \vec{V}}{\partial t}+\frac{\partial \vec{F}(V)}{\partial x}=-\vec{T}(V, x, t) \tag{1}
\end{equation*}
$$

gde je:

$$
\vec{V}=\left[\begin{array}{l}
h \tag{2}\\
Q
\end{array}\right] \quad \vec{F}(V)=\left[\begin{array}{c}
\frac{1}{b} Q \\
\frac{Q^{2}}{b h}+\frac{1}{b} g b h^{2}
\end{array}\right]
$$

$$
\vec{T}(V, x, t)=\left[\begin{array}{c}
0 \\
g b h\left(S_{0}-S_{f}\right)
\end{array}\right]
$$

U navedenim jednačinama x it t su nezavisno promenljive, dok su dubina h i protok Q zavisno promenljive. Gravitaciono ubrzanje je označeno sa g, ̌irina kanala sa b. S_{o} je nagib dna kanala, a S_{f} pad linije energije usled gubitaka na trenje i uticaja fluktuacija na glavno strujanje. S_{f} se aproksimira Manning-ovom formulom:

$$
\begin{equation*}
s_{f}=n^{2} \frac{Q|Q|}{A^{2} R^{4 / 3}} \tag{3}
\end{equation*}
$$

gde je n-Manning-ov koeficijent, A-površina poprečnog preseka, a R-hidraulički radijus.
Sistem jednačina (1), napisan u formi matrične jednačine, zajedno sa izrazom (2), predstavlja sistem nelinearnih parcijalnih diferencijalnih jednačina hiperboličkog tipa. Pošto su jednačine (1) napisane u konzervativnom obliku, za njihovo numeričko rešavanje mogu se primeniti metode koje daju uopštena (slaba) rešenja, to jest rešenja koja pokrivaju kako oblast u kojoj su funkcije osnovnih velicina toka kontinualne i diferencijabilne, tako i oblast u kojoj se javlja njihov diskontinuitet. Korišćenje takvih metoda od velikog je značaja za rešavanje pojedinih problema hidrotehnicke prakse, kao što je na primer, talasno kretanje izazvano rušenjem brane ili podizanjem ustave, itd.

3. Numerički model

Eksplicitna računska shema MacCormack pripada klasi metoda uopštenih rešenja i grupi metoda konačnih razlika. Zasniva se na principu razdvajanja operatora po vremenu, a to podrazumeva etapno rešavanje problema. Ova shema ima dve etape:

- Etapa prediktora:

$$
\begin{equation*}
V_{i}^{p}=V_{i}-\frac{\Delta t}{\Delta x} 3 F\left(V_{i}\right)+\Delta t T_{i} \tag{4}
\end{equation*}
$$

- Etapa korektora:

$$
\begin{equation*}
V_{i}^{c}=V_{i}^{p}-\frac{\Delta t}{\Delta x} \mathscr{F} F\left(V_{i}^{p}\right)+\Delta t T_{i}^{p} \tag{5}
\end{equation*}
$$

- Konačno rešenje:

$$
\begin{equation*}
V_{i}^{\prime}=\frac{1}{2}\left(V_{i}+V_{i}^{c}\right) \tag{6}
\end{equation*}
$$

U prethodnim jednačinama indeksom i iznačen je redni broj računskog profila u pravcu strujanja (x-pravcu). Vektor zavisno promenljivih sa prethodnog vremenskog nivoa
označen je sa V_{i},odgovarajuči vektori početnog i korigovanog rešenja sa V_{i}^{p} i V_{i}^{c} respektivno, a vektor konǎ̌nog rešenja sa $V_{i}{ }^{\prime}$.

Operator prostorne diskretizacije je jednostran, što znači da predstavlja ili razliku unazad (3), ili razliku unapred (S):

$$
\begin{equation*}
3 F\left(V_{i}\right)=F\left(V_{t}\right)-F\left(V_{i-1}\right) \quad i \quad \mathscr{F F}\left(V_{i}\right)=F\left(V_{i+1}\right)-F\left(V_{i}\right) \tag{7}
\end{equation*}
$$

Pri tom treba naglasiti da se u etapi korektora uvek koristi operator suprotan onom koji je koriš̌en u etapi prediktora. Ovakvim etapnim rešavanjem zadatka i simetričnom izmenom operatora postiže se tačnost drugog reda u prostoru i vremenu. Redosled smenjivanja operatora \mathcal{B} i \mathscr{g} prikazan je u Tabeli 1.

Tabela 1: Sekvence konačnih razlika

j	Prediktor	Korektor
1	3	\mathscr{F}
2	\mathscr{J}	3

Kao što se vidi, sekvenca operatora se ponavlja nakon svakog drugog koraka. Upravo ovo obeležje računske metode opravdava primenu MacCormack-ove sheme u sličajevima kada su, duž razmatranog kanala, istovremeno prisutna oba režima tečenja, kada se naizmenično smenjuju, kao i u slučajevima formiranja i propagacije izolovanog talasa sa strmim čelom, jer unapred eliminiše bilo kakvu pretpostavku o smeru prostiranja uticaja koja bi, u navedenim slučajevima, dovela do grubih grešaka [1].

Stabilnost numeričke sheme definisana je Courant-Friedrichs-Lewy-evim uslovom:

$$
\begin{equation*}
\Delta t \leqslant \frac{\Delta x}{(v+c)_{\max }} \tag{8}
\end{equation*}
$$

gde je: $v=Q / A$, a $c=\sqrt{(g h)}$.
Prema Lax-ovoj teoremi shema je stabilna [2].

4. Primena numeričkog modela

Mogućnost primene opisane računske metode biće ilustrovana na dva primera od kojih je jedan hipotetičan slučaj prstiranja strmih talasa izazvanih dvostepenim dizanjem ustave koja se nalazi na početku kanala, a drugi, simulacija jednog laboratorijskog eksperimenta.

Prostiranje dva talasa sa strmim čelom koji se pojavljuju u određenom vremenskom razmaku. U ovom primeru razmatran je slučaj u kome se, u odredenom vremenskom razmaku, u kanalu javljaju dva strma talasa.

Kanal je jedinične širine $(b=1 \mathrm{~m})$ i dužine 400 m . Dno je horizontalno. Trenje je zanemareno. Prostorni korak je $\Delta x=20 \mathrm{~m}$, a vremenski korak je racunat tako da maksimalna vrednost C_{r} broja bude 0.8 .

U početnom trenutku voda u kanalu miruje. Dubina vode je 2 m . Granični uslov na uzvodnom kraju zadat je hidrogramom (slika 1).

Prvi talas visine 3.7 m izazvan je naglim podizanjem ustave, odnosno trenutnim povećanjem protoka sa $0 \mathrm{~m}^{3} / \mathrm{s}$ na $11.9 \mathrm{~m}^{3} / \mathrm{s}$ na uzvodnom kraju kanala (slika 2: $\mathrm{t}_{1}=0.78 \mathrm{~min}$).

Slika 1: Uzvodni granični uslov

Protok je održavan konstantnim narednih 50 s , a zatim je, dodatnim podizanjem ustave, povećan na $47.62 \mathrm{~m}^{3} / \mathrm{s}$. Ovo naglo povećanje protoka izazvalo je pojavu drugog talasa koji putuje znatno većom brzinom od proog (slika 2: $\mathrm{t}_{2}=1.20 \mathrm{~min}, \mathrm{t}_{4}=1.87 \mathrm{~min}$). Sa slike 2 vidi se da posle $t_{5}=2.4 \mathrm{~min}$ drugi talas sustiže prvi, nakon čega zajedno nastavljaju da se kreću nizvodno. Sa svih pet sekvenci jasno se uočava da diskontinuiteti zahvataju svega tri računska profila, što pokazuje da MacCormack-ova raçunska shema vrlo uspešno reprodukuje strmo celo talasa.

Slika 2: Linije nivoa za slučaj propagacije dva talasa sa strmim čelom zabeležene u nekoliko različitih vremenskih trenutaka

Numericka simulacija jednog laboratorijskog eksperimenta.Drugi primer se odnosi na verifikaciju opisane računske sheme pomoću jednog laboratorijskog ekperimenta [4]. Eksperiment je obavljen u labratorijskom kanalu sa staklenim zidovima i promenljivim nagibom dna, dužine 4.5 m i širine 0.15 m . Uzvodni deo kanala je pregraden tablastom ustavom i predstavlja rezarvoar. Nizvodni deo kanala, dužine 2.25 m , koriš́en je za analizu prostiranja talasa sa strmim čelom koji je izazvan naglim podizanjem ustave. Dubine su merene pomoću membranskih sondi tipa "Druck" i registrovane pomoću elektronskog sistema za prikupljanje i obradu podataka.

Slika 3: Poredenje izmerene i sračunate linije nivoa

Simuliran je eksperiment u kome je poxetna dubina u rezervoaru iznosila $H=0.3 \mathrm{~m}$, nagib dna kanala 0.1%, a Manning-ov koeficijent $0.009 \mathrm{~m}^{-1 / 3} \mathrm{~s}$. Rezultati merenja i numericke simulacije prikazani su na slici 3. Uzvodni granični uslov je definisan u skladu sa zakonom podizanja ustave, a nizvodni u obliku tzv. "otvorenog" granǐ̌nog uslova. Radi lakšeg poredenja sa rezultatima merenja, tokom cele simulacije korisćén je konstantan vremenski korak $\Delta t=0.01 \mathrm{~s}$. Sa ovom vrednošću Δt zabeležena je maksimalna vrednost Courant-ovog broja $C r=0.6$.

Slika 4: Vremena propagacije

Kvantitativna analiza izmerenih i sračunatih dubina pokazala je da njihova razlika u proseku iznosi 10%. Uočeno je takode, da se računski talas kreće nešto sporije od talasa u laboratorijskom kanalu (slike 3 i 4),

Analiza konzervativnosti racunske sheme MacCormack pokazala je da, u ovom konkretnom slučaju, maksimalni gubitak odnosno, dobitak zapremine iznosi 0.4%. Provera konzervativnosti u prirodnim tokovima je takode pokazala zadovoljavajuće rezultate [6].

5. Zaključci

Kvalitativna analiza rezultata numerǐke simulacije za slučaj prostiranja dva talasa sa strmim とelom koji se javljaju u odredenom vremenskom razmaku, i kvalitativna i kvantitativna analiza rezultata numericke simulacije laboratorijskog eksperimenta pokazuju
da računska shema MacCormack daje stabilna i fizički realna rešenja. Imajući ovo u vidu, kao i ̌̌injenicu da ne zahteva poseban algoritam za otkrivanje i praćenje diskontinuiteta toka, hidrotehnicke prakse za koje je karakteristična pojava talasa sa strmim čelom.

Literatura

1. Fennema, R.J., Chaudhry, M.H., "Explicit Numerical Schemes for Unsteady Free-Surface With Shocks", Water Resources Research, Vol.22, No.13, Dec. 1986.
2. Garcia-Navarro, P.,Saviron, J.M., "MacCormack's method for the numerical simulation of one-dimensional discontinuous unsteady open chanel flow", Journal of Hydraulic Research, Vol.30, 1992.,No. 1
3. Hajdin, G., "Mehanika fluida", Beograd 1984.
4. Komatina, D., "Analiza tečenja gustih mešavina u otvorenim tokovima", Magistarska teza, Beograd, 1993.
5. Radojković, M.,Klem, N., "Primena računara u hidraulici", Beograd 1988.
6. Thandaveswara, B.S., Kumar, A.A., MacCormack Approach- A Case Study of Narmada River Floods, Mathematical Modelling in Water Resources, ed. by Russell, I.F., Ewing, R.E., Brebbia, C., Grey, W.G., and Pinder, G.F., Vol. 2, Elsevier, 1992.
7. Jovanović, M., Đordević, D., "Numerical Simulation of 2D Unsteady Flows With The MacCormack Finite Difference Scheme ", HYDROSOFT '94, Porto Carras, Greece, 1994.
