
1 

 

 

 

This is a post-peer-review, pre-copyedit version of an article  

S.E. Hosseini Mobara, R. Ghobadian, F. Rouzbahani, D. Đorđević Numerical simulation 

of Submarine non-rigid landslide by an explicit three-step incompressible smoothed 

particle hydrodynamics, 

published in Engineering Analysis with Boundary Elements, 130: 196–208 (2021).The 

final authenticated version is available online at: 

https://doi.org/10.1016/j.enganabound.2021.05.025 

  



2 

 

 

Numerical simulation of Submarine non-rigid landslide by an 

explicit three-step incompressible smoothed particle 

hydrodynamics 

 

 
 

Seyed Erfan Hosseini Mobara1, Rasool Ghobadian2*, Fardin Rouzbahani3 

, Dejana Đorđević4 
 

 

 
1 Postdoctoral research fellow in Hydraulic Structures Enginerring, Department of 

Water Engineering, Razi University,  Kermanshah 67144-14971, Iran. 
2 Associate professor, Department of Water Engineering, Razi University, Kermanshah 

67144-14971, Iran. 
3 Assistant professor, Department of Mechanical Engineering, Islamic Azad University, 

Hamedan 15743-65181, Iran. 

4 Assistant professor ,University of Belgrade, Faculty of Civil Engineering, Department 

of Hydraulic and Environmental Engineering, Belgrade, Serbia 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author: Rasool Ghobadian (rsghobadian@gmail.com), Tel.:+98 918-

833-2489, Fax: +98 833-832-4820.   



3 

Abstract 

Many landslides in nature may be classified as deformable landslides. The landslide volume is usually 

modeled as a rheological material when SPH methods are used for landslide simulation, since these methods 

allow for the use of particles with different fluid properties. To increase the accuracy, the Carreau-Yasuda 

model is chosen in this study to predict the behavior of the rheological material. This rheological model 

overcomes the weakness of the power-law model in predicting the viscosity at zero and infinite shear strain 

rates. Also, a fully explicit three-step algorithm is proposed to solve the governing equations. In the first 
step, the momentum equation is solved in the presence of the body forces while neglecting all other forces. 

In this step intermediate velocity values are computed. In the second step, the calculated intermediate 

velocities are employed to compute divergence of the stress tensor, and velocity components of each 

particle are updated to find their intermediate positions. These two steps are called predictor steps. In the 
third, corrector step, the pressure gradient in the momentum equation is merged with the continuity 

equation, and lastly the final particle velocity is calculated at the end of the time step. The fully explicit 

three-step algorithm is used in combination with Carreau-Yasuda model to simulate the submarine non-

rigid landslide from the physical model. The comparison with the experimental data indicates good 

agreement between the calculated and observed water surface elevations with very low L2 relative error 

norm (εL2) and RMSE values that are up to 70% lower than those from previous studies when Cross and 

Bingham rheological models were used with ISPH and WCSPH models, respectively. Moreover, the shape 

and the advancement of the non-rigid body made of sand are captured equally good. 

 

Keywords: Smoothed particle hydrodynamics; Non-Newtonian fluid; Carreau-Yasuda model, Submarine 

landslide; Lagrangian method  
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1. Introduction 

Huge waves on the water surface like Tsunamis are triggered by a sudden disturbance of the ocean floor 

or on the ocean surface. Such a disturbance is usually caused by an earthquake, a landslide, a volcanic 

eruption and other types of underwater explosions (including detonations of underwater nuclear devices), 

glacier calving, meteorite impacts, or other disturbances above or below water surface which have the 

potential to generate a tsunami [1-3]. Failure of a breakwater during tsunami causes extensive damages to 

human lives and properties. Therefore, it is essential to investigate the failure mechanisms of a breakwater 

due to a tsunami. 

Landslides are among the most catastrophic and very frequent hazards around the world. Slope failures 

and subsequent landslides on the margins of a dam reservoir can generate large impulsive waves, which 

may lead to a significant damage to a dam body, agricultural area, shoreline properties and lives [4, 5]. 

Therefore, the impulsive waves are considered as one of the notable secondary hazards induced by 

landslides [6]. 

Depending on the location of the landslide, there are three types of waves: those induced by submarine 

landslides, those induced by partially submerged landslides, and those induced by subaerial landslides [7-

9]. Depending on the depth of the receiving water body, the landslide may be either completely or only 

partly submerged after its deposition. The formation, propagation and run-up of landslide induced impulse 

waves have been studied through simple physical experiments [7, 8, 10], analytical formulae [11], scale-

model physical experiments [12] and numerical simulation [4, 13-16].  

In terms of the used mathematical formulation, models can be categorized into one of the following 

three categories: 1) the Boussinesq-type models [17-19], 2) the shallow water equations (SWEs) models 

[20] and 3) the fully Navier-Stokes (N-S) models [21, 22]. In particular, the SWEs models are widely 

accepted to solve the wave propagation problem with the numerical schemes such as the finite element 

method (FEM) and the finite volume method (FVM) [20, 23-25]. 

Recently, mesh-free methods have been given special attention in simulating problems, whose solution 

may be sought using numerical procedures which do not require a computational grid. Such methods 

improve the flexibility of the code on one hand, and bring new numerical problems to be solved, on the 

other. The main advantage of meshless descriptions comes out when dealing with moving boundaries and 

large deformations. Development of mesh-free methods offers an opportunity to overcome either of the two 

problems. One of these methods is the so-called smoothed particle hydrodynamics method, which is a 

widely spread meshfree numerical tool. 

A particle method does not need grid for calculating field properties. A particle is, like a node in the 

FEM, a calculation unit. The method uses a weighting function to get properties from the neighboring 

particles. The weighting function is usually related to the inverse distance to the surrounding particles. The 

number of neighboring particles is decided by the influence domain that is redefined in every step. As a 

result, the particle method can easily simulate free surface flow in fluids and allow large deformations in 

solids. The result obtained with the particle method is usually not as accurate as that obtained with s a grid-

based method such as FEM. The SPH method introduced by Gingold and Monaghan, 1977 [26] (and 

separately by Lucy, 1977 [27]) is better than any other particle method in terms of accuracy. It was 

developed to solve astronomical problems, but soon afterwards it became a powerful tool in fluid flow 

simulations. Wave overtopping characteristics that were simulated by Shao et al., 2006 [28] and Pu and 

Shao, 2012 [29] proved the ability of SPH to simulate such violent flows. Modeling of stress wave 

propagation and uniaxial/ triaxial test by Das and Cleary, 2006 [30] and Das and Cleary, 2007 [31] has 

proved the robustness of the SPH method in simulating solid mechanics problems. Fluid-structure 

interaction was simulated by Antoci et al., 2007 [32] with reasonable accuracy, which proved the strength 

of the SPH method as a coupling tool. Naili et al. [33] have simulated liquefaction induced lateral spreading 

by the SPH using the Bingham soil model. A seepage flow analysis by Maeda et al., 2006 [34] was the first 

attempt to simulate geo-material with the SPH. Maeda et al., 2006 [34] have simulated failure of soil by 

taking into account soil-water-air interaction. Simulation of seepage and erosion with the evolution of air 

bubbles by Sakai and Maeda, 2009 [35] was the symbol of the SPH advancement in geo-technics. Takbiri 

et al., 2010 [36] have performed seepage analysis through the dam foundation by SPH and compared results 

with FEM. Bui et al., 2011 [37] have developed a SPH model for seepage flow through deformable porous 

media where the deformation of geo-material was simulated. Simulations of large deformation of geo-

material with elasto-plastic D-P constitutive model by Bui et al., 2008a [38] was a milestone of the SPH 

applications in geotechnical engineering. Bui et al., 2008b [39] also analysed soil-structure interaction by 

simulating the interaction of flowing geo-materials with the pile structures. Slope stability analysis and 

discontinuous slope failure analysis by Bui et al., 2011b [40] and simulation of saturated soil with improved 

consideration for pore water pressure by Bui and Fukagawa, 2013 [41] are additional proofs of the SPH 
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ability to handle large deformation of geo-material. Chen and Qiu, 2011 [42] simulated 3-D granular flow 

by the SPH method. Opez et al., 2012 [43] have improved the accuracy of the granular flow by using 

different particle sizes in the simulation termed as dynamic refinement. Hiraoka et al., 2013 [44] have 

simulated slope failure due to the effect of seismic motion by the SPH. Nguyen et al., 2013 [45] have 

simulated the behavior of modular block retaining wall. Lemiale et al., 2012 [46] have simulated landslide 

event by combining SPH with the discrete element method (SPH-DEM method). The SPH was used to 

simulate the onset of the landslide, while the subsequent flow was simulated by the DEM. Wang et al., 

2013 [47] have developed a new frictional contact to simulate movement of the retaining wall and 

consequent soil pressure by the SPH. 

It is well known that Newtonian fluids are fluids that obey Newton’s linear law of friction: 

τ = μγ�  (1)

where τ is the shear stress, μ is the dynamic viscosity of the fluid expressed in Ns / m2 = Pa s, and the 

quantity γ�  is the rate of shear strain. Dynamic viscosity μ is the proportionality coefficient in this model. 

Fluids that do not follow this linear law are called non-Newtonian fluids. These fluids are usually highly 

viscous, and their elastic properties also affect the flow field. The theory of non-Newtonian fluids is a part 

of rheology. Typical non-Newtonian fluids are polymer solutions, thermoplastics, drilling fluids, paints, 

fresh concrete and biological fluids [48]. Granular flows caused by soil liquefaction or landslides are also 

non-Newtonian fluids. 

Table 1 summarises recent numerical studies in which the mass of earth or rock in the landslide is treated 

as a rigid block, while Table 2 summarises those in which the sliding body is treated as a non-Newtonian 

fluid whose deformation is modeled using the rheological theory. 

Table 1 

Numerical studies of a rigid landslide 

Landslide 

initial position 
Landslide shape 

Impact 

angle 
Simulation method Reference 

SM Triangle 45 VOF Heinrich, 1992 [49] 

SA Rectangle 10 SPH Monaghan et al., 2003 [50] 

SM Triangle, Rectangle 45, 90 ISPH 
Ataie‐Ashtiani and Shobeyri, 

2008 [10] 

SA Polygon 30.7 FVM 
Serrano-Pacheco et al., 2009 

[51] 

SM Triangle 45 CEL Wenjie, 2012 [52] 

SM, PSM Trapezoid 35 SPH, FVM Viroulet et al., 2013 [25] 

SM Triangle 45 DDA-SPH Wang et al., 2016b [53] 

SA 

Circular Sphere 

Rectangular Cube 

Triangular prism 

45 Flow-3D 
Khoolosi and Kabdaşli, 2016 

[54] 

SM Triangle 45 ISPH Farhadi et al., 2016 [16] 

SA Trapezoid cube 45 
SPH (DualSPHysics 

v3.1) 
Heller et al., 2016 [55] 

SM Triangle 45 DEM Qiu et al., 2017 [15] 

SA Triangle, Trapezoid cube 45 block DEM-SPH Tan et al., 2018 [3] 

SM: submerged; SA: subaerial; PSM: partially submerged; DEM: discrete element method 

 

Table 2 
Numerical studies of a non-rigid landslide 

��(
�) 
�(
� �) 

Landslide 

initial 

position 

Impact 

angle 

Simulation 

method 
Soil model Reference 

200 0 SM 45 VOF BM 
Rzadkiewicz et al., 1997 

[56] 

1000 0      

Update 0 SM 45 VOF BM 
Mariotti and Heinrich, 

1999 [57] 

1000 48 SA 45 CBG 

Generalized 

viscoplastic fluid 

model 

Quecedo et al., 2004 [21] 

250 0.1 SM 45 ISPH 
BM and Cross 

model 
Ataie‐Ashtiani and 

Shobeyri, 2008 [10] 

750 0.15      
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1000 1 SM 45 SPH Changed BM Capone et al., 2010 [58] 

- - SA 45 
soil–water 

coupling SPH 

elasto–plastic 

material 
Shi et al., 2016 [59] 

200 0.002 SM 45 SPH 

Combining the 

Papanastasiou  

and HB model 

Qiu et al., 2017 [15] 

1000 0.002      

- - SA 45 DDA-SPH DDA Wang et al., 2017b [13] 

1000 1 SM 45 ISPH BM Farhadi, 2018 [1] 

SM: submerged; SA: subaerial; PSM: partially submerged; BM: Bingham model; DDA: Discontinuous Deformation Analysis; 

HB: Herschel-Bulkley model 

Significant progress has been made in the context of computational rheology in recent years. Several 

numerical methods have been devised to study non-Newtonian fluid flows with different degrees of success 

[60]. More specifically, Galerkin-type finite element methods have been used to analyse Bingham-plastic 

fluids, but they have shown appreciable errors in the calculated shear rates and viscosities [60]. On the other 

hand, non-Newtonian Carreau-Yasuda fluids that belong to the Pseudoplastic fluid family have been 

successfully used in simulations of non-rigid bodies such as sand [61]. 

Thus far, little attention has been paid to the investigation of the particle’s movement on rigid slopes 

due to landslides, collapses or falls of non-rigid bodies down rigid slopes as well as on the propagation of 

the resulting waves on the free surface. Innovations in the present paper are twofold. The first one is a 

modification of the SPH method through an introduction of the three-step procedure to facilitate non-

Newtonian flow modeling. The second one is an introduction of the non-Newtonian Carreau-Yasuda fluid 

into the SPH model to facilitate simulation of sliding of the non-rigid, granular body down a rigid slope. 

To the authors’ best knowledge lanslides have not yet been simulated as granular bodies whose grains carry 

characteristics of the two-phase fluid flow themselves. 

2. Governing equations 

2.1. Conservation laws in Lagrangian framework 

The mass and momentum conservation laws for the unsteady incompressible fluid flow in the 

Lagrangian framework can be written as follows [26]: ∇ ∙ � = 0 (2) 

D�D� = − 1ρ ∇� + � + 1ρ ∇ ∙ τ (3) 

where time t is the independent variable, � is the vector of gravitational acceleration, ρ is the density, P is 

the pressure, � is the velocity vector, τ is the shear stress tensor and D D�⁄  refers to the material derivative. 

2.2. Fundamentals of the SPH method 

The integral expression of a variable A, which is a function of spatial coordinates, can be presented as 

[62, 63]: 

�(�) =  � �(� )δ(|� − � |)d� 
$(�)

 ≈ ⟨�(�)⟩  = � �(� )
$(�)

()(|� − � |)d�′ (4) 

where, δ(|� − � |)  is the Dirac delta function, d�  is the volume differential element, ()(|� − � |) = ((|� − � |, ℎ) is the Kernel interpolation function with a smoothing length h. The integration is performed 

in the supporting domain Ω(�). Since the Kernel interpolation function decreases rapidly with distance 

from the particle a, this integral can be approximated with a sum over neighbouring particles as follows 

[62, 63]: 

�. = �(�.) = / 01ρ11  �1 (23�. − �13, ℎ4 (5) 

Typically, the smoothing length h is chosen to be of the size of particle intervals. 

The interpolation (Kernel) functions that are used in this method should satisfy the following special 

conditions [64]: 
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5 ()(|� − � |)d� = 1   (6) 

()(|� − � |) = 0    out of the supporting domain                  (7) 

670)→9 ()(|� − � |) = δ(|� − �|)    (8) 

()(|� − � |) > 0    within the supporting domain (9) 

In this paper, we use the cubic spline Kernel function after Liu and Liu, 2003 [65]: 

()(|� − � |) =   βℎ<   =  (2 − ?)@ − 4(1 − ?)@          0 ≤ ? ≤ 1(2 − ?)@                                  1 ≤ ? < 20                                                       ? > 2  (10) 

where ? = |� − � | ℎ⁄ , and β = 5 14π⁄  are taken in two-dimensional problems. 

The gradient of an arbitrary variable A can be written directly as: 

(∇�). = / 01ρ11 �1∇(2�. −  �1 , ℎ4 =   / 01ρ11 �1  ∇.(.1 (11) 

2.3. Viscous terms 

The viscous term was first introduced into the SPH equations by Lucy in 1977 [27]. However, solutions 

to many viscous problems with the SPH method became possible with the work of Monaghan and Gingold, 

1983 [62]. 

The viscosity term is introduced into SPH model equations with the second-order derivative term, which 

is obtained just by differentiating the Kernel interpolation function twice. However, in practice, the second-

order derivative terms can be susceptible to the particle's irregularity. This might cause some problems in 

reaching physically plausible solutions. To avoid this problem, Monaghan and Gingold proposed a different 

approximation of Eq. (3) [62]: d�.d� = − / 01 F�.ρ.G + �1ρ1G + π.1H ∇.(.11  (12) 

In the above equation, πIJ  is added as the viscous pressure. The additional term is also called the artificial 

viscosity [63].  

The primary purpose of adding the artificial viscosity was to model the strong shocks in astrophysical 

processes ([63]; [66]). Morris et al., 1997 [67] have found that if the artificial viscosity method was used 

to model real viscous terms, it might give inaccurate velocity profiles in some situations. 

The strain rate in Newtonian and non-Newtonian fluids is given by the following relation [68]:  

K = ∇� + ∇�L2  (13) 

The shear stress in the incompressible fluid flow is defined as a function of D ’s second invariant i.e. | D |: 

|K| = M/ K.1K.1.,1  (14) 

Thus, the relationship between the shear stress and the strain rate for Newtonian and non-Newtonian fluids 

is expressed as follows: τ = μ(|K|)K (15) 

For Newtonian fluids, the previous expression reduces to: τ = 2μK (16) 

The two-dimensional velocity gradient vector in Eq. (13) can be written as: 
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∇� =
⎣⎢⎢
⎢⎡ 

QRQS      QRQTQUQS   QUQT ⎦⎥⎥
⎥⎤
 (17) 

Following this, the strain rate D is expressed as: 

K =
⎣⎢⎢
⎢⎡ QRQS 12 YQRQT + QUQSZ
12 YQRQT + QUQSZ QUQT ⎦⎥⎥

⎥⎤
 (18) 

The two velocity components in Cartesian coordinates are denoted in Eqs.(17-18) with R and U. The R-

velocity gradients can be calculated as follows [69]: 

YQRQSZ. = / 01ρ1 2R1 − R.4 2S. − S143�.131
d(d�.1 (19) 

YQRQTZ. = / 01ρ1 2R1 − R.4 2T. − T143�.131
d(d�.1 (20) 

where �.1 =  �. −  �1 . Similar relations can be written for derivatives of the U-velocity component. To 

apply the above relations to SPH equations, we should obtain the full derivative between two particles using 

finite-differences. 

After combining the above relations, the viscous (shear stress) term can be written as follows [70]: 

Y1ρ ∇ ∙ τZ. = Yμρ  ∇G�Z. = / 4012μ. − μ14�.1 ∙ ∇.(.12ρ. + ρ14G [3�.13G+ ηG]1 2�. − �14 (21) 

To avoid division by zero, the value of η = 0,1ℎ is used. After substitution of Eq. (21) into the starting  

Eq. (3), the following expression is obtained [68]: D�.D� = − / 011 F�.ρ.G + �1ρ1GH ∙ ∇.(.1 + � + / 4012μ. − μ14�.1 ∙ ∇.(.12ρ. + ρ14G [3�.13G+ ηG]1 2�. − �14 (22) 

The description of the method continues with the presentation of the procedure for the approximation 

of viscous terms for the non-Newtonian fluid. 

2.4. A brief introduction to a rheological model 

Carreau proposed the following model for Pseudoplastic fluids in 1972 [48]:  μ^__(|K|) − μ`μ9 − μ` = a1 + (λ|K|)Gc(def)/G (23) 

The model is based on the molecular network theory. It has four parameters: μ` - the viscosity at the infinite 

shear strain rate, μ9 - the viscosity at the zero shear strain rate, λ and n. The value of parameter n, which is 

a time constant in the model, is generally greater than 1. For n = 1 Carreau-Yasuda model reduces to the 

model for Newtonian fluid. 

The most important feature of this model is the use of viscosity at zero and infinite shear strain rates. 

Previous research [58] has shown that there is a significant difference between numerical simulation results 

and measurements when the fluid vicosity is modeled by the power-law, especially in regions with low and 

high shear strain rates. The rheological model of Carreau-Yasuda, which has these four parameters, 

overcomes this weakness of the power-law model in predicting the viscosity at the two limit states. 

Moreover, this model can predict the behavior of pseudoplastic fluids more accurately and in the range of 

shear rates. 
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2.5. Solution algorithm 

A fully explicit three-step algorithm is proposed in this section. An algorithm that shows the sequence 

of computational steps for each term in the governing equations is presented in Fig. 1.  

In the first step, the momentum equation is solved in the presence of the body forces while neglecting 

all other forces. As a result, an intermediate velocity is computed based on the solution from the previous 

time-step (subscript t): R∗ = Ri + jk∆� (24) 

U∗ = Ui + jm∆� (25) 

Here � = 2jk, jm4 is the gravity acceleration. Our experience has shown that it is important to impose the 

body forces in the first step of the solution algorithm, especially in highly viscous fluids. 

In the second step, the calculated intermediate velocities are employed to compute |K| followed by the 

computation of the divergence of the stress tensor. Note that the divergence of the stress tensor is a vector n given by: 

Y1ρ ∇ ∙ τZ. = n = ok p⃗ + om  r⃗ (26) 

At the end of the second step, velocity components of each particle are updated according to: R∗∗ = R∗ + ok∆� = Ri + jk∆� + ok∆� (27) 

U∗∗ = U∗ + om∆� = Ui + jm∆� + om∆� (28) 

At this stage, each particle is moved according to its intermediate velocity (R∗∗, U∗∗) . Therefore, its 

intermediate position is given by: S∗ = Si + R∗∗∆� (29) 

T∗ = Ti + U∗∗∆� (30) 

where Si and Ti  are particle coordinates in the previous time-step. Thus far, no constraint has been imposed 

to satisfy the incompressibility of the fluid and it is expected that the density of some particles changes 

during this updating.  

In the third step one can calculate the density variations for each particle using the continuity equation in the 

following form: Dρ.D� = / 012�. − �14 ∇.(2�.1 , ℎ41  (31) 

or Dρ.D� = / 01�.1 ∙ ∇.(.11  (32) 

where ρ. and �. are the density and the velocity of particle 7. When the two particles approach each other, 

the resulting effect is an increase in their density. This can be explained as follows. In either form of the 

continuity equation (31) or (32), the gradient of the Kernel function from Eq. (10) can be written as: 

∇.(.1 = βℎ<   = −3(2 − ?)G + 12(1 − ?)G          0 ≤ ? ≤ 1−3(2 − ?)G                                     1 ≤ ? < 2          0                                                       ? > 2 (33) 

When two particles approach each other, their non-dimensional distance is 0 ≤ ? ≤ 1, and thus the gradient 

of the Kernel function is negative. The contribution of particle i to the density of particle j in Eq. (32) is, 

according to Monaghan, 2005 [71]: 

ρ.  01ρ1 �.1 ∙ ∇.(.1 (34)

If particles i and j are approaching each other, the scalar product of vectors �.1 =  �. − �1 and ∇.(.1 is �.1 ∙ ∇7(7t > 0. Thus, the contribution to the density change is positive as expected, i.e. Dρ./D� will be 

positive. . Consequently, this will produce a repulsive force for approaching particles, i.e. �.1 will increase. 
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Similarly, if two particles are repulsed from each other, an attractive force will be  

 
Fig. 1. General algorithm for solving fluid equations using an explicit three-step incompressible SPH method 

 

produced to stop them from moving away. This interaction based on the relative velocity of particles and 

the resulting coupling between the pressure and density will enforce incompressibility condition in the 

solution procedure. The velocity field (�v = (Rw, Uw)) which is needed to restore the density of particles to 

their original value is now calculated. To do this, the velocity �v is fist defined from the momentum equation 

(3) in which all other terms, except the pressure gradient term, are neglected:  

�v = − Y 1ρ∗ ∇�Z ∆� (35) 

where ρ∗ is now the increased density of the particle after the predictor step, which does not satisfy 

continuity equation. Velocity �v is introduced into the discretised mass conservation equation for the 

compressible fluid: 

1ρ9
ρ9 − ρ∗∆� + ∇ ∙ 2�v4 = 0 (36) 

where ρ9 is the constant fluid density of the particle. After substitution of (35) into (36), the following 

pressure Poisson equation is obtained: 

∇ ∙ Y 1ρ∗ ∇�Z = ρ9 − ρ∗ρ9∆�G  (37) 

The Laplacian operator is presented with a dot product of the divergence and gradient operators as in [70]: 

∇ ∙ Y1ρ ∇�Z. = / 01 8�.1  �.1 ∙ ∇.(.12ρ. + ρ14G [3�yz3G+ ηG]1  (38) 

where �.1 = �. − �1, while �.1 and  η are the same as in Eqs. (20) and (21). 

After substitution of Eq. (37) into Eq. (38), the pressure (�.) for each particle  is obtained by solving the 

combined equation: 

�. = {ρ9 − ρ∗ρ9∆�G + / 01 8�1  �yz ∙ ∇.(.12ρ. + ρ14G [3�.13G+ ηG]1 | ∙ {/ 01 8 �.1 ∙ ∇.(.12ρ. + ρ14G [3�.13G+ ηG]1 |
ef

 (39) 

The Eq. (39) is, actually, a system of equations that can be written in the matrix form. Its solution is therefore 

reached by solving the matrix equation. Once the pressure for each particle is known, one can calculate 

correction velocity vector �v. from Eqs. (35) and (12): 
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��v = −∆� / 011 F �.ρ∗.G + �1ρ1GH ∇.(.1  (40) 

Finally, the velocity of each particle at the end of the time-step will be obtained as: Ri�∆i = R∗∗ + Rw  (41) 

Ui�∆i = U∗∗ + Uw (42) 

Additionally, the final position of particles is calculated using a central difference scheme in time: 

Si�∆i = Si + ∆�2 (Ri�∆i + Ri) (43) 

Ti�∆i = Ti + ∆�2 (Ui�∆i + Ui) (44) 

This completes computations which are required for one time-step. The whole procedure is repeated in each 

time-step until a desired time is reached. 

2.6. The time step 

 One can use the following formula to choose the appropriate time step ∆�: ∆� = α min (∆�f, ∆�G) (45) 

where 0 < α < 1 is a constant and 

∆�f = ℎ� + ���� (46) 

∆�G = ℎGμ^__ ρ⁄  (47) 

In the previous equation ���� is the maximum value of kinematic velocities of all phases and ℎ  is the 

distance between neighbouring particles. The first expression for the time-step (∆�f) is the well known 

Courant–Friedrichs–Lewy condition. The other expression for ∆�G is the stability condition for a parabolic 

equation when its derivatives are discretized explicitly and has arisen here from the viscous terms in the 

Navier–Stokes Eq. (12). This constraint of the time step was proposed by Shao and Lo, 2003 [70]. With the 

exception of deficient Reynolds numbers flows, the dominant condition is that from Eq. (46). 

2.7. Boundary conditions 

2.7.1. Solid Boundary conditions 
Boundary particles are considered as the most elemental frontier particles that were invented in the 

initial applications of the SPH method. The particle layout is similar to the one which is shown in Fig. 2. 

 
Fig. 2. The solid boundary condition applied in this study. Modeling of an external corner. 

At first, a series of particles, whose density is similar to that of fluid particles, is arranged around the 

fluid flow region, as edge particles (E-particles). The velocity of E- particles is zero. Thus, they are not 

updated during simulation. Since they have physical properties such as density and this zero velocity, their 
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presence can speed-up computation and reduce simulation costs by saving the properties associated with 

these particles at the end of each step. 

The number of virtual, dummy particle (D-particle) layers depends on the radius of the supporting zone h. 

The radius of this region is selected in such a way that the Kernel function on the solid boundary contains 

sufficient number of virtual particle layers. By using this approach, the error rate of the Kernel function on 

the boundary will have less effect on fluid particles. 

In this type of solid-state modeling, the particle size of the virtual, D-particle is equal to the pressure of 

the particle on the corresponding edge. The pressure transfer from the fluid particle to the virtual particle 

at other locations such as corners or curved lines is slightly different. 

2.7.2. Free surface boundary condition 
When a fluid particle is placed on the free surface (s-particle in Fig. 3), its density decreases significantly 

compared to the density of fluid, internal particles (i-particles). The density reduction of a particle can be 

used as an indicator that a particle is located at the free-surface. In other words, all particles which fulfill 

the following condition [10]:  ρ∗ < βfρ9 (48) 

are considered as particles at the free-surface, and a zero pressure is imposed on them. In the above relation ρ∗ is the particle density in the predictor step, ρ9 is the constant fluid density, and βf is the free surface 

parameter. 

Eq. (48) cannot be directly used to calculate the pressure gradient for free-surface particles, given that 

there is no longer a particle on the other side of the free boundary, and a number of virtual particles should 

be considered. Thus, a virtual, mirror particle m is introduced in addition to i- and s-particles (Fig. 3). The 

virtual m-particle should be positioned along the line connecting i and s-particles at the distatance from 

particle i equal to the doubled distance between i and s-particles. Positions of these particles are depicted 

in Fig. 3. 

 
Fig. 3. The free-surface boundary condition and relation between internal, mirror and free-surfaces particles [10]. 

As it is shown in Fig. 3, the pressure from internal, i-particle is applied to the virtual particle m with the 

negative sign. In this manner, the zero pressure for the particle on the free-surface is obtained by 

interpolation between these two equal values with the opposite sign. 

The pressure gradient between the free surface, s-particle, the virtual, m-particle and the internal, i-
particle is calculated as follows: 

Y1ρ ∇�Z� = 0. F��ρ�G + �.ρ.GH ∇�(�. + 0� Y��ρ�G + ��ρ�G Z ∇�(�� (49) 

We note here that all particles have the same mass, i.e. 0� = 0. =  0�. The gradient between the particles 

s and i is equal to the gradient between the particles m and s: �� = −�.  �� = 0 ∇�(�� = −∇�(�.  
(50) 

After substitution of Eq. (50) into Eq. (49) one obtains: 

Y1ρ ∇�Z� = 20� �.ρ.G ∇�(�. (51) 

As a result, the actual gradient of pressure for the free-surface particle doubles, and it is possible to 

move the free-surface particle properly by applying these conditions. Since the Poisson equation for free-

surface particles is not solved, this method does not apply to the incompressible condition for free-surface 
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particles. According to Eq. (51), there will be instabilities in the numerical solution for these particles. To 

solve this problem, the Laplace equation for the pressure is used between the free-surface, s-particle and 

the internal particle i [10]: 

∇ ∙ Y1ρ ∇�Z� = 2 Y0� 8(ρ� + ρ.)G ��. ��. . ∇�(�.|��.|G + ηG Z (52) 

By applying this equation, an uncontained condition for free-surface particles is applied. It should be 

noted that virtual particles do not enter into calculations of the shear stresses. Therefore, only particles 

below the free surface can produce shear forces, and the boundary condition of the zero sheer force at the 

free surface is satisfied in this way. 

3. Validation of the proposed model 

The proposed numerical model, based on the explicit three-step incompressible SPH method is tested first 

using the experimental data from three benchmark test cases: 

 Dam-break simulation on the dry bed, 

 Numerical modeling of impulse wave generated by rigid landslides and 

 Pressure distribution of Carreau-Yasuda non-Newtonian fluid inside the tank under constant 

hydrostatic conditions 

 

Consequently, the model is validated against numerical and laboratory data. 

3.1. Dam-break simulation on the dry bed 

The collapse of a fluid column on a horizontal surface, caused by a sudden removal of the retaining plate, 

i.e. the so called “dam-break”, is a classical benchmark problem for the evaluation of free surface flow 

models. As one of the most straightforward free surface problems, this test case is chosen to assess the 

accuracy of the proposed explicit three-step incompressible SPH method. 

Experimental data from [72] are used for the assessment. The layout for the numerical experiment is 

shown in Fig. 4. The problem is analysed in vertical, x0z plane. 

 

  
Fig. 4. Numerical model setup of the dam-break problem after Komatina and Jovanović, 1997 [72] (L: initial sample 

length, H: initial sample height). 
 

A square sample (in blue in Fig. 4) with dimensions L×H is initially confined at the left side of a 

horizontal channel before the dam (the dashed line in Fig. 4) is removed to allow the collapse of the fluid 

column under the influence of gravity. The dam is modeled as a rigid and removable wall. The experiment 

with the channel bed slope of 0.1%, the initial column height of H = 0.1 m and the initial column width of 

L = 2.0 m is chosen for this study. The computational parameters used to solve the dam break problem are 

presented in Table 3. The dam is removed at time t = 0 s. 

Table 3 
Computational parameters for dam-break problem ρ9	kg m@�⁄  μ	Pa � s� �9	m� ℎ9	m� d�	s� BP* FP* 
1000 0.001 0.005 1.5L0 0.00003 8000 8000 

* BP: Boundary Particles (zone 0), FP: Fluid Particles (zone 1) 

The smoothed length and the initial distance between particles are denoted by h0 and L0, respectively.  

H = 0.1 m 

x 

z 

L = 2 m 
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The advancement of the computed leading edge of the dam-break wave is compared to that observed in 

the experiment. The results are presented in Fig. 5 in non-dimensional form. The non-dimensional leading 

edge of the collapsing water column 	S � ��/� is plotted against the non-dimensional time �/��/j. 

 
Fig. 5. Advancement of non-dimensional leading edge for the Newtonian Fluid – comparison of numerical 

simulation and experimental results 
 

It is readily noticeable that the results of the proposed numerical model are in good agreement with 

measurements. The following statistics were used to assess model’s performance for the Newtonian fluid: 

the correlation coefficient r in Eq. (53), the mean absolute error in Eq. (54), the root mean square error in 

Eq. (55), the efficiency coefficient of the Nash-Sutcliff model in Eq. (56) and the normalized root mean 

square error in Eq. (57). They are calculated for the flow depth at the dam-break site. 

� = σ)�)�σ)�σ)� (53) 

��  = 1¡ /2ℎ� � ℎ¢4£
.¤f  (54) 

¥�o  � ¦/ 2ℎ� � ℎ¢4G¡£
.¤f  (55) 

¡o  � 1 � ∑ 2ℎ� � ℎ¢4G£.¤f∑ 2ℎ� � ℎ̈�4G£.¤f  (56) 

¡¥�o  � ¥�o ℎ̈0  (57) 

where σ)�)� is the covariance, σ is  the standard deviation, N is the number of data, hm is the measured 

water depth, and hp is the calculated water depth. Values of these statistics are given in Table 4. 

 

Table 4 
Values of statistics calculated for the assessment of the proposed model 

performance in the experiment of a dam-break over dry bed  

r MAE RMSE NSE NRMSE 
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0.9998 0.0542 0.0003 0.974 0.168 

 

As it can be seen, the agreement between the numerical model results and the experimental data is very good, 

which confirms the ability of the proposed model to successfully reproduce rapidly varying Newtonian flows. 

3.2. Numerical modeling of impulse wave generated by rigid landslides 

The second benchmark test case is that from Heinrich’s laboratory study of submarine rigid landslides 

[49]. Experiments were performed in a 20 m long, 55 cm wide and 1.5 m deep channel at the Château National 

Hydraulic Laboratory in France. They involved the creation of water waves by the free-sliding motion of a 

rigid body on a 45º inclined plane. Fig. 6 shows the layout of the model at the beginning of the experiment. 

 
Fig. 6. Layout of the Submarine Landslide physical model [49] 

The rigid body is a prism whose triangular base is half of the square with 0.5 m long edge. The prism 

height (a dimension perpendicular to the sketch) was adjusted to the width of the channel. The object was 

placed on four rollers. The hydraulic jack prevented the object to slide down the slope under the influence 

of gravity, while the plastic obstacle at the lee of the inclined plane was used to stop the object upon reaching 

the channel floor. After the release of the electrically controlled hydraulic jack, the object fell down the 

slope. The abrupt movement of the sliding rigid body produced waves on the free-surfce along the channel, 

whose profiles were recorded with a high speed camera. The soft surface of the object, the two sides of the 

slope, and the interior surface of the channel wall have been carefully treated to ensure their close agreement 

with the frictionless condition in numerical tests. 

The water depth at rest was 1 m deep, which means that the rigid body was submerged at the beginning 

of the experiment. The weight of the object was 140 kg. The density of the fluid particles is  

1000 kg/m3 and the density of the material of which the sliding object was made is 2000 kg/m3. 

Computational parameters that were used in numerical simulations of Heinrich’s experiments are given in 

Table 5. The initial position and distribution of particles at t = 0 s are presented in Fig. 7. 

Table 5 
Computational parameters in the submarine rigid landslide problem ρ9	kg m@�⁄  μ	Pa � s� �9	m� ℎ9	m� d�	s� BP* FP* OP* 

1000 0.001 0.018 1.5L0 0.00002 1240 8646 406 

* BP: Boundary Particles (zone 0), FP: Fluid Particles (zone 1), Object Particles (zone 2) 
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Fig. 7. Distribution of particles at t = 0 s 

Fig. 8 illustrates measured against computed water levels at two time instants: t = 0.5 s and t = 2 s. The data 

collapse on the line of perfect fit with the following statistics: correlation coefficient r = 0.95 and  

RMSE = 0.0071. This proves high accuracy of the proposed three-step explicit SPH method in simulating water 

surface profiles in the case of submarine rigid landslides. 

 

 

Fig. 8. Comparison of computed and measured water levels along the channel (results for the two time instants t = 0.5 s 

and t = 2s 

3.3. Pressure distribution of Carreau-Yasuda non-Newtonian fluid inside the tank under constant 
hydrostatic conditions  

The third issue to be addressed in this section is model’s accuracy in the case of hydrostatic pressure 

distribution in the reservoir. Although the solution to such a problem is well known, many particle and 

Lagrangian methods are not able to solve this problem with acceptable accuracy. Modeling parameters for 

this type of problem are given in Table 6. 

 Table 6 
Characteristics of Carreau-Yasuda non-Newtonian fluid and SPH parameters ²³´µ¶· 	¸� ¹º�⁄  n » 
¼	
� � ��   
∞	
� � ��   ¾¼ 	¹� ¿¼ 	¹� ·¯ 	�� 

800  0.9 0.036  135  5  0.018  À. Á¾¼ 0.00001  

 A fluid having ρ = 800 kg/m3 is at rest in a two-dimensional round tank with a diameter of 2 m and the 

depth of 0.5 m (Fig. 9). The three-step explicit incompressible SPH method is used to model the fluid in 
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the tank. Total duration of the simulation is 10 s. The initial distance between particles is �9 = 0.018 m. At 

the start of simulation fluid particles inside the tank are only under the influence of the gravitational field, 

which is stationary, and the pressure is everywhere zero, i.e. �	S, T, � = 0� = 0. Initial distribution of 

particles is shown in Fig. 10. Red particles are fluid particles, whereas blue ones, that are distributed in 3 

rows along the tank bottom and walls are solid boundary particles. 

 
Fig. 9. Geometry in the hydrostatic tank problem 

 

 
Fig. 10. Initial distribution of particles in the hydrostatic tank problem  

Pressure distribution of the non-Newtonian Carreau-Yasuda fluid inside the tank at the end of simulation 

is shown in Fig. 11. It is readily noticeable that the relative pressure at the free surface is zero, and that it 

increases with depth. As it is expected, the pressure reaches its maximum value at the bottom of the tank. 

There is a slight difference in the pressure between the bottom and fluid particles at the tank corners. This 

can be explained by the behavior of the applied Kernel function at right angled corners. 

 
Fig. 11. Pressure distribution inside the tank filled with Carreau-Yasuda non-Newtonian fluid under constant 

hydrostatic conditions 

4. Submarine non-rigid landslide  

In this section performance of the proposed explicit three-step SPH method in modeling non-rigid 

landslide is assessed. Experiments of Rzadkiewicz et al. [56] that were previously used for the assessment 
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of other rheological models, i.e. Cross model by Ataie-Ashtiani et al. [10] and Bingham model by Capone 

et al. [58] are used here to assess Carreau-Yasuda model. The geometry of the computational domain is shown 

in Fig. 12. A triangular-base prism made of sand is allowed to slide down the 45º slope. Sides of the isoscale 

right triangle are 0.65 m long. Initial position of particles is shown in Fig. 13. The landslide movement has 

been simulated with the Carreau-Yasuda model, while the landslide interaction with water and the 

generated water waves have been simulated with the Newtonian model. 

 
Fig. 12. Layout of the submarine non-rigid landslide model in experiments of Rzadkiewicz et al. [56] 

 
Fig. 13. Intial position of the three types of particles representing sand (red), fluid (green) and solid boundary (blue) 

 

Due to a lack of the data, properties of the Carreau-Yasuda fluid were taken from [73]. They are listed 

in Table 7. 

Table 7 
Fluid properties for non-rigid landslide movement simulation 
Description Notation Value 

Water density ρw (kg/m3) 1000 

Density of non-rigid body  ρo (kg/m3) 800 

Time interval Δt (s) 0.00003 

Water viscosity µ (Pa s) 0.001 

Viscosity of non-rigid body  µo (Pa s) 0.036 

Infinite viscosity µ∞ (Pa s) 5 

Zero viscosity µ0 (Pa s)) 135 

Power of the Carreau Yasuda equation n 0.9 

In addition to comparison with the experimental data, water surface profiles calculated in this study, are 

compared to those obtained by Ataie-Ashtiani et al. [10] and Capone et al. [58]. Fig. 14 shows these profiles 

at two time instants: t = 0.4 s and t = 0.8 s. Although there is a slight underestimation of water depths at the 

wave crest at t = 0.4 s and overestimation at t = 0.8 s, Carreau-Yasuda model with the three-step explicit 

incompressible SPH method performs better than the other two models along the falling limb at t = 0.4 s, 

and along the rising limb at t = 0.8 s (both for x > 0.5 m). These discrepancies can be attributed to different 

boundary conditions at the solid boundary in the laboratory and numerical experiments, i.e. to the different 

adhesion of the sand prism to the slanting plane, and to the uncertainty in the estimation of the viscosity of 
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the sliding non-rigid body. They are quantified using the L2 relative error norm (εL
2
) criterion [74]: 

�ÂÃ = F∑ (∆�).G£.¤f∑ (�).G£.¤f H9.Ä
 (58) 

 

  

  

  

Fig. 14. Water surface profiles at t = 0.4 s (left) and at t = 0.8 s (right) 

where ΔH is the difference between the free surface height in the laboratory experiment and that calculated 

by our model, while H is the measured free surface height in the laboratory model. The L2 relative error 

norm is used for the assessment of both experimental and numerical responses. 

In addition to (εL
2
), values of other four statistics, given by equations (49)-(52), are available in Table 8 and 

Table 9 both for the Carreau-Yasuda rheological model used in this study, and Cross and Bingham models 

of Ataie-Ashtiani et al. [10] and Capone et al. [58], respectively. Results of comparison are given for the two 

time instants form Fig. 14. 

 
Table 8 
The values of Error Parameters at t = 0.4 s 

Parameter �ÂÃ RMSE NRMSE MAE NSE 

Ataie-Ashtiani and Shobeyri (2008) ISPH 0.0053 0.0065 0.0039 0.0018 0.9025 

Capone et al. (2010) WCSPH 0.0071 0.0087 0.0055 0.0021 0.8724 

Present study 0.00411 0.0051 0.0032 0.0011 0.9529 

 
Table 9 
The values of Error Parameters at times t = 0.8 s 

Parameter �ÂÃ RMSE NRMSE MAE NSE 

Ataie-Ashtiani and Shobeyri (2008) ISPH 0.0089 0.0112 0.0055 0.0022 0.8936 

Capone et al. (2010) WCSPH 0.0078 0.0093 0.0069 0.0026 0.8824 

Present study 0.00523 0.0063 0.0045 0.0018 0.9343 

 

Results from the two tables clearly indicate that the Carreau-Yasuda model in combination with the 

proposed explicit three-step incompressible SPH method is superior to the other two models. Moreover, 

Fig. 15 shows that the proposed method with the Carreau-Yasuda rheological model is able to predict the 

advance of the collapsing non-rigid body accurately. 
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Fig. 15. Comparisons between sliding body profile calculated with SPH (red dots) and that measured by 

Rzadkiewicz et al. (1997) [56] (black circles), at t = 0.4 s (left) and t = 0.8 s (right) 

There is also a slight difference in the shape of the crest of the non-rigid body between the model and 

the experiment. These differences were analysed by trial and error and have been evaluated by changing 

the values of the model parameters. One reason for this discrepancy is the lack of the information on the 

density of the non-rigid body in the experiment. Another reason is different adhesion of the sliding body to 

the inclined plane in the model and the experiment. There are no such data from the experiment, but it is 

believed that the adhesion in the laboratory model was greater than that in the numerical experiment. 

Additionally, no surface tension is included in the present calculations. Nevertheless, the model predicts 

the advancement of the non-rigid body correctly (t = 0.4 s and t = 0.8 s). 

The chronological sequence of the landslide movement and accompanying development of waves on 

the free surface between t = 0.1 s and t = 0.8 s is shown in Fig. 16, at 0.1 s intervals. Changes on the free 

surface become apparent earlier (t = 0.2 s) than those in the shape of the sliding body (t = 0.4 s). 

Additionally, the shape of the crest does not change significantly after 0.6 s and a small bore is developed 

at the leading edge of the sliding body similar to that in gravity currents. 

  
t = 0.1 s t = 0.2 s 

  
t = 0.3 s t = 0.4 s 
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t = 0.5 s t = 0.6 s 

  
t = 0.7 s t = 0.8 s 

Fig. 16. Particle advancement in the non-Newtonian submarine landslide test 

5. Conclusions 

In this paper an improved explicit three-step incompressible SPH method is proposed for the simulation 

of non-rigid submarine landslides. The model is successfully tested for the Newtonian fluid on the dam-

break and rigid body landslide benchmark test cases. Additonally, Carreau-Yasuda rheological model, that 

can predict the viscosity of psedoplastic fluids at low and high shear strain rate limits much better than the 

power-law model, is introduced in the analysis. In contrast to many Largangean and meshfree methods, the 

proposed combination of the improved SPH method and the Carreau-Yasuda rheological model can provide 

hydrostatic pressure distribution in the test case with the tank filled with Carreau-Yasuda fluid at rest. 

This combination of the SPH method and the rheological model has not yet been used in SPH 

simulations of submarine landslides. Comparison of the calculated water surface disturbance caused by the 

submarine landslide with that obtained using the Cross model and ISPH model combination, or the one 

with Bingham and WCSPH models has shown that the proposed combination provides much better results 

than the other two. The L2 relative error norm (εL
2
), RMSE and MAE reduce by 20% to 70% when compared 

to the Cross model. In case of comparison with the Bingham model the reduction for L2 relative error norm 
(εL

2
) and RMSE is 40% to 70% while for the MAE the upper limit increases to 90%. The reduction of the 

NRMSE is rather stable (around 20%) when compared to the Cross model, while it varies in the range 

between 50% and 70% when the results are compared with those for the Bingham model. As for the NSE, 

the percentage reduction is stable in case of the Cross model (around 5%) and it is in the range between 5,5 

and 8% in case of the Bingham model. Moreover, comparison with the experimental data indicates that the 

shape of the non-rigid body and its advancement down the inclined plane are captured well. 
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