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Abstract  

 
In this paper, hysteretic energy loss in cyclic loading is used as the main parameter in fatigue 

damage modeling. The analytical expression for hysteretic energy loss and its numerical 
implementation are features of the powerful hysteretic operator that has the ability to model 
progressive damage growth based on the maximum strain amplitude. Its scalar damage parameter 
is further modified in order to produce a reliable estimation of fatigue life under arbitrary loading. 
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1. Introduction  

 

While in general fatigue analysis, the material under cyclic loading can exhibit a various type 
of failure modes, the following research is concentrated on ductile materials such as typical 
constructional steel in a uniaxial stress state. Models and the analysis of fatigue in the material are 
versatile, and they are investigated on various modeling levels, from crack evolution up to the 
global estimation of fatigue life. Evaluating damage parameters in fatigue analysis based on 
various continuum damage approaches is developed by [1][2][3], and correlation of specific 
energy-based approaches is presented in [4]. 

In the presented analysis, the determination of damage in the material is based on the 
parameters that define the proposed model of hysteretic (Preisach) operator, particularly 
applicable for ductile materials. The first set of parameters produces an elastoplastic damage 
model that complies with Masing-type behavior. The second set, based on dissipation energy, is 
formed by experimentally obtained fatigue life measures so that material nonlinearity that 
includes phenomena of plastic deformation and damage is enhanced by the fatigue analysis.  

 
2. Fatigue damage model and comparison to experimental results 

 

Energy loss in one cycle for one element (operator) is calculated as a volume with a base 
between limit values of active the area in the Preisach plane [5], although it may also be 
approximated with the area of the hysteresis loop [6]. For the presented mechanical model 
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(infinitely many operators-elements), hysteretic energy loss Qhys dissipated into heat is calculated 
analytically as follows: 

hysQ P( , ) ( )d d



          
(1) 

Preisach function P() and its domain  must be determined according to a specific type of 
experimental curve [7]. The scalar damage parameter presented in [8] is therefore extended in the 
function of hysteretic energy loss in process of damage analogous to the proposed relation in [9]. 
A similar approach is used in [10] [11], however, based on the experimental results and numerical 
models for the evolution of damage parameter presented in [2][12][13][14], this parameter needs 
to be adjusted with material constants for a specific type of damage growth in low-cycle fatigue 
loading. Total energy dissipation through cycles to failure is approximately equal to the 
parameter Wf for arbitrary cases of uniaxial loading in observed material. Type of the material for 
experimental data matching used in this paper is constructional steel and the conducted strain-
controlled tests [15] with amplitudes 1%, 3%, 5%, and 7%. Different strain histories can be a 
significant factor in the fatigue analysis of steel specimens. Therefore, variable strain tests are 
also used to verify adopted parameters obtained in the constant strain amplitude tests. 
Furthermore, the mean stress effect for the proposed model is investigated through constructing 
failure curves for different fatigue life (Nf=2,10,100,1000) and presented in Fig.1. Results of the 
proposed model can also be verified through isochronous curves for failure [3]. 

 

Fig.1 (a) Predicted number of cycles to failure vs experimental results [15] - logarithmic scale; (b) 
Proposed model mean stress effect vs schematic diagrams [16] 

 

 
3. Conclusions 

 
The presented fatigue damage model can determine fatigue life in the low-cycle regime of 

loading in a uniaxial stress state. Moreover, the shape of the resulting hysteretic curve is in good 
agreement with the experimental curve as this model is based on Preisach hysteretic operator, 
which also enables an analytical expression for calculating hysteretic energy loss. Thus, its 
numerical implementation provides an efficient solution that can capture various effects in an 
arbitrary low-cycle fatigue regime of loading. 
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