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PROCENA GRANIČNE NOSIVOSTI VITKIH CCFST STUBOVA 

PRIMENOM VEŠTAČKIH NEURONSKIH MREŽA 

Summary: 

U radu je predložena primena algoritama veštačkih neuronskih mreža (ANN) za procenu 

granične nosivosti pri pritisku vitkih kružnih stubova od čeličnih cevi ispunjenih betonom 

(CCFST). Skup podataka od 1051 uzorka je primenjen za generisanje odgovarajućeg 

prognostičkog ANN modela. Empirijske jednačine su takođe razvijene iz najbolje neuronske 

mreže, a njihovi rezultati su upoređeni sa rezultatima dobijenim standardom Evrokod 4 (EC4). 

Analize pokazuju da se izlazni rezultati predloženog ANN modela bolje slažu sa 

eksperimentalnim rezultatima od onih koji su kreirani primenom odredbi EC4 standarda. 
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ESTIMATION OF ULTIMATE STRENGTH OF SLENDER CCFST 

COLUMNS USING ARTIFICIAL NEURAL NETWORKS 

Summary: 

This paper proposes the use of artificial neural network (ANN) algorithms to estimate the 

ultimate compressive strength of slender circular concrete-filled steel tubular (CCFST) columns. 

A dataset of 1051 samples was applied to generate an appropriate ANN prognostic model. 

Empirical equations were also developed from the best neural network, and their results were 

compared with those obtained by Eurocode 4 (EC4) design code. Analyses show that the 

proposed ANN model has a better agreement with experimental results than those created with 

provisions of the EC4 design code.  
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1. INTRODUCTION 

Machine learning (ML) is a category of artificial intelligence (AI) that contains a series of 

algorithms capable of adapting to certain situations and predicting outcomes with high accuracy, 

based on experience. ML has found applications in many branches including civil engineering. 

Concrete-filled steel tubular (CFST) columns play an important role in structural engineering 

due to their numerous advantages. There are different guidelines for their modelling proposed 

by several design codes such as Eurocode 4 (EC4). To find better agreement with experimental 

results than the EC4 design code has, many authors have tried different approaches to predict the 

axial capacity of CFST columns. The efficient application of the support vector machine (SVM) 

and artificial neural network algorithms (ANN) for the prediction of the ultimate strength of 

CFST columns was proposed by Zarringol et al. [1]. Nguyen and Kim [2] recommended a hybrid 

particle swarm optimization-based artificial neural network (PANN) algorithm on a limited 

number of specimens (241 experiments). Many accurate surrogate models for a similar problem 

such as gradient tree boosting (GTB) algorithm [3], adaptive neuro-fuzzy inference system 

(ANFIS) model [4], and gene expression programming (GEP) method [5] were successfully 

employed, but without established empirical equations. Đorđević and Kostić [6] found on a small 

dataset that EC4 design code works better for stub CCFST columns (236 samples) than for 

slender columns (272 samples), using Decision tree (DT) and Random forest (RF) algorithms. 

A similar conclusion was provided in [7], using ANN with Levenberg-Marquardt (LM) 

algorithm for square CFST columns (685 stub columns and 337 slender columns), by the same 

authors. 

This paper proposes an improved LM algorithm with Bayesian Regularization (BRA) for 

predicting the ultimate compressive strength of slender circular CFST columns (CCFST). Also, 

this study aims to develop empirical equations. The best ANN model with fine-tuned 

hyperparameters was developed using a K-fold cross-validation technique. Obtained results 

show that the ANN model better simulates the behaviour of the axially loaded CCFST columns 

than the more conservative EC4 design code. Using the regularization method, even with a 

simpler architecture the results are better than those obtained with the basic LM algorithm [7]. 

2. EXPERIMENTAL DATASET 

In this study, a total of 1051 tests on slender CCFST columns subjected to pure compression 

were retrieved from various researchers, including Denavit [8] (387 samples), Goode [9] (330 

samples), Thai et al. [10] (188 samples), Belete [11] (121 samples), Zeghiche et al. [12] (15 

samples), Schneider [13] (8 samples), and Zhichao et al. [14] (2 samples). Table 1 presents major 

distribution features of the following input and output parameters: outer diameter (D), the 

thickness of the steel tube (t), length of column (L), steel yield stress ( f
y
), concrete compressive 

strength (𝑓𝑐
′), ultimate compressive strength (Nexp). It can be seen that wide ranges of all features 

were considered, even beyond the EC4 design code limitations described in section 3. 

CCFST members are categorized as slender columns for  L/D  > 4 [6], [7], [15]. Since in 

some references, the concrete compressive cube strength ( f
cu

) is reported, these values are 

converted on the cylinder strength (𝑓𝑐
′) according to the following expression proposed by 

L’Hermite [16]:  

𝑓𝑐
′ = [0.76 + 0.21 ⋅ log

10
(f

cu
 / 19.6)] ⋅ f

cu
                                            (1) 



 

Table 1. Distribution values of the test parameters 

Parameter Unit Mean St.Dev. Min. Max. 

D mm 135.9 61.08 38.1 500 

t mm 4.27 2.34 0.7 16 

L mm 1562.23 1035.88 350 5000 

 f
y
 MPa 343.5 83.45 178.28 682 

𝑓𝑐
′ MPa 38.44 21.18 6.99 186 

Nexp kN 1329.88 1577.94 45.2 12838 

 

Since a pre-processing phase is very important for training ANN, to disqualify bias due to 

different units possessing variables, input and output values were normalized to fall in the 

interval [-1,1]. The distributions of the database with respect to the steel yield stress, concrete 

compressive strength, and relative and section slenderness, are graphically presented in Figure 

1. It can be seen that a large number of samples have standard geometrical and material 

properties, but some data exceeds the EC4 limits, marked with dash-dot blue lines.  
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Figure 1 – Distribution of the dataset referred to: (a) steel yield stress, (b) concrete 

compressive strength, (c) relative slenderness, (d) section slenderness 



 

Figure 2 illustrates the heatmap of Pearson correlation coefficients between parameters. It is 

visible that the highest correlation is obtained between the dimensions of the section and the 

ultimate compression strength of CCFST columns (0.828 for outer diameter and 0.621 for the 

thickness of the steel tube). These variables have the strongest relation with each other, and a 

similar conclusion was derived by Zarringol et al. [1]. 

 

 

Figure 2 – Heatmap of Pearson correlation coefficients between parameters 

3. EUROCODE 4 PROVISIONS 

Axial compressive strength of doubly symmetrical CFST columns using a simplified method, 

with a condition of relative slenderness λ̅≤ 2, calculates as follows: 

Nu
EC4 = χ ⋅ Npl,Rd = χ ⋅(As ⋅ f

y
 + Ac ⋅ 𝑓𝑐

′)                                           (2) 

For circular CFST columns where relative slenderness does not exceed 0.5 and without 

eccentricity of the force, the increase in strength caused by the confinement effect can be taken 

into account: 

Nu
EC4 = χ ⋅ Npl,Rd = χ ⋅ (As⋅fy⋅η

s
+Ac⋅𝑓𝑐

′⋅ (1+η
c
⋅

t

D
⋅

fy

𝑓𝑐
′))                                           (3) 

where Npl,Rd  is the plastic resistance to compression, χ is the reduction factor for relevant 

buckling mode, η
s
 describes the reduction of the steel yield stress due to expansion of concrete 

and η
c
 describes the increase of concrete compressive strength due to the confinement effect 

𝜂𝑠 = 𝜂𝑠0 = 0.25(3 + 2𝜆̅) ≤ 1.0  (4) 

𝜂𝑐 = 𝜂𝑐0 = 4.9 − 18.5𝜆̅ + 17𝜆2̅ ≥ 0  (5) 

Factor χ and relative slenderness λ ̅ are calculated as follows: 

χ = 1 / [Φ + √Φ2 - λ
2̅ ] ≤ 1                                           (6) 

Φ= 0.5 ⋅ [1 + 0.21 ⋅ (λ̅ - 0.2) + λ̅
2
]                                           (7) 

λ ̅= √Npl,Rd / Ncr                                           (8) 



 

where Ncr is the elastic critical force for relevant buckling mode calculated with effective flexural 

stiffness EIeff  defined as: 

EIeff = Es ⋅ Is + 0.6 ⋅ Ec⋅ Ic                                           (9) 

Limitations of geometrical and material properties shown in Table 2 are prescribed by EC4 

and denoted in Figure 1. The first condition in Table 2 refers to the possibility of neglecting the 

impact of local buckling. 

Table 2. Limitations of geometrical and material properties prescribed in EC4 design code 

Design code Limitations 

 

Eurocode 4 

 

D/t ≤ 90 ⋅ 235/f
y
 

235 ≤ f
y
 ≤ 460 MPa 

20 ≤ 𝑓𝑐
′ ≤ 50 MPa 

An additional limitation of the EC4 is the steel contribution ratio δ, which should satisfy the 

following condition: 

0.2 ≤ δ = As ⋅ fy / Npl,Rd ≤ 0.9                                           (10) 

4. ARTIFICIAL NEURAL NETWORKS 

In this study, a feedforward neural network with one hidden layer and eight neurons was 

developed. This network was trained using a backpropagation algorithm based on the 

modification of the LM algorithm, named BRA. Steps for exploring and creating an ANN model 

with the best generalization are described in the following sections.  

4.1. BAYESIAN REGULARIZATION 

Oppose to the basic LM algorithm based on the early-stopping rule, Bayesian improvement 

of LM belongs to the regularization techniques. The classical LM algorithm modifies the second-

order Hessian matrix using the first order Jacobian matrix [7]. Bayesian regularization has 

proven to make a better generalization less prone to the possible overfitting, even with a simpler 

ANN architecture. It uses an adapted performance function without the need for the validation 

subset [17]. 

The approximation of the Hessian matrix using BRA is described as follows: 

H = 2 ⋅ β ⋅ JT ⋅ J + 2⋅ α ⋅ I                                          (11) 

α = γ / (2 ⋅ EW(x))                                          (12) 

β = (n-γ) / (2 ⋅ ED(x))                                           (13) 

where J is the Jacobian matrix, I is the identity matrix, 𝛼 and β are the regularization parameters, 

n is the total number of ANN parameters, EW is the sum of the squared weights and ED is the 

selected performance measure. Parameter γ is equal to n in the first iteration, and, in the next 

iterations, is calculated from Eq.14:  

γ = n - 2 ⋅ α ⋅𝑡𝑟(H)-1                                           (14) 



 

The ANN parameters (weights and biases) are determined to minimize the performance function 

F(x) (Eq.15): 

F(x) = β ⋅ ED(x) + α ⋅ EW(x)                                          (15) 

ED(x) = MSE = 1 / ntot ⋅ ∑ (y
i
 - y

i̅
)
2 ntot

i=1                                           (16) 

EW(x) = 1 / ntot ⋅ ∑ (wi)
2 ntot

i=1                                          (17) 

where MSE is the mean squared error, y
i
 is a target value, y

i̅
 is the predicted value, ntot is the 

number of samples and wi are the network weights. 

4.2. QUALITY ASSESSMENT 

To make a comparison between predicted and experimental results, in addition to the MSE 

defined in the previous section, other performance indicators as coefficient of determination (R2) 

and root mean squared error (RMSE) have also been calculated, Eqs.18-19: 

R2 = (
ntot ⋅ ∑ (yi ⋅ yi̅) - ∑ yi

ntot

i=1
ntot

i=1  ⋅ ∑ yi̅
ntot

i=1

√[ntot ⋅ (∑ yi
2ntot

i=1 ) - (∑ yi
ntot

i=1 )
2

] ⋅ [ntot ⋅ (∑ yi̅
2ntot

i=1 ) - (∑ yi̅
ntot

i=1 )
2

] 

)

2

                                          (18) 

RMSE =√  1 / ntot ⋅ ∑ (y
i
 - y

i̅
)
2ntot

i=1                                            (19) 

It is important to note that from the initial dataset, by random selection, 70% of the data are 

used for the training and 30% for the testing. Outputs from the hidden and output layer are 

generated through the hyperbolic tangent and simple linear activation functions respectively, 

which are mathematically defined as (Eqs.20-21):  

f(x) = ( e x - e -x ) / ( e x
 + e -x )                                          (20) 

f(x) = x                                          (21) 

4.2.1. Hyperparameters tuning 

To evaluate the performance of the ANN model, a 5-fold cross-validation technique is employed. 

This procedure reduces the chance of overfitting and bias due to the random splitting of the 

dataset. The experimental dataset is divided into 5 subsets with an equal amount of data, where 

each time one subset is used for the testing, while others are used for training. After 5 runs of the 

ANN, the independent performance scores of each fold and average accuracy of each model is 

reported. Figure 3a illustrates the split of the dataset.  

The tested ANN architectures include 5-4-1, 5-5-1, 5-8-1, 5-10-1, 5-12-1, 5-14-1 networks with 

a different sets of hyperparameters. After analyses is performed, it is concluded that the network 

5-8-1 gives the best results on the 5-fold cross-validation with small fluctuations of R2 (0.985, 

0.978, 0.991, 0.979 and 0.984) and with a high mean value (0.983).  Figure 3b presents these 

results. Also, the best set of hyperparameters are μ=0.1, μ
dec

=0.001,  μ
inc

=10. The role of these 

hyperparameters is well described in [7]. Figure 4 presents the best-obtained ANN architecture 

with one hidden layer and eight neurons. 



 

 
 

(a) 5-fold scheme 
 

(b) R2 

Figure 3 – (a) 5-fold cross-validation scheme and (b) R2 of the test set per each fold 

 

Figure 4 – Proposed ANN model 

5. RESULTS 

Table 3 compares the computed ultimate compressive strength values of slender CCFST 

columns with two different approaches: by the presented ANN model and using the EC4 

expressions. The recommended ANN model gives more accurate results (R2=0.992) than EC4 

(R2=0.961) on all samples. It is equally good on the training (R2=0.992) and test (R2=0.990) sets. 

Other performance indicators (MSE and RMSE) lead to the same conclusion. Figure 5a illustrates 

that there is no risk of overfitting and the best performance is obtained at the 292nd epoch. Figure 

5b shows that a large percentage of errors are close to zero. Several authors have shown similar 

results for slender columns using various machine learning algorithms as in [6], [7]. 

Table 3. ANN and EC4 performance scores 

Dataset R2 MSE (⋅10-4) RMSE (⋅10-2) 

 ANN EC4 ANN EC4 ANN EC4 

Training 0.992 - 4.760 - 2.182 - 

Test 0.990 - 5.201 - 2.281 - 

All 0.992 0.961 5.069 34.147 2.252 5.844 



 

 
(a) Training set - ANN 

 
(b) Test set - ANN 

Figure 5 –Train and test results (a) performance functions, (b) error distribution 

 

Figure 6 graphically presents the regression lines for training, test and all data. The ANN 

results have a good agreement with experimental results for all three subsets. On the other side, 

EC4 shows a scatter of the results, which is especially pronounced for outputs above 3000 kN. 

ANN model shows that besides giving more accurate results, the derived expressions can be 

applied to a wider range of data than the EC4 design code.  

 

 
(c) Training set - ANN 

 
(d) Test set - ANN 

 
(e) All data - ANN 

 
(f) All data – EC4 

Figure 6 – Comparison of experimental and predicted results (a) Training set, (b) Test set, (c) 

All data – ANN, (d) All data – EC4 



 

5.1. PROPOSED EQUATIONS 

According to the network parameters from the best-trained ANN model, the following 

empirical equations for calculation of the axial capacity (Nu
ANN) of slender CCFST columns are 

recommended: 

Nu
ANN=Nu,1-4

ANN +Nu,5-bias
ANN  (22) 

Nu,1-4
ANN  = 2.94144⋅H1

' +0.14098⋅H2
' +0.38613⋅H3

' +1.43560⋅H4
'  (23) 

Nu,5-bias
ANN  = 1.67761⋅H5

' -2.38619⋅H6
' -0.70682⋅H7

' -1.13363⋅H8
' -1.65957 (24) 

H1
' =Tanh(-1.54932⋅D-0.14438⋅t+0.75599⋅L-0.53019⋅f

y
-0.23926⋅f

c

'
+0.36257) (25) 

H2
' =Tanh(3.0702⋅D+1.10493⋅t-1.22707⋅L+0.88028⋅f

y
+0.47573⋅f

c

'
+3.42817) (26) 

H3
' =Tanh(2.77720⋅D-0.23581⋅t+0.90585⋅L-0.70207⋅f

y
+1.17248⋅f

c

'
+0.02708) (27) 

H4
' =Tanh(3.24453⋅D+1.11523⋅t-2.00113⋅L+1.23696⋅f

y
+0.58214⋅f

c

'
-0.46130) (28) 

H5
' =Tanh(-0.59108⋅D-1.35953⋅t-1.47492⋅L+0.29325⋅f

y
-1.17222⋅f

c

'
+1.44294) (29) 

H6
' =Tanh(-2.94726⋅D-1.24046⋅t-0.19169⋅L-1.57374⋅f

y
-1.18168⋅f

c

'
+1.17002) (30) 

H7
' =Tanh(-3.14082⋅D-0.49002⋅t+1.39387⋅L-1.01158⋅f

y
-0.63854⋅f

c

'
-1.40464) (31) 

H8
' =Tanh(-0.86469⋅D+1.26690⋅t-0.94459⋅L+1.12318⋅f

y
+1.00749⋅f

c

'
-2.04153) (32) 

6. CONCLUSIONS 

The presented ANN model is highly accurate and robust. On the dataset of 1051 samples, the 

applied LM algorithm with BRA has shown the outstanding prediction performance of the axial 

capacity of slender CCFST columns. Outputs from the proposed empirical equations have a 

better agreement with experimental results (R2=0.992) than those recommended by the EC4 

design code (R2=0.961), even for the wider range of test parameters. The proposed ANN model 

based on one hidden layer and eight neurons can precisely capture the nonlinear behaviour of 

CFST columns. As opposed to the LM algorithm, there is no need for the validation set of data, 

which makes the BRA algorithm more efficient with better generalization and with less risk of 

the possible overfitting. On the other side, analyses also indicate the importance to make a wider 

dataset for upcoming research. In general, similar surrogate models could be very useful for the 

engineering practice in the future. 
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