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A self-consistent procedure for calculating the energy structure, wave 
functions and charge distribution in spherically symmetric semiconduc- 
tor quantum dots is presented, that takes account of both bound and 
free electron states. The Schrodinger and Poisson equation are solved 
iteratively while using the Morse-type parametrized potential to keep 
the charge neutrality in each iterative step. Numerical calculations per- 
formed for GuA~-AZ~,~G~~.~AS based quantum dot indicate that bound 
states account for most of the charge accumulated in the dot, while 
including the free states is necessary only at larger doping levels to de- 
scribe the depleted region outside the dot. @ 1997 Elsevier Science Ltd 
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1. INTRODUCTION 2. THEORETICAL CONSIDERATIONS 

Semiconductor quantum dots are attracting continu- 
ous research attention, particulary boosted in recent 
years by successes in self-organized growth of dots 
(e.g. Ref. [1,2]) and by the perspective development on 
quantum dot based single electron devices. Electronic 
structure of quantum dots has been considered by 
methods of various levels of sophistication, e.g. within 
simple [3] or multiband [4] effective mass approxima- 
tion, etc. In some calculations the self-consistent ef- 
fects of the accumulated electronic charge of bound 
states has also been taken into account [5,6]. How- 
ever, free electronic states were not given much con- 
sideration, with the exception of non-self-consistent 
calculation in Ref. [7]. In analogy to the more conven- 
tional quantum well structures [8] one may expect that 
free electronic states in dot may also become very im- 
portant in some phenomena or applications of quan- 
tum dots. Here we present a self-consistent procedure 
for calculating the energy structure and charge distri- 
bution in quantum dots, taking account of both the 
bound and free states. We choose the spherically sym- 
metric geometry to enable the analiticity of the proce- 
dure as much as possible. 

Consider a spherically symmetric quantum dot 
with radius Ro embedded in bulk of another semicon- 
ductor. The envelope wave function may be written 
as a product of radial Rr(r) and angular Yl,],( 0, p,) 
parts, where the former should be determined from 
the self-consistent procedure. Introducing, as usual, 
the function +r(k, r) = Rr(k, r)/r, the effective mass 
Schrodinger equation that accounts for the radially 
dependent efective mass m(r) reads 

8C-e + 1) &(k, r) 
~~ + & [E - U(r)] &@?? = O(1) 

r3 m(r) r 

where I is the orbital quantum number, U(r) the po- 
tential energy (including the built-in and the space 
charge electrostatic potential), and the constant k is re- 

lated to energy E = !$f$, with mh denoting the effective 
mass in bulk. The boundary condition for the function 
4t(k, r), in the center of the structure is [9] lim,_o(24?+ 
1) !!r-“-‘+r(k, r) = 1, i.e. 4e(k, r - 0) - 0. Far from 
the dot, where the potential is essentially constant (and 
taken to be zero), +r - epkr for bound and +a - 
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sin(kr - p + St(k)) for free states. Accordingly, it is 
convenient to introduce a new function Ft(k, r) related 
to +r(k, r) as Fe(k, r) = $e(k, r)& for bound states, 

and +c(k, r) = Im[e-‘(k”- $+Gr(k))Fe(k, r)] for free 
states, for which Ft(k, r - +co) = 1 and ‘F’(k:;;+m) = 
0. 

In the case of bound states the differential equation 
for Fe(k, r) inside the dot (effective mass mh), reads 

d2fi e 2kd4’ + -- - 
dr2 dr 

= 0 

and in the bulk (r > Ro) it has the form 

d’fiiu 2 - 2k$ - ($U(r) + v) Fzc = O.(3) 
dr2 

where the bound state energy is E = - !$$ with k real. 
Except for continuity at r = Ro, Fe(k, r), has to satisfy 

dFle(k, r = Ro-) m,, d&e& r = Ro+ 1 + =- 
dr mh dr 

(1 - $)(k+ $)fie(k,r = Ro+). (4) 

and has to be zero at r = 0, which suffices for deter- 
mination of bound state energies and wave functions. 
Finally, the normalization constant of Fe@, r) is to be 

For free state wave functions all the above expres- 
found from the unity-norm condition. 

sions remain valid upon the substitution k - -ik, the 

corresponding energy now being E = F. The phase 
shift 6e(k) is determined from +r(k, r = 0) = 0 and 
is given by 

tan(ha(k)) = - 
Im {Fle(k, r = O)] 

Re{fie(k,r = O)]’ (5) 

With bound states energies and wave functions of 
both bound and free states known, one may proceed 
to find the charge due to all occupied states and the 
corresponding electrostatic potential. The normalized 
bound state wave functions, upon taking their moduli 
squared, and multiplying by the Fermi-Dirac distribu- 

tion function ~FD = 
Ie&& + l]_‘, 

are directly ap- 

plicable for calculating the electron density on bound 
states, via 

&(r) = & ‘2 (28 + l)NF’ 1 Ri,e(r) [‘fFD(Ei). (6) 
e=o i=l 

where Nh(8) denotes the number of bound states for 
any particular value of 8, and the factor 2(21 + 1), 

accounts for spin and magnetic quantum number de- 
generacy. The functions are taken to be normalized as 
1: Rfer’dr = 1. 

The expression for free electron density, analogous 
to (6), depends on the type of free wave function 
normalization. Here we use the “box” normalization, 
i.e. take the structure to be embedded in a spheri- 
cal box (infinite potential), its radius being very large. 
The continuous spectrum in such case becomes quasi- 
continuous, i.e., formally very dense discrete. Now, us- 
ing the procedure described in Ref. [lo] we find the 
electron density on free states 

knx 

n,.(r) = f 1 (24 + 1) 
m IAe(k, r) 1’ 
I tl%-?J,,&h dk (7) 

e=o 0 e ~VJb~ + 1 

where the properly normalized function &(k, r) 
asymptotically behaves as 

I?etk, r) - $ sin kr - $ + he(k) 1 (8) 
The bulk is taken to be uniformly doped with donors, 
and degree of their ionization being 

4(r) = 
Nil 

1 + 2e 
pFh-E”@r(r)) 

I;nT 

where Nd, EFl, and EDh denote the donors density, 
bulk Fermi level and donor ionization energy. Eq. (9) 

In solving the Poisson equation we account for the 
radial depedence of dielectric permittivity E(r), which 

accounts for the influence of the local potential U(r) 

depends on material composition just as does the ef- 
fective mass. Thus, taking the potential and the field 

on the degree of ionization. 

to be zero in the center of the structure, integrating 
the Poisson equation twice yealds the expression for 
the potential 

where the charge density is p(r) = -e[nh(r) + n,(r) - 
ndW1. 

Within the self-consistent procedure the Schrbdinger 
and Poisson equations are solved iteratively. Some- 
what different from the conventional self-consistent 
procedure we here employed parametrization of the 
electrostatic (Hartree) potential [I I] within each iter- 
ative step, which enforces the charge neutrality and 
contributes to the stability of the procedure. We have 
taken the three-parameter Morse function (potential) 

40 
#4r-Ro)=I e [ 

-A+RI,) ZMr-Ro) -Be- , 3 
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r 2 Ro (11) 

where 40 represents the potential at the heterointer- 
face (r = Ro), while h and /l are related through the 
conservation of dielectric displacement at the inter- 
face: 

with &h(&) denoting the dielectric permittivity of the 
bulk(dot) material. Therefore, a single free parame- 
ter (h) remains to fit the Morse potential in order 
to get the global charge neutrality of the structure 

7( 0 rz/, r + n,.(r) - nd(r))r2dr = 0, which, in terms of 

&antities defined above, may be written as 

-$(28+1) 
e=o 

h2 m 
x 4mhkBT L I Ge(k)kdk 

o cosh2 ( RZ~,;~$?‘D) 

6e(O) + 

1+e-$! 
1 

& ‘r (2-e + 1) N$)fFD(&) - Rlm(n,h - nd(r))r2dr 
e=o i=l 0 

= 0 (13) 

where nch in the last integral denotes the electron den- 
sity in the bulk. In case of a quantum well the conve- 
nience of the Morse potential stems from the fact that 
it is a sum of two exponential functions, which enables 
a rather fast solving of the Schrodinger equation via 
series expansions [l 11. In a quantum dot, however, the 
presence of the centrifugal potential (- #(f? + l)/r2) 

does not allow the same method to be employed. In- 
stead, the Morse potential is here used in a different 
manner. If some i-th iteration has been estimated to 
have not yet converged, the potential in the bulk region 
(r > Ro) is substituted by the Morse potential with 
the parameter h chosen so to satisfy the global neu- 
trality condition (while the potential inside the dot is 
kept as calculated). The new potential constructed this 
way is then used, through a weighted average with the 
potential used in i-th iteration, as the input potential 
for (i + 1 )-th iteration. The iterative procedure (l)-( 13) 
starts with q(r) = 0, i.e. the non-self-consistent so- 
lution, and is terminated when the self-consistent po- 
tential becomes essentially reproduced in subsequent 
iterations. 

3. NUMERICAL RESULTS AND DISCUSSION 

Numerical calculations were performed for a 
GuAs dot with the radius Ro = 5nm embedded in 
A~o.~Guo.~As bulk. Based on data in Ref. [12] the fol- 
lowing parameters were used in calculation: the effec- 
tive masses in the dot and bulk materials m, = 0.067 
and mh = 0.092 (in free electron mass units), and the 
dielectric permittivities E,~ = 13.18 and Eh = 12.24 re- 
spectively, the donor binding energy EDh = 8.21 meV 
and conduction band offset AE, = 227.9 meV. The 
Fermi level for a given donor doping level was calcu- 
lated from Eqn. (9). All the calculations were done 
for the temperature T = 300 K. 

To find the energy spectrum Eqs. (2-3) for bound 
and the corresponding ones for free states were nu- 
merically integrated (from the origin to r = 30 nm). 
The employed numerical procedure was very stable 
and of high accuracy [13]. The charge density was cal- 
culated according to (6) and (7). Within the contin- 
uous spectrum the energy range included in calcula- 
tion extended to E,,,,, = 130 meV above the bulk c.b. 
edge. This was sufficient to cover all significantly popu- 
lated states while keeping the nonparabolicity low (the 
largest k-vector amounted to < l/20 of the distance 
to the Brillouin zone boundaries). Furthermore, only 
the lowest three orbital terms (with d = 0, 1‘2) had to 
be taken into account when evaluating the continuous 
states charge in the dot region. This is because higher d 
states experience a strong repulsive core potential, and 
the corresponding wave functions amplitudes therein 
are negligible. Actually, the # = 0 state of the contin- 
uum gives by far the largest contribution to free states 
charge in the dot region. For 4 > 0, the significantly 
populated, low-energy states hardly penetrate into the 
dot, and those with higher energies are almost empty. 
They may thus be safely ignored when calculating the 
charge in the dot region, their only role is to make up 
the constant charge density deep inside the bulk. 

The bound state is well localized in the dot, its pop- 
ulation increasing as the doping, i.e., the Fermi level, 
increases. The contribution of free states to the charge 
density in the dot region is given in Fig. 1 (actually 
displayed is the “excess” charge, measured from the 
normal density deep inside the bulk). There is obvi- 
ously a depression of this part of the total charge in 
the dot, for reasons that are clear from the above dis- 
cussion of the corresponding wave functions proper- 
ties. As the bulk doping increases this depression be- 
comes more prominent, due to an increased repulsion 
of these states by the enlarged bound state charge in 
the dot. As intuitively expected, the free charge depres- 
sion is strongest in the region close to the dot-bulk 
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Fig. 1. The self-consistent free electron “excess” den- 
sity (referenced to the bulk value) in the Ro = 5 nm 
GaAs/Alo,sGa0+4~ quantum dot structure for differ- 
ent doping levels, at T = 300 K. 

interface, where the total (electronic + ionized donors) 
accumulated charge acquires a maximum. 

The calculated self-consistent Hartree potential for 
three values of doping is given in Fig. 2, indicating 
the increasing importance of the self-consistent cal- 
culation as the doping increases. The space charge 
of free states gives a reasonably large contribution to 
the Hartree potential, increasing it by approx. 5 meV 
from what was calculated with free states neglected, 
and significantly extends its range (Fig. 2). The en- 
ergy of single bound state (with 4? = 0) of this dot 
is -89.7 meV, -89.5 meV and -90.7 meV at bulk 
doping levels of 1 x 1017 cmp3, 2 x lOI cme3 and 
3 x 1017 cmd3 respectively, when measured from the 
c.b. edge deep in the bulk, while the non-self-consistent 
value is - 116.4 meV. The contribution of free states 
space charge to this shift of energy is rather small, 
however. never exceeding 1 meV. 

4. CONCLUSION 

In conclusion the self-consistent procedure for cal- 
culating the electronic structure and charge density in 
semiconductor quantum dots, taking account of both 
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Fig. 2. The self-consistent Hartree potential, with free 
states charge included or neglected in the quantum dot 
structure, with parameters as in Fig. 1. 

the discrete and continuous parts of energy spectrum 
is presented. Numerical calculations performed for a 
GaAs - Alo.sGao.7As based quantum dot show that 
bound state(s) predominantly contribute to the charge 
in the dot region, while including the free states is nec- 
essary only in case of high levels of bulk doping, to get 
the structure of the depleted region outside the dot, 
and the free states wave functions therein. 
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