
Physica E 4 (1999) 119–127

Resonantly enhanced bound–continuum intersubband second
harmonic generation in optimized asymmetric semiconductor

quantumwells

D. Indjina ; ∗, A. Mir�ceti�ca, Z. Ikoni�ca, V. Milanovi�ca, G. Todorovi�cb

aFaculty of Electrical Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Minor Yugoslavia
bFaculty of Civil Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Minor Yugoslavia

Received 17 July 1998; accepted 9 November 1998

Abstract

A systematic procedure applied to a step-asymmetric quantum well in order to maximize intersubband bound–continuum
second-order susceptibility is described. The possibility is explored of obtaining resonantly enhanced nonlinear optical
susceptibilities in quantum wells with two bound and a continuum resonance state as the dominant third state. This would
signi�cantly extend the range of input radiation photon energies that may be frequency doubled under resonance conditions
in realistic structures. Calculation for the AlxGa1−xAs alloy based wells designed for pump photon energies in range of
˜!= 200–300meV indicate a perspective of employing continuum states in resonant second harmonic generation at higher
photon energies. ? 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, band gap engineering of semiconductor
quantum well (QW) structures has been employed for
optimizing the performance of various QW-based de-
vices [1]. In particular, there has been an increasing
interest in nonlinear optical e�ects based on intersub-
band transitions between quantized states in QWs [2–
17]. This is related to large values of transition matrix
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elements between these states, and to the fact that the
quantized states energies and wave functions in QWs
are continuously “tailorable” in a rather broad range
(corresponding to mid-infrared radiation), making it
possible to design QWs with resonantly enhanced
nonlinearity for a particular wavelength. Among vari-
ous nonlinear processes, most attention has been paid
to the resonant second harmonic generation (SHG),
which requires an asymmetric QW structure. To be
resonantly enhanced, this process requires three states
spaced by the “pump” photon energy. It has been cus-
tomary to take all three states to be bound, and various
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asymmetric QWs were analyzed for this case, e.g.
compositionally graded, in a stepwise-constant man-
ner, step QWs [3–7], electric �eld biased QWs [8,9],
and asymmetric coupled QWs [10–12]. Recently,
some research e�ort has been put into �nding the best
potential shape of continuously graded QWs [13–16].
Most of the papers published so far describe res-

onant SHG for ˜!= 116meV which corresponds to
CO2 laser input [3–16] or even larger wavelengths
[17]. The principal reason for this is that high power
sources of this type are readily available and that it
is rather straightforward to achieve conditions neces-
sary for SHG in common GaAs=AlxGa1−xAs-based
QWs. When increasing the pump photon energies
signi�cantly above 116meV, it becomes increasingly
di�cult or impossible to design a suitable QW, be-
cause it has to accommodate three bound states while
the maximum height of the barrier (the conduction
band o�set) is limited in real semiconductors-QW
constituents. Higher values of ˜! may be accessed by
using bound-to-continuum transitions. States above
the barrier, close to transmission resonances, may be
favorable as the third state. The bound–continuum
intersubband transitions have previously been con-
sidered in other contexts, e.g. for infrared absorption
and photodetectors [18–23], but not for the harmonic
generation.
In this paper we explore the possibility of using

QWs with two bound states and above the barrier
resonant continuum state for higher-energy inter-
subband SHG. The method of optimizing the QWs
potential shape (in respect to the second-order sus-
ceptibility), handling step asymmetric QWs, relies on
�nding the solution to a system of nonlinear equations
containing a few free parameters. The described pro-
cedure is systematic in the sense that all potentials of
given class are explored, i.e. no potential better than
that found as optimal may exist in that class. Calcu-
lations were performed for GaAs=AlxGa1−xAs-based
QWs which, introducing bound-to-continuum tran-
sitions, enable higher energy (˜!= 200–300meV)
intersubband resonant SHG.

2. Theoretical considerations

In n-doped QWs based on direct band gap semi-
conductor (with band gap large enough that inter-

band transitions may be neglected) the polarization
response of the structure to the pump �eld with pho-
ton energy ˜! is mainly governed by intersubband
transitions between quantized (bound or continuum)
conduction band states Ei. Nonlinear polarization at
twice the frequency of the pump �eld, acting as the
source of second harmonic �eld is described by the
second-order susceptibility �(2). Under the conditions
stated above �(2) is signi�cant only for both the pump
and harmonic polarized perpendicular to the QW plane
(z-axis), i.e. �(2) ≡ �(2)zzz . It is given by the general ex-
pression (e.g. Ref. [5]):

�(2)zzz =
e3

Lz�0

∑
i

∑
j

1
(2˜!−�Eji)− i˜�ji

×∑
l
MijMjlMli

×
[

�ii−�ll

˜!+�Eli− i˜�li
− �ll−�jj

˜!−�Ejl− i˜�jl

]
;

(1)

whereMij = 〈	i|z|	j〉 are the transition dipole matrix
elements, �Eij the transition energies between states
i and j, �ii denotes the electron sheet density cor-
responding to state i, �ij the o�-diagonal relaxation
rates and Lz the length of the structure. It is worth not-
ing that the summation over 2D in-plane wave vec-
tor states is already performed in Eq. (1), so sheet
densities �ii appear therein. In majority of feasible
structures almost all electrons normally reside on the
lowest state (i.e. �ii.�00 for i¿ 0). In case of having
continuum (free) states contributing the process, we
consider the asymmetric QW with two bound states
(with energies E0 and E1) and continuum states Econt
(Econt¿UB). Energy of continuum states is described
by the perpendicular (to the QW plane) wave vec-
tor kB in the barrier region, i.e. Econt(kB) = ˜2k2B=2mB,
where mB is the e�ective mass in the barrier. Contin-
uum states will hereafter be labeled with kB subscript.
Because of the denominators with energy di�erences,
the expression for �(2)zzz grossly simpli�es under res-
onance conditions, i.e. when some of the states are
spaced by about the “pump” photon energy ˜!, with
just one term with these “properly spaced” states re-
maining as important (resonantly enhanced). Taking
that only the ground state is signi�cantly populated
with electrons, and the QW is tailored so that the two
bound states are spaced by exactly the pump photon
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energy E1 − E0 = �E01 = ˜!, �(2)zzz is then found to be

�(2)zzz =
e3

Lz�0

�00
i˜�01

M01

×∑
kB

M0kBM1kB

2˜!− [(EkB −E0)]− i˜�0kB
: (2)

The summation in Eq. (2) is performed over all
continuum states. Wave functions corresponding to
the states above the barrier are normalized by using the
box-boundary conditions. The real part of �(2)zzz , which
is of our interest, may then be written as

�(2)zzz =
e3

Lz�0
�00M01

1
Lz

∑
kB

× M̂ 0kBM̂ 1kB

(˜�)2 + [(2˜!)− (EkB − E0)]2
�kB
�kB

: (3)

Certainly, the summation over the other two wave
vector components of essentially 3D continuum states
was already performed in Eq. (1). Furthermore, M01

is the bound–bound matrix element, M̂ 0kB and M̂ 1kB
represent matrix elements calculated with normal-
ized bound state (0 or 1) and nonnormalized above
the barrier state real wave functions. We here take
�01 = �0kB = �1kB = � (line width ˜� is here taken to
be common to all transitions), as is often assumed for
bound states in the literature. In fact, this is not quite
true, the electron scattering-induced part of the line
width may be signi�cantly di�erent, but within the
order of magnitude, for various transitions. However,
the transitions-to-continuum states have another com-
ponent of the line width, stemming from the width of
the resonance, and it almost always dominates other
sources of broadening. In particular, for the QWs
treated in this work we �nd the resonance widths
¿30meV, while we used the value ˜� = 5meV, so it
is clear that doubling or even tripling this latter value
would not change the �nal results too much. The ma-
trix elements with states belonging to the continuum
are to be calculated twice, because of the double de-
generacy (i.e. with both wave functions correspond-
ing to energy EkB). These two wave functions should
be taken in the form of scattering states (i.e. to be
orthogonal), which prevents under or over complete-
ness in summing over all continuum states in Eq. (3).
In the full continuum limit: Lz → +∞; �kB → dkB

and
∑→ ∫

, and with �kB = �=Lz Eq. (3) becomes

�(2)zzz =
e3�00
Lz�0

M01

�

×
∫
(kB)

M̂ 0kB(E0; EkB)M̂ 1kB(E1; EkB)

(˜�)2 + [(2˜!)− (EkB − E0)]2
dkB

≡ e3

Lz�0
�00�∗: (4)

In QWs with two bound states wave functions lo-
calized in the well, one expects that the continuum
states wave functions close to the resonances (i.e.
EkB = Eres) will give the largest contribution in Eq.
(4), because of the largest matrix elements M̂ 0kB and
M̂ 1kB (the continuum wave function amplitudes inside
the well are larger at resonance energies than o� them,
but there is no di�erence outside the well, due to the
normalization condition). The contribution of reso-
nance states is particularly enhanced at photon ener-
gies for which EkB − E0 ≈ 2˜!, as follows from the
denominator of Eq. (4). For these two reasons, the
largest �(2) is to be expected with double resonance
achieved with the two bound and a resonance state,
i.e. EkB − E0 = Eres − E0 = 2(E1 − E0) = 2˜!.
In order to optimize the QW shape in respect to the

second-order susceptibility, one may vary the shape
(and hence the wave functions) subject to the con-
straint that the spacings between the relevant states
remain unchanged, and look for the value of suscepti-
bility (i.e. parameter �∗), which still depends on the
QW shape (via the dipole matrix elements). In case
of �(2), because of de�nite parity of wave functions,
symmetric QWs are ruled out, so one should consider
asymmetric structures only.
Quantized electron states in a QW structure with

position-dependent e�ective mass m(z) may be found
by solving the envelope function Schr�odinger equa-
tion of the form [24]

− ˜2
2
d
dz

(
1

m(z)
d	
dz

)
+ U (z)	 = E	; (5)

where 	(z) is envelope wave function, U (z) the po-
tential and E the energy. E�ects of bulk dispersion
nonparabolicity become increasingly important at
higher energies and may be conveniently described by
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Fig. 1. The potential (conduction band edge) in step QW in case of
two bound and one resonant state. The structure design parameters,
used in the main text, are all denoted.

energy-dependent e�ective mass, according to the
two-band Kane model [25]

m(z; E) = m∗(z)
[
1 +

E − U (z)
Eg(z)

]
; (6)

where Eg(z) is the material composition- (and hence
the position-) dependent band gap, and m∗(z) denotes
the parabolic (band edge) e�ective mass.
Consider an asymmetric step QW with stepwise-

constant potential and e�ective mass (Fig. 1), which
is frequently used in bound–bound transitions-based
resonant SHG. States above the barrier (E¿UB) are
double degenerate, and their wave functions may be
written in terms of scattering states:

	L(z) = eikBz + RLe−ikBz ; z ¡− cW;

	L(z) = ALeikWz + BLe−ikWz ; z ∈ (−cW; 0);

	L(z) = CLeikSz + DLe−ikSz ; z ∈ (0; cS);
	L(z) = TLeikBz ; z ¿ cS;

(7)

	R(z) = TRe−ikBz ; z ¡− cW;

	R(z) = AReikWz + BRe−ikWz ; z ∈ (−cW; 0);

	R(z) = CReikSz + DRe−ikSz ; z ∈ (0; cS);
	R(z) = e−ikBz + RReikBz ; z ¿ cS;

(8)

where kB = [2mB(E − UB)=˜2]1=2; kW =
[2mWE=˜2]1=2, and kS = [2mS(E − US)=˜2]1=2 are
the wave vectors in the barrier, deeper well and the
step layers with the corresponding energy-dependent
nonparabolic e�ective masses mB(E), mW(E) and

mS(E). The constants in Eqs. (7) and (8) should be
determined by using the conventional boundary con-
ditions (the continuity of 	(z) and (1=m(z)) d	=dz)
at heterointerfaces (z =−cW; 0 and cS). As we have
pointed above, the most interesting states above the
barrier are those close to resonances. Energies of res-
onances are found from the transmission coe�cient
which in this structure reads

|TR|2 = |TL|2 = 4�
2�2

|�|2 ; (9)

where �= (mSkB)=(mBkS), �= (mSkW)=(mWkS) and

|�|2 = �2(1 + �2) sin2(kWcW) sin
2(kScS)

+4�2�2 cos2(kWcW) cos2(kScS)

+2�(�2 − �2)(�2 − 1) sin(kWcW)

× sin(kScS) cos(kWcW) cos(kScS)

+ (�2 + �2) sin2(kWcW) cos2(kScS)

+ �2(1 + �2) cos2(kWcW) sin
2(kScS): (10)

Resonances correspond to local maxima of trans-
mission, which generally do not exactly equal unity
in asymmetric systems [26–28]. After some manipu-
lation, one �nds that the positions of the transmission
coe�cient maxima coincide with minima of the fol-
lowing function:

F(E) = A sin2(kWcW) sin
2(kScS)

+B sin2(kWcW) cos2(kScS)

+C cos2(kWcW) sin
2(kScS)

+ 1
2D sin(2kWcW)sin(2kScS)

+2 sin2(kWcW) sin
2(kScS)− 2 sin2(kWcW)

− 2 sin2(kScS); (11)

where A= (mWkS=mSkW)2 + (mSkW=mWkS)2, B=
(mWkB=mBkW)2 + (mBkW=mWkB)2, C = (mSkB=
mBkS)2 + (mBkS=mSkB)2, D = (m2BkWkS=mWmSk2B+
mWmSk2B=m

2
BkWkS − mWkS=mSkW − mSkW=mWkS).

This de�nes the function F(E), minima of which
give us the continuum resonance energies Eres in the
asymmetric step QW given in Fig. 1.
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For convenience, instead of the complex wave func-
tions of free states, Eqs. (7) and (8), we choose to
make their linear combinations (unitary transforms) as

	1(z) =
1√
2

[√
RR
RL

 L(z) +  R(z)

]
; (12)

	2(z) =
1√
2

[
−
√

RR
RL

 L(z) +  R(z)

]
(13)

which are entirely real functions (as also are the bound
states wave functions), as shown in the appendix.
Below the barrier the (nondegenerate) bound states

are found in the usual way, observing the boundary
conditions at z =−cW; 0 and cS. With the conven-
tional exponential or plane wave type of solutions of
Eq. (5) in separate layers of the structure (Fig. 1) we
get a system of six homogeneous equations, nontrivial
solution of which requires that

�(E) = sin(kWcW)
[
sin(kScS)

k∗B
mB

(
k2W
m2W

+
k2S
m2S

)

+ cos(kScS)
kS
mS

(
k2W
m2W

− k∗2B
m2B

)]

−cos(kWcW)
kW
mW

[
sin(kScS)

(
k∗2B
m2B

− k2S
m2S

)

+ 2cos(kScS)
k∗BkS
mBmS

]
= 0 (14)

in the energy range (US¡E¡UB), where k∗B =
ikB = [2mB(UB − E)=˜2]1=2. In energy range be-
low the step (0¡E¡US) we de�ne k∗S = ikS =
[2mS(US − E)=˜2]1=2 and Eq. (7) is modi�ed by
substituting sin(kScS)→ sinh(k∗S cS), cos(kScS)→
cosh(k∗S cS), kS → k∗S , k2S → −k∗2S . This de�nes the
function �(E), zeros of which are the energies of
quantized bound states in asymmetric step QW. The
corresponding bound states wave functions are then
simply derived from the boundary conditions and the
normalization condition

∫ +∞
−∞ |	(z)|2 dz = 1.

Having chosen the alloy system to work with (e.g.
AlxGa1−xAs) it is reasonable to take the well layer
to comprise pure “well-type” semiconductor (GaAs in
this instance), because, with dipole matrix elements
roughly scaling as e�ective mass to power 12 [5] there
is no bene�t from allowing the well layer to be made

of alloy. Thus, mW is de�ned from the start, and
in the step and barriers layers, which are made of
the alloy, with suitable compositions xS and xB, the
band edge e�ective mass potential are uniquely re-
lated to each other, i.e. mS;B = mS;B(xS;B) and US;B =
US;B(xS;B). Therefore, the functions F(E) and �(E)
(given by Eqs. (11) and (14)) are nonlinear functions
of four independent parameters, say the widths cW and
cS, and the potentials UB and US. Within the class
of step asymmetric QWs, all possible shapes (i.e. the
values of the four parameters) that provide resonance
conditions are accessed by solving the system of three
nonlinear equations which demand that the two bound
and the continuum resonance state are spaced by ex-
actly ˜!:

�(UB; US; cW; cS; E0) = 0;

�(UB; US; cW; cS; E0 + ˜!) = 0;

Eres(UB; US; cW; cS)− (E0 + 2˜!) = 0; (15)

where Eres is the �rst continuum resonance energy,
found as position of the �rst minimum of the function
F(UB; US; cW; cS; E) given by Eq. (11).
These equations contain the QW structure parame-

ters, and also the ground state energy E0, with its value
alone being irrelevant for the process we consider, so
it is also taken as a parameter on equal footing with
layer widths (cW, cS) and potentials (US,UB). With a
total of �ve parameters and three equations (15), two
of them are really free “QW design” input parameters,
while the remaining three can be determined by solv-
ing Eq. (15). Therefore, not only that a QWmay be de-
signed for a chosen ˜! (within some limits), but there
is even room for the QW shape optimization in order
to give maximal nonlinearity. The optimal QW shape
may be found by de�ning a two-dimensional parame-
ter space, to be searched by �rst solving Eq. (15) for
the remaining parameters, and then (provided that the
solution is physically and technologically acceptable)
calculating the matrix elements and the nonlinear sus-
ceptibility corresponding to a particular solution.
Similarly, the described procedure may be em-

ployed for optimization of (also frequently encoun-
tered) coupled QWs in respect to �(2). The described
procedure is systematic in the sense that it allows the
entire search of the free-parameters space de�ning the
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QW pro�le within a given class (i.e. of the same gen-
eral shape), and does not include intuition or elements
of luck in spotting the “best potential shape”.

3. Numerical results

The theory described in the previous section was
employed for the design and optimization of step
asymmetric QWs based on AlxGa1−xAs alloy, to
be used for resonant second harmonic generation of
˜!= 240meV radiation (this corresponds to 5:1�m
CO laser or approximately to frequency doubled CO2
used as pump for the next SHG). The procedure was
then repeated for pump photon energy in the range
˜!= 200–300meV. Due to comparatively large
photon energies involved, technologically favorable
AlxGa1−xAs alloy does not provide su�cient band
o�set for classical three bound-states resonant SHG,
and the problem was circumvented by introducing
bound–continuum transitions.
In a step QW as displayed in Fig. 1, made of

GaAs and AlAs compounds, i.e. with the structure
Alx1Ga1−x1As=GaAs=Alx2Ga1−x2As=Alx1Ga1−x1As,
the e�ective mass in separate layers is given by

mB = [mAlAsx1 + mGaAs(1− x1)]
[
1 +

E − UB
Eg B

]
;

mS = [mAlAsx2 + mGaAs(1− x2)]
[
1 +

E − US
EgS

]
;

mW = mGaAs

[
1 +

E
EgW

]
(16)

as follows from Vegard’s law and the way chosen
to introduce nonparabolicity, with band gaps in the
step and barrier layers EgB = Eg AlAsx1 + Eg GaAs(1−
x1) and EgS = Eg AlAsx2 + Eg GaAs(1− x2). The barrier
and step heights are UB;S = x1;2�Ec, where �Ec is the
conduction band o�set between AlAs and GaAs com-
pounds. The nonlinear susceptibility �(2) is directly
related to the parameter �∗, Eq. (4), which, upon
changing the integration over kB to integration over
E = EkB , and using Eq. (16), reads

�∗ =M01

√
2mB0
˜2

1
�

Fig. 2. The optimized values of the matrix elements product
�∗(˜�)2, Eq. (17), obtained with di�erent choices of UB and cW
at ˜! = 240meV.

×
∫ +∞

UB

M̂ 0kBM̂ 1kB

(˜�)2 + [2˜!− (EkB − E0)]2

×
(

1

2
√

EkB − UB
+

1√
EgB

)
dEkB ; (17)

where mB0 = mAlAsx1 + mGaAs(1− x1) is the conduc-
tion band edge e�ective mass in the barrier.

The material parameters are taken as [24]: mGaAs =
0:067m0, mAlAs = 0:15m0, (m0-free electron mass),
Eg GaAs = 1:42 eV, Eg AlAs = 2:67 eV, �Ec = 750
meV, and ˜� = 5meV. In the �rst set of calculations,
we performed the step QW optimization, via solving
system (15), by taking the well width cW and bar-
rier height UB as free parameters. Other parameters
(cS; US; E0) where coming out from the solution of
Eq. (15). In Fig. 2, we give the optimized parameter
�∗ as it depends on cW and UB (for convenience, �∗

is multiplied with (˜�)2 to become dimensionally
equivalent to the product of matrix elements with
all three bound states, i.e. [ �A

3
]). To obtain as large

nonlinearity as possible, it is clearly advantageous to
choose the highest technologically reasonable barrier
height, and, upon �xing this value, there is an opti-
mal well width. Similarly, in Fig. 3, the dependence
of �∗(˜�)2 on UB and the step layer width cS is
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Fig. 3. Same as Fig. 2, but with di�erent choices of UB and cS.

given. The largest value [�∗(˜�)2]MAX = 38 �A
3
is

obtained in QW with UB = 480meV, US = 190meV,
cW = 27 �A and cS = 24:5 �A.
It is not straightforward to compare this result

against those obtained in QWs with all three bound
states, because few calculations for this pump photon
energy have been done so far. In Ref. [29] such a QW
was designed, based on nitride semiconductor Al-
GaN, and largest value of the matrix elements product
amounted to � ≈ 240 �A3. The resonant susceptibil-
ity �(2) ∼ �=(˜�)2 would be six times larger than
obtained in this work, but only if the linewidths for
all three transitions in AlGaN well is really ˜� = 5
meV. In reality, however, larger linewidths should be
expected for transitions to higher levels, as mentioned
above, which will proportionally decrease �(2) in Al-
GaN QW, and will only marginally a�ect �(2) in the
QW considered in this paper. Therefore, we expect
the susceptibilities in the two structures to become
roughly comparable, and one advantage of using reso-
nant state in AlGaAs QW is in the fact that AlGaAs is
much better understood technologically than AlGaN.
The procedure was then repeated for various values

of pump photon energy in the range ˜!= 200–300
meV. The fully optimized values [�∗(˜�)2]MAX
and corresponding optimal QW parameters, as they
depend on ˜!, are presented in Fig. 4. One may
note that [�∗(˜�)2]MAX decreases with ˜!, which
is in qualitative agreement with the fact that simple
idealized structures, like constant mass linear har-

Fig. 4. The fully optimized values of �∗(˜�)2 obtainable at
various pump photon energies.

monic oscillator, have dipole matrix elements scal-
ing as (˜!)−1=2, hence one normally expects that
[�∗(˜�)2] ∼ (˜!)−3=2 [14].

4. Conclusion

A systematic method for the optimization of
ternary semiconductor alloys-based QWs in respect to
higher-energy nonlinear optical susceptibility which
relies on bound–continuum transitions, was discussed.
The method is applicable to step graded QWs, like
asymmetric step QWs, coupled QWs and similar, and
relies on �nding the solution to the system of nonlin-
ear equations. Even though the values of the dipole
matrix elements product in semiconductor QW with
equispaced two bound states and a continuum reso-
nance state are not very large, it is important to know
that it is possible to obtain resonantly enhanced non-
linear optical susceptibility, corresponding to higher
values of pump photon energies, in conventional
technologically favorable AlxGa1−xAs based QWs.
Maximizing its value via the optimization procedure
described may make the e�ect potentially useful at
wavelengths which suitable QWs with three bound
states cannot be designed. Similarly, QWs intended
for other nonlinear processes which may not require
equispaced states (o�-resonant harmonic generation,
parametric down conversion, etc.) can be optimized
in the same fashion, as well.
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Appendix

The scattering states 	L and 	R (7)–(8) are or-
thogonal, and complex-valued functions. These two
may be transformed into also orthogonal, but real func-
tions by a suitable unitary transform. The most general
form of a 2× 2 unitary matrix is

Û =
[
cos �ei� sin �ei(�+�)

sin �ei
 −cos �ei(�+
)

]
; (A.1)

where �, �, 
 and � are arbitrary real parameters. Out
of these four, only � and � have nontrivial e�ect, while

 and � constitute just a global phase of the two states
resulting from application of Û to 	L and 	R (hence
one can immediately set 
= �= 0).
We now require the states 	1 and 	2[
	1

	2

]
= Û

[
	R

	L

]
(A.2)

to be currentless, which is equivalent to their
wave functions being real, i.e. Im{	1;2 d	∗

1;2=dz −
	∗
1;2 d	1;2=dz}= 0. Imposing these conditions on

both the right- and left-hand side delivers in four
equations, which are, however, all equivalent if
we recall that TL = TR ≡ T , |T |2 + |RL;R|2 = 1 and
RL=T =−R∗

R=T
∗ [30], so there is a single condition

to be satis�ed by two parameters � and �:

cos(2�) + sin(2�)a cos(’+ �) = 0; (A.3)

where RL=T ≡ aei’. There is, therefore, no unique
solution, and one may set, e.g. �= �=4, wherefrom
� = �=2− ’ and using RL=RR =−ei2’, we immedi-
ately �nd that the two real and orthogonal states are
given by Eqs. (12) and (13) in the main text.
Using the parameterized representation of the trans-

mission and re
ection coe�cients [30]: T = cos �ei�,
RL = isin �e(�+�) and RR = isin �e(�−�) where �, � and
� are real, the asymptotic expressions for 	1 and 	2,
up to a constant phase factor, read

	1(z → ±∞) = cos
(
kzz +

±�± �− �
2

)
;

	2(z → ±∞) = sin
(
kzz − �± �± �

2

)
: (A.4)
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