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Abstract

The multiparameter procedure of semiconductor quantum well profile optimization, using the supersymmetric quantum
mechanics, is described and explored. The method generates families of isospectral potentials that depend on a specified
number of scalar parameters, which are then varied so to maximize the desired property of the system, in this case the nonlinear

susceptibilityχ(2)0 which gives rise to the optical rectification. The merits and limits of the multiparameter procedure are
discussed. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Intersubband optical transitions in quantum well
(QW) structures are continuously attracting the re-
search attention in the last two decades. Due to con-
siderable values of dipole transition matrix elements
the QWs have quite remarkable linear and nonlin-
ear optical properties. Various effects in QWs may be
enhanced by suitably tailoring their electronic struc-
ture (“band structure engineering”). A particular effect
may be grossly enhanced by achieving the resonance
conditions, i.e., appropriate spacings between the most
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relevant states, and also by tailoring the wave func-
tions so that the (combinations of) matrix elements rel-
evant for this particular effect are maximized [1]. This
is particularly important for higher order nonlinear
processes. Optimization of simple stepwise-constant
profiled QWs has been considered quite some time
ago [2], while the optimization of continuously graded
structures required more sophisticated techniques like
the supersymmetric quantum mechanics (SUSYQM)
and the inverse spectral theory (IST), e.g., Ref. [3].
Previously, however, these methods have been em-
ployed only for single-parameter optimization, i.e., the
QW profile was controlled via a single scalar parame-
ter. In this Letter we develop a multiparameter pro-
cedure, and apply it to the problem of optimizing the
QW profile so to maximize the optical rectification co-
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efficient. Our aim is to explore to what extent the in-
creased versatility of the potential tailoring leads to an
improvement of the final optimized design of the po-
tential.

2. Theoretical considerations

An electric fieldE(t)= E0 cos(ωt) incident on the
QW induces the polarization response:

(1)

P(t)= ε0
(
χ(1)ω E0 exp(jωt)+ χ(2)2ω E

2
0 exp(2jωt)

+ χ(2)0 E
(2)
0

)+ c.c.,

where ε0 is the dielectric susceptibility of vacuum
andχ(i)ω is theith order susceptibility at frequencyω.
Considering then-doped semiconductor QWs, and the
incident photon energies well below the band gap, the
polarization response is predominantly determined by
intersubband transitions, between the quantized states
within the conduction band. The optical rectification is
described by theχ(2)0 term, which, under the resonance
conditions (̄hω=E2−E1, whereE1,2 are energies of
the two quantized states involved) reads [2]

(2)χ
(2)
0 =

e3T1T2

2ε0h̄2 (N1−N2)µ
2
12δ12,

whereδ12= 〈1|z|1〉−〈2|z|2〉 is the (difference of) per-
manent dipole moments,µ12= 〈1|z|2〉 the transition
dipole moment,N1 andN2 the electron densities in
states 1 and 2 per unit well surface, whileT1 andT2
denote the diagonal and off-diagonal relaxation times
in the Liouville equation (describing the state lifetime
and the transition linewidth, respectively). The quanti-
tiesN1−N2, T2, and to some extentT1 are not too sen-
sitive to the QW profile, and the maximization ofχ(2)0
essentially reduces to the maximization of the product
Π = µ2

12δ12.
For the initial potential we here choose the Pöschl–

Teller potential, since much of the work can then be
done analytically. It reads

(3)U(z)=− U0

cosh2(αz)
,

the bound states of which are known analytically [4]:

(4)Ei =−α
2

β
(S − i)2, i = 0,1,2, . . . ,

where

(5)S =
√

1+ 4U0β/α2− 1

2

and β = 2m∗/h̄2. The parameterS determines the
number of bound statesNB , supported by this poten-
tial:

(6)NB =
{

1+ Int[S], S /∈N ,
S, S ∈N ,

whereN = {1,2,3, . . .}. The eigenfunctions for these
states are also known analytically [4], though the cor-
responding expressions will not be reproduced here.
By choosing appropriate values of the parametersα

andU0 one can tailor the potential to support exactly
the required number of bound states, and set the spac-
ing between two specified states.

We transform this potential according to the ex-
pressions given, e.g., in Refs. [3] and [5]. By delet-
ing and restoring a bound state at energyEk, with the
eigenfunctionψk , via SUSYQM, we derive a single-
parameter family of isospectral potentialsUSS(λk, z)
[5]:

USS(λk, z)=U(z)− h̄2

m∗
d2

dz2
ln

[
λk +

z∫
−∞

ψ2
k dz

]
,

(7)λk /∈ (−1,0).

Noteworthy, for symmetricU(z) it suffices to varyλk
over positive values only, since the situation is just
spatially reversed for negative values. The solution
to the Schrödinger equation with a constant effective
massm∗ and the potentialUSS(λk, z),

(8)
d2ψi

dz2 +
2m∗

h̄2

[
Ei −USS(λk, z)

]
ψi(z)= 0,

is the set of normalized wave functions given by

(9)

ψiSS(λk, z)=ψi(z)− ψk(z)

λk +
∫ z
−∞ψ

2
k dz

×
z∫

−∞
ψi(z)ψk(z) dz, i 6= k,

(10)

ψkSS(λk, z)=
√
λk(λk + 1)

ψk(z)

λk +
∫ z
−∞ψ

2
k dz

, i = k.

Iterative application of the above expressions will
bring in more free parameters, one at a time. In effect,
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Fig. 1. The initial Pöschl–Teller potentialU(z) with four bound states and the corresponding wave functionsψi squared (dashed lines), and
the isospectrally transformed potentialUSS(z) with the corresponding wave functionsψiSS , obtained with values of the transform parameters
given in the figure (solid lines).

usingUSS and one ofψiSS(λk, z) instead ofU(z) and
ψk(z) in Eq. (7), which corresponds to deleting and
restoring a state atEi of the potentialUSS(λk, z), we
derive the two-parameter familyUSS(λk, λi , z), etc.
All these potentials are isospectral.

3. Numerical results and discussion

Numerical calculations were performed starting
with GaAs based QWs (m∗ = 0.067) with 2, 3, or
4 bound states, with parametersα and U0 chosen,
via Eqs. (4)–(6), so that the levels spacing1E10 =
116 meV (the CO2 laser radiation). Thus, for the 2-
level QW we have setα = 0.264 nm−1 and U0 =
232 meV, obtainingE0 = −154.7 meV andE1 =
−38.7 meV; for the 3-level QW,α = 0.206 nm−1

andU0 = 278.4 meV, withE0 = −208.8 meV,E1 =
−92.8 meV, andE2 = −23.2 meV; for the 4-level
QW, α = 0.174 nm−1 and U0 = 331.4 meV, with
E0 = −265.1 meV, E1 = −149.1 meV, E2 =
−66.3 meV, andE3=−16.6 meV. Out of these states,
if more than two, only the lowest two states (labelled
as 0 and 1) are relevant for the process of interest,

but any of them may be used as factorization states
in course of tailoring the initial potential.

Next we do the SUSYQM transform(s), as de-
scribed in the preceding section, and find the poten-
tialsUSS(λi, z), wherei ∈ {0,1}, for the 2-level QW,
USS(λi, λj , z), where i, j ∈ {0,1,2}, i 6= j , for the
3-level QW, andUSS(λi, λj , λk, z), where i, j, k ∈
{0,1,2,3}, i 6= j 6= k, for the 4-level QW, as well the
corresponding wave functions, Eqs. (9) and (10).

The influence of the parameterλk on the potential
shape may be analysed from Fig. 1. Here we have
a 4-level QW, with1E10= 116 meV, in its original
form and as transformed by deleting and restoring
states atEk , k = 0,1,2. The parametersλk appearing
in this process start influencing the potential profile
only when they become small (i.e., the potential is
simply reproduced in the limitλ → +∞). As a
particular λk → 0, however, the potential becomes
considerably distorted from the original one (the same
applies to the limitλk → −1, if λk is taken to be
negative. This happens in such a way that it is the
state atEk which is mostly affected, its wave function
becoming increasingly confined to the local “pit” of
the potential, emerging, moving away, and becoming
deeper whenλk decreases. At the limiting value
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Fig. 2. The initial Pöschl–Teller potential with two bound states and wave functions (dashed), and the corresponding SUSYQM partner
quantities (solid lines), obtained for the parameterλ0 which maximizes the value ofΠ = µ2

12δ12.

λk = 0 the shift of this wave function becomes infinite,
which is equivalent to complete deletion of this state.
Therefore, among the permanent dipole moments,λk
has a drastic influence on〈k|z|k〉, though it also affects
somewhat the other (“nonparametrized”) states, which
experience a limited shift in the opposite direction,
and decreasing their amplitudes in the region where
ψkSS peaks. Consequently, the differences〈k|z|k〉 −
〈`|z|`〉will increase, but the transition dipole moments
that involve the statek will decrease, because of
the decreasing overlap of the corresponding wave
functions. The productΠ = µ2

12δ12 will therefore be
small forλk → 0, and it was also small (or zero, for
symmetric initial potential) before any deformation
was made, so it is clear there must be an optimum
for some “intermediate” value ofλk . When a new
parameter is introduced and varied, the way it affects
“its own” and “other” states repeats, but the total effect
upon the combination of matrix elements may not be
quite obvious.

This type of behaviour may be seen from Figs. 1–4.
With this in mind, it should be clear that introducing
more parameters than is the number of relevant states
(provided the QW enables it, by supporting enough
states) may not bring in any improvement in the value

of Π . Indeed, we find that the optimal potential may
be generated with infinitely many combinations of
λ1, λ2, λ3, andλ4, the mutual difference being just
that such potentials are translated along thez axis by
different amounts, which has no physical significance.
Therefore, varying a smaller number of parameters
(even if more are available) is practically enough
for optimization. However, the choice of which of
them are to be varied is not quite trivial — the final
results may depend on this choice, as we demonstrate
below.

To find the efficiency of the optimization procedures
with reduced number of parameters, in Fig. 2 we
display the initial 2-level Pöschl–Teller potential and
its optimized transformed partnerUSS(λ0, z) which
maximizesΠ (to Π(λ0) = 13.54 nm3, for λ0 =
0.266). The opposite directions of the wave functions
shifts are clearly visible in Fig. 2. The same value
of Π was also obtained by varyingλ1 only, not
λ2, the optimal value now beingλ1 = 0.0463, and
the same result also was reproduced in the two-
parameter procedure, forλ0 = 0.48 andλ1 = −1.58.
The dependence of the productΠ on λ0 in this
system is given in Fig. 5, and that for the individual
components,µ12 andδ12, in Fig. 6.
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Fig. 3. Same as Fig. 2, but for the potential with three bound states, and two parameters are involved.

Fig. 4. Same as Fig. 2, but for the potential with four bound states, and two parameters are involved.

In Fig. 3 we give the initial 3-level Pöschl–Teller
potential and its optimized transformed partner
USS(λ0, λ2, z) which maximizesΠ (for λ0 = 0.062
andλ2 = −4.4). Here we found that the variation of
λ0 andλ2 gives the best result (Π = 12.98 nm3), while
varyingλ0 andλ1, orλ1 andλ2 delivered only slightly
smallerΠ (12.92 and 12.58 nm3, respectively). On
the other hand, varying just a single parameter was

less effective, givingΠ = 11.17, 11.64, and 7.42 nm3

for λ0 = 0.068, λ1 = −1.27, andλ2 = 0, respec-
tively. Therefore, the 2-parameter procedure improves
the result of the 1-parameter procedure by (practi-
cally significant)≈10%. By varying all the three para-
meters, however, no further improvement was made.
The dependencesΠ(λ0), δ12(λ0), andµ12(λ0), for
λ2=−4.4, are given in Figs. 5 and 6.
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Fig. 5. The dependence ofΠ = µ2
12δ12 on the parameter(s)λ used in optimization of wells with two (solid), three (dashed) and four (dotted)

bound states.

Fig. 6. Same as in Fig. 5, but for the individual matrix elementsδ12 andµ12.

In Fig. 4 are displayed the initial 4-level Pöschl–
Teller potential and its optimized transformed partner
USS(λ1, λ3, z). The best result obtained with the 3-
parameter optimization here wasΠ(λ0 = 1.80, λ1 =
−1.28, λ2=−1.92)= 12.72 nm3, but this turned out
to be slightly less than what was obtained in the
2-parameter procedure withλ1 and λ3, which gave

the largest valueΠ(λ1 = 0.28, λ3= 0)= 12.78 nm3.
This implies that the optimized potential in fact
supports three bound states, the fourth one being
deleted (becauseλ3 = 0). The results of a few other
2-parameter procedures wereΠ(λ0 = 0.029, λ1 =
−2.0) = 12.60 nm3, Π(λ0 = 0.061, λ1 = −4.4) =
12.70 nm3, to mention those with almost as good
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results. Single-parameter procedures withλ2 andλ3
delivered significantly smaller values:Π(λ2 = 0) =
7.21 andΠ(λ3 = 0) = 0.82 nm3, but the other two
were quite good:Π(λ0 = 0.78)= 11.73 (same as the
2-parameter procedure withλ0 andλ3) andΠ(λ1 =
−1.27) = 11.26 nm3. The dependencesΠ(λ1),
δ12(λ1), andµ12(λ1), for λ3 = 0, are given in Figs. 5
and 6.

From the above results we conclude that it is essen-
tial in the optimization procedure to vary at least one of
the parameters (λ0 or λ1) that correspond to “active”
states. Variation of other parameters may help im-
proving the final result, though not very much, while
varying only the parameters corresponding to “inac-
tive” states leads to highly underoptimized results. Fi-
nally, we note that introducing even more parameters
by multiple deletion and restoring of the same state
also did not give any improvements.

4. Conclusion

The multiparameter SUSYQM-based method of op-
timizing the QW potential shape was proposed. It

starts with an rather arbitrarily chosen initial potential
(just satisfying the resonance conditions) and modi-
fies its shape isospectrally, in a manner controlled by a
number of free scalar parameters. These are varied to
find the QW profile which maximizes the property of
interest. The method was explored on the example of
maximizing the second order nonlinear susceptibility
relevant for the optical rectification. Finally, the guide-
lines for this procedure are given.

References

[1] P. Bois et al., Superlatt. Microstruct. 8 (1990) 369.
[2] E. Rosencher, P. Bois, Phys. Rev. B 44 (1991) 315.
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