PHYSICAL REVIEW B, VOLUME 63, 115327

Two methods of quantum well profile optimization for maximal nonlinear optical susceptibilities

J. Radovanovic
Institute of Physics, Pregrevica 118, 11080 Zemun-Belgrade, Yugoslavia

G. Todorovic
Faculty of Civil Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Yugoslavia

V. Milanovic*
Faculty of Electrical Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Yugoslavia

Z. lkonic
School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

D. Indjin
Faculty of Electrical Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Yugoslavia
(Received 24 April 2000; revised manuscript received 12 October 2000; published 2 Maroh 2001

Two different approaches for the optimization of the quantum well profile are proposed and discussed. One
is the multiparameter procedure, based on the inverse spectral ti&djyand supersymmetric quantum
mechanicgSUSYQM), which is an extension of the single-parameter procedure devised earlier for this pur-
pose. Another approach combines the simulated annealing and variational calculus. The two approaches are
compared on the example of optimizing the well profile to get maximal resonant second-order susceptibility at
10.6 um (116 me\j. Within the multiparameter IST/SUSYQM procedures, we find that the two-parameter
procedure delivers significantly better results than the single-parameter procedure, while introducing more
parameters does not result in any further improvement. However, even better (bgudtisout 20% were
obtained with the variational procedure, which, though more time consuming, is free from any unnecessary
constraints and may thus lead to global optimization.
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[. INTRODUCTION transform. While results better than those reported elsewhere
in the literature have been consistently achieved, it is clear

Intersubband optical transitions in quantum wellW) that introducing additional free parameters in these proce-
structures are continuously attracting research attention idures might allow a larger variation of the potential shape,
the last two decades. Due to considerable values of dipoland therefore generally better final results. Certainly, intro-
transition matrix elements, the QW’s have quite remarkablelucing more parameters make the optimization procedures
linear and nonlinear optical properties. Various effects inmore complicated, and in first part of this paper we address
QW’s may be enhanced by suitably tailoring their electronicthe problem of the effectiveness of such multiparameter
structure(“band structure engineering’ A particular effect SUSYQM optimization of the QW profile. To be specific, we
may be grossly enhanced by achieving the resonance conditart with the initial potential of the RBahl-Teller-type, oc-
tions, i.e., appropriate spacings between the most relevactsionally employed in the research of semiconductor
states, and also by tailoring the wave functions so that th@W’s®’ and attempt to maximize the double resonance
(combinations gf matrix elements relevant for this particular second-order susceptibility relevant for the second-harmonic
effect are maximized. generationSHG).

A few techniques for systematic optimization of the QW  The SUSYQM based optimization is always constrained
profile so as to maximize a particular effect have been proimplicitly rather than explicitly: it is the starting potential
posed. Within the class of continuously graded QW'’s, thesghat ultimately determines what may be achieved. While in-
rely on the inverse spectral theof\5T) and the supersym- troducing more parameters does lead to a larger freedom, the
metric quantum mechanit$SUSYQM), which enable one variation of the potential shape is still too restricted in that
to manipulate quantum statéshifting, deletion, insertion the isospectral transform preserves not only the relevant part
and also perform the spectrum-presenviisgspectralvaria-  of the energy spectrum as is required, Bubnecessarily
tion of the potential profile controlled by one or more scalarpreserves the whole energy spectrum. It may well be pos-
parameters introduced thereby, thus changing the wavsible, therefore, that the QW profile obtained that way is not
functions®>~* Analogous techniques, simpler but also veryglobally optimal (which does not imply that it has to be
effective, have been developed for step-graded QW profilsignificantly worse than the globally optimal potential, how-
optimization®®° In our previous papers on the optimization of eves.
continuously graded QW'%;* we have employed the varia- In the second part we make use of the variational method
tion of a single free parameter introduced by one SUSYQM.e., the optimal control theory, in more modern terminol-
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ogy) as a tool of QW profile optimization. This approach hasrelaxation ratés), i.e. the transition linewidths are essentially
been employed in recent years mostly in the time domainindependent on the QW profile, which is probably justified to
e.g., to optimize trajectory of a driven quantum system, thea good approximation.

exception being Ref. 8 where the potential was optimized for

the tunneling transmission properties. Here we consider this B. Multiparameter supersymmetric optimization

method as a technique for free variation of the QW profile in . . . L
order to find the globally optimal profile, maximizing the In this section we consider the optimization of the second-

nonlinear susceptibility. As will be discussed in more detailsCrder nonlinear susceptibility of a QW by using the SUS-

YQM and IST. This approach, but in the single-parameter

later, absent the analytic solution to this formulation, one . X .
should provide a good starting point to an iterative procedurdomulation, has been used previously and here we extend it

devised to head towards the optimal QW profile. This starti© introduce more free parameters, which should make the
ing point is provided by a stochastic optimization routine, inMéthod capable of exploring a larger portion of the QW po-

particular the simulated annealing method. In contrast to th&ntial space and therefore to eventually give better results.
SUSYQM based method which has some implicit unneces] Ne general expressions for the IST and SUSYQM trans-

sary constraints, the variational approach has none, and mig'ms are given in Ref. 1, or our papers on the QW profile

thus be expected to deliver a global optimum. optimization?~* Here we will mainly give the formulas ap-
plying for the initial potential of Pschl-Teller form, since it

allows for a number of results to be obtained in analytically

Il. THEORETICAL CONSIDERATIONS (for the same reason we assume the electron effective mass

A. The second-order susceptibility m* to be position independentThe initial potential reads
Considering ther-doped semiconductor QW'’s and the in- U
cident photon energies well below the band gap, the polar- U(2)=— 0 ’ (4)
ization response is predominantly determined by intersub- cost(az)

band transitions between the quantized states within the %
conduction band. The second-order susceptibility describingnd its bound states are known analytically

the polarization at twice the incident photon frequency, is o2
3 Ei=——(s+1-i)% i=123..., (5)
N D P o
zzz LZEO i i Zﬁw—AE”—IﬁF” Whel’e
Pii — Pl I+ 408l a2
MM 1+4UyBla"—1
><2| M”MJIMII ﬁw—AE”—iﬁF” S= ;B « (6)
_ Pi—Pij , (1)  andpB=2m*/%2 The parametes determines the number of
ho—AE; —ihl, bound (normalizablg statesNg(Ng=Int[s]) supported by

this potential.

These relations are very helpful for setting up the initial
potential. For instance, to get the potential with three bound
states §=3) and with the spacingAEz,=E3;—E,=116
meV between the two excited states, we fidg=4AE,,
and a?=BAE;J/3. The corresponding normalized wave
functions are(for s=3)

where M;; =(¢;i|z|;) denotes the dipole transition matrix
element,AE;; thei—] transition energyp;; is the surface-
electron density irith state,I';; the off-diagonal relaxation
rate, andL, the structure length. Taking the grounid=(1)
state densityp;;>p;; for all i>1, usually fulfilled in real
structures, Eq(1) becomes

3
ngz)z:e P11 Mle 2sM 31 ' _ N
LZEO (Zh(v_AE31_|hF31)(h(D—AE21_|hF21) wl(z):—i
2 4 cosh(az)
Clearly, they!?, will take the maximal value at double reso- —_—
nance, i.e., ifhw=AE,;=AE3,/2, and assuming all the re- Wo(2)= 15as—|nr(az) )
laxation rates are the same, Ef) reduces to 2 coshi(az)
3 .
e3p11 V3a[1—4 sint(az)]
X255 MMMy (3) 3(2)= :
L,egh’T 4 cosH(az)

To obtain the Iargesxgzz)z, therefore, one should maximize The ground state energy 5,=—3Uy/4, so it is not prop-

the product of dipole matrix elemenid(®=M,M M3, erly spaced from state 2 to have double resonance for the
which depend on the QW profile via the corresponding waveSHG. However, by shifting the ground state by U /6,
functions. This will be the target function we want to maxi- which is accomplished by the IST, we will obtain three states
mize. Clearly, we have here assumed that the off-diagonapaced by the required amoukE;,. The potentialJ,s(2)
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that will support such a ground state and not affect the en- [128 522
ergy of any other state, is given by U11s7(2) = Wcosﬁ(az)
2 d? i
Uier(2)=U(2)— 2 2 w1, @® X[Sy(2z) +sintP(az)S,(2)], (16)
B dz
whereW(z) is the Wronskian U rer(2) = V54n(2) 2 Si(2) l
due  du 218 3 5 5,(2)+sinf(az)S,(2) |
W@ =g, — g, ) n
of the wave functiony, and a solutiony, of the Schrdinger 24,(2) 2 sintf(az)
equation Yaisi2)= V3 1—4 sint?(az)
d?y B
Sz TAlEit e U@)]y=0 (10) y S\(2) 1 .
z Sy(2) +sintB(a2)S,(2) |’

at an energy that is not an eigenenergy of the initial potential.
In case of Pechl-Teller potential this solution may be

written in terms of hypergeometric functions as To make a family of potentialsl; s{z,1,) isospectral to

U,s1(2), we use the SUSYQM method and choose to delete

tant(az) \/— 2 _\/— 23 and restore the ground state, so the transformed potential
Yd2)= oF1 : —sintf(az)|,  reads
costf(az) 2 2 2
(11) , )
which ensures that,s(z) and its ground state are even U; 55(2,7\1)=U|5T(Z)—E— In )\1+f wf,ST(t)dt”
functions. The normalized wave functions bfis(z) are dz* o
given by’
(19
1
Yiis1(2)=—F—=—= and the normalized wave functions
€
1_
Ei—Ej .
¥1151(2) J_wlﬂi isT(t) ¢y 1s7(t)dt
x| i(2)— ,86 J ¢|(t)¢J(t)dt} P # i s(Z,N 1) = i 1s1(2) — . ,
7\1+J Y3 1sr(t)dt
(12) -
and )
i=2,3 (20)
Cyi(» .
Yiis1(2)= , =], 1,je{1,2,3, (13
W
2 \ VA1(A 1+ 1) ‘/’lIST(Z) 21
where the constant in Eq. (13) has to be found numeri- Y18(zh)= (22)
cally. These wave functions may be further expressed fully A +f ¢7 1srt)dt
analytically. Introducing the notation
J7-2 —\7-2 3 Now, by deleting and restoring the bound stétg of the
S =oFy —— =5, —sintf(az) |, potentialU; sdz,\;) we derive the two-parameter potential
Uz sdz,N1,\2)
V7 -\75
52(2)—2F1[7,—2 ;5,—Slnhz(a2) : (14) Uy sdZ A1 h0)=U; sdZ,\q)
the Wronskian has the form d? z
——=—In )\2+f U5 S(t)dt
B dz —
— a15a .
W(z)= ————[S1(2) +sintf(az)S,(2)]  (15) (22)
4 cosR(az)
and the normalized wave functio$2) and(13) read and the corresponding wave functions
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Ui sZ,N1,N2) =t 5(Z,N1) The potentialU(z) is allowed to be arbitrary in the
“physically interesting” optimization segment—z, ,zg],
z and is constant outside. Furthermore, on the boundaries of
& S(Z’)\l)ffoow' s(tA )¢z s(LAy)dt this segment we assumel;(—z)=W,(zz)=0, and
- , W/ (—2z)=W/(zg)=0. The matrix elements are evaluated

z
Ao+ fﬁ Y5 (bt in this segment only, i.eM;; :ffRZL‘lfiz\lfjdz. The entries in
the target functional all depend on the potentitl(z) since
i=1,3, (23)  the wave function®’; and energie&; solve the same Schro
dinger equation
VA2(No+1) ¢ o(Z,N 1)
1102 Séza)\la)\Z): 7 : (24) fLZ d 1 i _ .
Ao+ f_ 'J/S S(tv)\l)dt _7d_2 —m*(z) E +U(Z)\Ifi—Ei\I’i, i=1,2,3.
(27)

Similar to the conventional one-parameter SUSYQM, the pa- )
rameters\, and\ , take arbitrary values outside the segment'” contrast to the SUSYQM procedure described above, here

(—1,0), so the wave function@3) and(24) have no singu- W€ allow the effective mass to be position dependent, i.e.,

larities. m* (z) = m(z) my, wheremy is the free-electron mass. This is
The product of matrix elements in E¢) now depends Pecause the problem turns out not to be analytically solvable
on\, and\, as does each matrix element in it i.e., anyway, even ifm* was constant, and allowing for the po-

sition dependent effectives mass makes the description more
+oo realistic, while introducing no serious complications in the
Mij(A 1. h2)= f_w i sy sdz (25 model or in the procedure for solving it.
The maximization of Eq(26) is a constrained maximiza-
and the maximum ofI‘® may thus be searched for in the tion problem, the constraints being EG&7). This is solved

(N1,X2) plane. by introducing Lagrange multiplier functions;(z), e.g.,
Ref. 8, which recasts the problem into the unconstrained op-
C. Optimization by variational calculus timization of the new functional

In the variational calculus a function is varied either com- 3 , 3
pletely freely or subject to some numbe( of cl_early Qef_ln_edJ* ZJ—E j R \i(2) —'——\Ifi’+bi\lfi]dz=\]—2 3,
constraints. Therefore, effectively operating with an infinite i=1J-z m m2 i=1
number of degrees of freedom, it enables the global optimum (28
to be reached. Here we use this approach to vary the QW )
potential U(z), which ultimately determines all the proper- Where bi(z)=(2m02/ﬁ )[Ei_U(Z)]ZQ[Ei_USZZ)] and the
ties of the QW system. It is first necessary to define the targdtonstang=2mo/“ amounts to 0.2625 eVA"2 The con-
[i.e., the functional ofJ(z)], which should be maximized. If ditions for the extremum of the functionaf, Eq. (28), are
the second-order susceptibilig® is of interest, this func- found by equating its first-order variatiol)* to zero, i.e.,

tional has the form 3
8J* = 5( KoM 1o+ KMozt KasMg— >, Ji)
=1

14

m

R M 1M 23M 3
C  {(hAwn)"+O"{(hAwz)"+O"}

WhereA W= Wo1— W= (E21/h) —w andA W32~ W3~ W are

the detunings of the corresponding state spacings from the
incident photon frequency. The quantity in the denominatorwhere
C={(AAw,)"+O"H(hAAw3y)"+0O"}, clearly favors
achieving resonant conditions. Normally=2 and® is the Ky=(M3M3y)/C,

transition linewidth. More generally though, may be any

even integer an@® a nonzero constant, which may be suit- K,=(M{,M3,)/C, (30)

ably chosen so thakis strongly driven towards double reso-

nance in course of optimization, while remaining finite at the Ks=(M{,M3,)/C.

exact resonancéhe precise form of the denominator be-

comes irrelevant at the maximum itselNote that this de- The quantitiesM?,, M3;, and M3, are taken as constants
nominator was not needed in the SUSYQM based optimizawhen finding the variation because they are evaluated with
tion because the system was initially chosen to satisfy théixed functionsW? and U°(z) that optimize the functional
double resonance conditions and was then varied isosped*. The unknown functiony; [in the conventional notation,
trally. Within the variational approach the potential is freely here these are the thraé;’s and U(z)], which give an ex-
varied, however, which makes it necessary to keep the restremum to Eq(28) are to be obtained by solving the system
nance denominator. of Euler-Lagrange equations

(26)
=5JER ®(2)dz=0, (29)

7
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d2 has no analytic solution, but may be solved iteratively ac-
+— =0, (3D cording to the algorithm we describe next.

dz* (1) We first choose an initial potentia)1=%(z) on the
where the functior, from Egs.(28) and(29), may be writ-  segmenf{ —z, ,zgz] assumed constant outside it.

()]
ay;

P

ob  d
ay{

ay, dz

ten as (2) The Schrdinger equatior(27) is solved for the cur-
rent form of the potential and the wave functio#$” , ob-
P =K WyzWo+ KWz Ws+ KWy zWs serving the boundary condition® {(—z,)=¥{"(zg)=0
3 - and¥|(—z)=¥/"(z5) =0, are determinefhere the su-
- 2 N —— —2\Ifi’ + bi\Pil. (32 perscript(i) is the iterations counter and the subscyif the
=1 Mmoo m bound-state index

The variation ofJ* over \;’s is always zero, by way of ~ (3) By substituting the function®; into the system33)
setting up EQ.(29). In the particular problem considered and taking into account the boundary conditions for the

here, the systenB1) becomes Lagrange multiplier functiong; [i.e., G(—z)=G(zg)=0
andG’(—z)=G'(zg)=0], one finds the variation over the
m’ ialg®
N — — N+ mbih;=mz K W+ K3Ws) = F4(2), potential G, _
' m™? e AK W2+ KaWs) =Fa(2) (4) The steepest descent method is used to correct the
potential

!

m
Ny— F)\é+ mboA,=mzZ KW+ K,W3)=F,(2),
U(i+1)(z):U(i)(Z)_a(i)G(i)’ (35

m/
A= F)\é+ mbzhs=mz KW, +KsWy) =F3(2),
wherea(") is a constant chosen to provide the largest value
1 of the functionalJ* in the current iteration, i.e., such that
GC=a(\ W1t A WotNgWa) — 5 (MWi+ AWt h3Ws) g% (U—aad*/9U)=J* (U— aG) is maximized.
(5) With the new potentiaU(*1) one returns to stef?)
=0, (33 and iterates until the satisfactory convergence is achieved,

- (+1)(2)1-J[u® inati
where account is taken of the fact that in ternary alloys of thd-€+ JUTTP(2)]-J[UT(2)]<y (where the termination

type A,B;_,C, usually used for making graded QW's, the criterium y is a sma_ll positiye numbgr

Sg)tentixal 1arz(ld the eff)e/ctive mass are ?10% indep((a?ndent vari- The resn_JIts of thls_|t§_r ative pro_cedure should not d?pef‘d
ables, but are related vid(z)=[AE,/Am]m(z)= m(z), on the chope of thg |_n_|t|al potenpal. However, executing it
whereAE, is the conduction band offset between the mate 0" & few different initial potentials soon reveals that the
fials AC a;:nd BC and Am=myc— mgc is the difference of procedure is easily trapped in the nearest local extremum as

effective masses in the two. The solutions for the Lagrang%(fo;\/soeiguﬁgﬁ g;uzhr}gégfag[gdéﬂ;mg fgrnrgu;(')nu%)agbvi_
multiplier functions may be written as '

ously start with a potential that is sufficiently close to the
2y.,:(2)Fi(2) final, globally optimal potential. The problems with local
\i= Cli—f Wdz V1i(2) extrema are probably not specific to the target functional
used herdthat for the second-order susceptibilityndeed,
2y1:(2)Fi(2) the initial potential and the one optimized for its transmission
C2i+f — - dz|y,i(2), (34)  properties in Ref. 8 are rather close to each other.

z, W(2) In this work the preparation of the initial QW profile was

wherey; andy,; are the solutions of the homogeneous dif- Performed by the simulated annealit®A) method. This is
ferential equations in;'s of the system33), i.e., for F,(2) an iterative stocha_stlc optl_mlzatlc_m technqu_le, nowadays in
=0, andW(z) is the Wronskian. Given the fact that these widespread use, with readily available algorithms. While al-
homogeneous equations have the form of the Sthger Ways accepting a stgpandom change of values of variables
equation, the two linearly independent solutions may behat improves the target function, it also sometimes accepts

P N (NS steps degrading the target function and thus avoids being
taken as  y1i(2)=¥i(2) and  y(2)=¥i(2){C trapped in local extrema. This is essential for the problem we

+J7[m(2)/V{(2)]dz, where C is a constant and the consider, which appears to be of highly multivalley type. The
Wronskian is simplyW(z)=m(z). The constantC,; and  SA is here applied to multilayer QW'é.e., stepwise con-

C,; are found from the requirement that the boundary constant potentialswith some reasonably small number of lay-
ditions for the correction of the potential are satisfied, i.e.ers, of the order of ten. Each layer brings in two independent
G(—2z)=G(zg)=0 and G'(—z)=G’'(zg)=0. Finding variables—its width and potential height, and an additional
the optimal QW profile thus reduces to evaluating the potenfree variable is the height of “outer” barriers. The variables
tial function U(z) that will make the quantityG equal to  may vary within some limits imposed physically or techno-
zero, while simultaneously satisfying all the equations fromlogically. We have used the SA algorithfrthat can handle

the systemg33) and(27). This system of coupled equations box-type constraints. The state energies, wave functions, and

)

+ dz

115327-5



J. RADOVANOVIC et al. PHYSICAL REVIEW B 63 115327
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FIG. 1. The single-parameter optimized potentil sdz,\;) FIG. 2. The two-parameter optimized potentify s{z,\1,\;)

with the corresponding wave functiong ¢ (solid lineg and the  with the corresponding wave functiogs s(z,\1,\,) (solid lineg
initial symmetric U,g(z) with its wave functionsy; s(z) (dotted  and the single-parameter optimized potentialsqz,A;) with the
lines). corresponding wave functiong s(z,\) (dotted lines.

matrix elements, i.e., the target functi@2p) for this type of  {he symmetricU,s(z) and the wave functions in both sys-
structures may be conveniently evaluated using the transfggms. The shift of wave functions, related to the potential
matrix method, and SA will vary the discrete set of layersqymmetrization, is clearly visible. The maximum of the ma-
parameters until it finds the globally optimal structure with . ajements productl® occurs due to opposite trends in

prescribed total number of layers. M3 on one side and iM, and M,5 on the other, a3,
varies.
IIl. NUMERICAL RESULTS AND DISCUSSION Next, by deleting and then restoring the bound state,at

we get the two-parameter potentld s4{z,\1,\,) isospec-
tral to U s{z,A1) andU,5(2). By varying both parameters

Here we consider a GaAs based QW*(=0.067) with  we now find the maximum ofI®(\;=0.41, A,=—1.7)
three bound states. The $uhl-Teller potential parameters =3844 A& (note that\, was given both negative and posi-
are taken to bev=0.266 nm* andU,=0.464 eV, so that tve values because the initial potential in the second trans-
the spacing between the second and third state amounts {grm was no longer symmetjicThis maximallI?) exceeds
116 meV. The state energies in this well &e=—348 py approximately 10% the value obtained in the single-

meV, E;=—154.7 meV, ancE;=—38.7 meV. In order to parameter optimization, with the individual matrix elements
set the spacing between the lowest-two states to 116 meV,,, beingM ,,=16.5 A,M5=8.41 A, andM ,5=27.7 A. In

the potentialU,s1(z) was introduced so as to shift the
ground state by=Uy,/6, i.e., 77.3 meV, its new position
beingE;=E;;+ €. To find its actual shape we first solve Eq.
(10) and find the functior{11), then find the Wronskiafo),
and then the potentid),s(z) itself [Eq. (8)], and the corre- : . .
sponding wave functionél6), (17), and(18). SinceU,s1(2) W_e have also mFroduced the third free paramé&t@mg

is even, the matrix eleme ;=0 and hencey®=0 for deleting and restor.lng thel bqgnd st-ateE@t Hovvze)zver, in
this well despite the double resonance. However, this poterfontrast to a practically significant increase Ebf_ when
tial is then asymmetrized by SUSYQM transfofeyg. (19)], mtrod_ucmg the sgcond free parameter, introducing the_thlrd
i.e., by deleting and then restoring the bound statg,atin ~ ON€ did not result in any further improvement of the maximal
this procedure we get a single-parameter-dependent potenti@lue of [1?). Such behavior can be explained by tracing the
U, sdz,N1), which is fully isospectral withJ,s(z) and co-  influence of individual parameters on the shapes of trans-
incides with it for \;— +. For any finitex;, however, formed potentials. This may be inferred from Figs. 1, 2, and
U, ssis asymmetric, andI® will generally be nonzero ac- 4, and of course, by inspecting a number of intermediate
quiring a maximum at some optimal value »f. With the  cases. Take the parametey, introduced when deleting and
initial potential being symmetrich; may be varied over restoringE,, to tend from large positive values towards zero
positive values only, becausd, s{z,A{)=U;sdz,—(1  (the situation wher\; tends from large negative values to
+\4)], and we find that the maximum occursh\gt=0.1 and —1 is completely analogous, essentially just reversed in
amounts tolT?(\;)=3472 A, the individual matrix ele- spacé. From the initial potential in this particular transform
ments beingM ,=17 A, M 3=7.65 A, andM ,;=26.7 A. In  there “separates” a part that becomes increasingly confining
Fig. 1 we give the shape &f; s{z,A;=0.1), together with as\, gets smaller, but with the tendency of saturatioa.,

A. Multiparameter supersymmetric optimization

Fig. 2 we give the optimized single-parameter and two-
parameter potentials. The resulting dependenc&l & on

N\ together with the corresponding dependence in the single-
parameter case is given in Fig. 3.
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3474 ; H(Z)[As] H(z)[A3] é u’ *(z)[eV]
3 A=-1.7 -E 3849 0

I —
04f 1
Y8797

-0.21

I > / l/'\
] 0.4t v/
13601

3473k

3472F

3471k

3470F

E -0.5 . .
3469F : 0 50 100 152 200 250 300
F {3639 Z1A]
3468+ T e e e e ] FIG. 5. The variationally optimized potential, providing the
0.0 010 A02 04 06 08 10 largest value of(® (started with a four-layer stepwise-constant SA

] ] preoptimization. Also displayed are the relevant bound state wave
FIG. 3. The matrix elements produdt® vs \; dependence in  fnctions.

one- or two-parameter casésft and right, respectively

have also checked that changing the order of factorization
shape stabilizationas the wave function aE; becomes states does not make the last introduced parameter useful.
mostly confined by this part of the potential. An increased The alternative way of introducing more free parameters
localization of this wave function generally decreases it?y repeatedly deleting and restoring the same state also did
overlap with other wave functions and may thus decrease th@ot giveé any improvement in maleﬂ(z)_' the overall ef-
dipole matrix element#,;, but this is more than compen- fect of parameters obtained that way being the same as that
sated by the beneficial influence of asymmetrization on th@f @ single parameter. S
product of matrix elements, so there appears an optimum. We find, therefore, that for the shape optimization of a
The story repeats when introducing the second parameter QW with three bound states, all three being relevant for
there still appears an optimum but the optimal paif,0,)  SHGs It suffices to generate the two-parameter family of
is now more remote from their limiting small values than isospectral potentials. Somewhat better results might be ex-
was the case with the single parameter That is, there still Pected in @ QW having more bound statbst only three of
is some benefit from changing the shapes of wave functiongh€m being relevant for the resonant SH@Gtroducing new
but the system avoids strong localization that would diminishParameters by factorization of the existing irrelevéfup-
1@, When introducing the third parametes, which tends per”) states would then allow the relevant wave functions to
to mostly affect(localize the state aEs, Fig. 4, it turns out change shape to some extent without becoming too localized.
that any amount of localization, induced whig becomes ~However, this approach would require deeper wells to sup-
finite, actually degrade$I® to an extent that cannot be port an increased number of bound states, which may be

“repaired” by changes in the wave function shapes. welmpractical or even impossible in a given alloy system. In the
case considered here, the maxiniH?) we obtained is by

approximation 25% larger than the maximal value obtainable

o.oél'wwo in a single-step asymmetric QWI(?) =3090 A, Ref. 4.

000l gl L z[A Certainly, having obtained the optimal QW profile from this

_0'05_5\ R two-parameter method, one may proceed to generate the
] K more realistic AlGa, _,As QW profile, where the effective

010 mass varies along with the potential.

-0.15 4

-0.20 B. Optimization by variational calculus

025 Within the variational approach we again consider an

0.30 3 R re1 005 Al,Ga,_,As alloy based QW. In course of thd?) optimi-

-0.35 Ugr = zation we have set=4 and®=1 meV in the target func-

040 3 tional (26). In the first phase we used the SA based preopti-

o 45_§ Usgs{Ryshy) mization to obtain a good starting point for the variational
] method. This was done for a few structures with different

050 re10* number of fixed composition layers. The material depen-

<055 3U [meV] © ™ dence of parameters is now taken into account ith

FIG. 4. The two-parameter potentia)gg obtained by the EgGaAs: 1.42 eV, E9A|As:2'67 eV, Mgaps=0.067 mo, and

SUSYQM transform ofU,s via single deletion and restoring of Maas=0.15 My and the conduction band offset between
bound states aE; and E,, once each with the parametexs =~ GaAs and AIASAE.=0.75 eV and Vegard law was used for
=10"* and\,=—1.005. the alloys.
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FIG. 6. Same as Fig. 5, but starting with an eight-layer stepwise- FIG. 7. The discretized, step-graded version of the optimal po-
constant SA preoptimization. tential from Fig. 6 with two crystalline monolayers wide steps.

d with ith iust four “i Certainly, the strictly smooth profile cannot be realized,
In one run we started with a structure with just four “in- o pagt anproximation to it could be the profile discretized

ner” layers, i.e., with nine free parametdtse width and the 14 gne crystalline monolayer thin layers of fixed composi-
composition for each inner layer and the composition of th&jon The practicalities of fabrication may require even
outer barriers, the latter taken to be the same on eithey. sidezoarser discretization. This will slightly degrade the results
The minimal width of any one layer was limited A and  gptained, more so if coarser discretization is employed.
the maximal value of Al mole fraction t&,,,=0.6. The QW  However, if one is willing to accept, e.g., two-monolayer
optimized this way has three bound states with energies wide steps(2x2.83 A), the degradation in performance is
=71.5 meV,E,=187.5 meV, andE;=303.5 meV and the rather small: the structure displayed in Fig. 7 H&E?)|
matrix elements amount tl ;,= —16.7 A,M3=—25.7 A,  =4507 & (individually, M;,=—16.7 A, M,3=—26.2 A,
and M3;=9.1 A, their product beingII1®|=3906 A, andM3=10.3 A) and bound states &,=—451.4 meV,
clearly making this QW a good starting point for the varia- E;= —335.7 meV,E;=—220.2 meV andE,= —81.5 meV,
tional procedure. After 142 iterations it has satisfactorilyall of them quite close to the corresponding values in case of

converged to a smooth potentiat®'(z) (and the accompa- smooth potential. Clearly, the discretized potential could be
nying effective massm°PY(z)=[u°P{(z) +V,]/6 with Vv, obtained by SA with no variational procedure, but this would

—1.078 eV and#=9.036 eV, displayed in Fig. 5. The have been very time consuming because of the large number

bound state energies were ndéj=—381.7 meV,E,= of free variablegstep widths and heightivolved. It is only
— 265.7 meV, andE ;= — 149.7 meV(with the outer k;arriers the combined use of SA and the variational method that

potential taken as reference zgrahile the matrix elements €30S 10 efficient design of optimal QW profile.

()] = 3 (indivi _ By comparing the results obtained here and those stated
product amount toI1?)|=4328 & (individually, M ,= elsewhere, e.g|IT1?)|=3090 A for asymmetric step QW
—15.8 A,M,3=24.9 A, andM3,=—11.0 A). One can note €9 y p QW,

(2)| ~ 3 i 2 2)| =
a significant difference between the init{@A preoptimized [T1%)|~3300 A obtained by SUSYQM? or || =3910

. o= ) . A3 obtained by IST and coordinate transform methodie
and the final(variationally optimizedl potentials, as a conse- find the improvement by at least 15% over the previous re-
guence of a rather coarse initial potential.

i , . sults(all the data apply for the 116 meV, i.e., the Claser
In another run we started with the structure having eight,igent radiatioh

inner layers, i.e., the SA preoptimization was performed in
the 17-parameter space and the search space was further ex-
tended by limitingx,.x to 0.73. While this has drastically
increased the computation time, the optimized QW found in  We have proposed and analyzed two methods of QW pro-
this step was considerably better, having the product of mafile optimization to achieve maximal nonlinear susceptibili-
trix elementg 11| =4114 & (individually, M;,=—16.9 A, ties. One method relies on multiparameter SUSYQM as a
M,3=—25.9 A, andM 3= — 9.4 A) and the bound state en- generalization of the previously developed single-parameter
ergiesE; =76 meV,E,=192 meV,E;=308 meV, andE,  approach. It starts with a somewhat arbitrary potential, uses
=449.2 meV(it has four bound states but the fourth one isIST to bring its bound states to the required positions, and
not relevant for the present targeWith this better initial  then the SUSYQM to vary the potential isospectrally while
potential the variational procedure needed just 57 iterationsearching the free-parameters space. In particular, the two-
for convergence. The final optimized potential is displayed inparameter procedure gawel0% improvement of the results
Fig. 6 and the accompanying effective mass is evaluated asf single-parameter procedure, but the three-parameter pro-
m°PY(z) =[u°P{(z)+1.194 eW/6. This design has|l1®)]  cedure gave no further improvement.

=4685 A (individually, M,=—16.9 A, M,;=—26.4 A, The other method relies on the combined use of simulated
andM4,=—10.5 A) and bound states &;=—449.5 meV, annealing and the variational calculus and effectively per-
E,=—333.5 meVE;=—-217.5meV, ancE,=—-73.1 meV. forms a free variation of the QW profile, searching for the

IV. CONCLUSION
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global optimum. The results obtained with it are better byand disadvantages. The SUSYQM method may allow ana-
~20% than the results obtained by the first method. lytic work to a large extent and is faster, while the SA/

Both methods considered here improve the best achieverariational method gives better final results though it is more
ments reported in the literature and both have their meritslemanding computationally.
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