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Two methods of quantum well profile optimization for maximal nonlinear optical susceptibilities
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Two different approaches for the optimization of the quantum well profile are proposed and discussed. One
is the multiparameter procedure, based on the inverse spectral theory~IST! and supersymmetric quantum
mechanics~SUSYQM!, which is an extension of the single-parameter procedure devised earlier for this pur-
pose. Another approach combines the simulated annealing and variational calculus. The two approaches are
compared on the example of optimizing the well profile to get maximal resonant second-order susceptibility at
10.6 mm ~116 meV!. Within the multiparameter IST/SUSYQM procedures, we find that the two-parameter
procedure delivers significantly better results than the single-parameter procedure, while introducing more
parameters does not result in any further improvement. However, even better results~by about 20%! were
obtained with the variational procedure, which, though more time consuming, is free from any unnecessary
constraints and may thus lead to global optimization.
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I. INTRODUCTION

Intersubband optical transitions in quantum well~QW!
structures are continuously attracting research attentio
the last two decades. Due to considerable values of dip
transition matrix elements, the QW’s have quite remarka
linear and nonlinear optical properties. Various effects
QW’s may be enhanced by suitably tailoring their electro
structure~‘‘band structure engineering’’!. A particular effect
may be grossly enhanced by achieving the resonance co
tions, i.e., appropriate spacings between the most rele
states, and also by tailoring the wave functions so that
~combinations of! matrix elements relevant for this particula
effect are maximized.

A few techniques for systematic optimization of the Q
profile so as to maximize a particular effect have been p
posed. Within the class of continuously graded QW’s, th
rely on the inverse spectral theory~IST! and the supersym
metric quantum mechanics1 ~SUSYQM!, which enable one
to manipulate quantum states~shifting, deletion, insertion!
and also perform the spectrum-preserving~isospectral! varia-
tion of the potential profile controlled by one or more sca
parameters introduced thereby, thus changing the w
functions.2–4 Analogous techniques, simpler but also ve
effective, have been developed for step-graded QW pro
optimization.4,5 In our previous papers on the optimization
continuously graded QW’s,2–4 we have employed the varia
tion of a single free parameter introduced by one SUSYQ
0163-1829/2001/63~11!/115327~9!/$15.00 63 1153
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transform. While results better than those reported elsewh
in the literature have been consistently achieved, it is cl
that introducing additional free parameters in these pro
dures might allow a larger variation of the potential sha
and therefore generally better final results. Certainly, int
ducing more parameters make the optimization procedu
more complicated, and in first part of this paper we addr
the problem of the effectiveness of such multiparame
SUSYQM optimization of the QW profile. To be specific, w
start with the initial potential of the Po¨schl-Teller-type, oc-
casionally employed in the research of semiconduc
QW’s,6,7 and attempt to maximize the double resonan
second-order susceptibility relevant for the second-harmo
generation~SHG!.

The SUSYQM based optimization is always constrain
implicitly rather than explicitly: it is the starting potentia
that ultimately determines what may be achieved. While
troducing more parameters does lead to a larger freedom
variation of the potential shape is still too restricted in th
the isospectral transform preserves not only the relevant
of the energy spectrum as is required, but~unnecessarily!
preserves the whole energy spectrum. It may well be p
sible, therefore, that the QW profile obtained that way is
globally optimal ~which does not imply that it has to b
significantly worse than the globally optimal potential, how
ever!.

In the second part we make use of the variational met
~i.e., the optimal control theory, in more modern termino
©2001 The American Physical Society27-1
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ogy! as a tool of QW profile optimization. This approach h
been employed in recent years mostly in the time dom
e.g., to optimize trajectory of a driven quantum system,
exception being Ref. 8 where the potential was optimized
the tunneling transmission properties. Here we consider
method as a technique for free variation of the QW profile
order to find the globally optimal profile, maximizing th
nonlinear susceptibility. As will be discussed in more deta
later, absent the analytic solution to this formulation, o
should provide a good starting point to an iterative proced
devised to head towards the optimal QW profile. This sta
ing point is provided by a stochastic optimization routine,
particular the simulated annealing method. In contrast to
SUSYQM based method which has some implicit unnec
sary constraints, the variational approach has none, and
thus be expected to deliver a global optimum.

II. THEORETICAL CONSIDERATIONS

A. The second-order susceptibility

Considering then-doped semiconductor QW’s and the i
cident photon energies well below the band gap, the po
ization response is predominantly determined by inters
band transitions between the quantized states within
conduction band. The second-order susceptibility describ
the polarization at twice the incident photon frequency, is5

xzzz
(2)5

e3

Lze0
(

i
(

j

1

2\v2DEji 2 i\G j i

3(
l

M i j M jl M li F r i i 2r l l

\v2DEli 2 i\G l i

2
r l l 2r j j

\v2DEjl 2 i\G j l
G , ~1!

where Mi j 5^c i uzuc j& denotes the dipole transition matr
element,DEi j the i→ j transition energy,r i i is the surface-
electron density ini th state,G i j the off-diagonal relaxation
rate, andLz the structure length. Taking the ground (i 51)
state densityr11@r i i for all i .1, usually fulfilled in real
structures, Eq.~1! becomes

xzzz
(2)5

e3r11

Lze0

M12M23M31

~2\v2DE312 i\G31!~\v2DE212 i\G21!
.

~2!

Clearly, thexzzz
(2) will take the maximal value at double reso

nance, i.e., if\v5DE215DE31/2, and assuming all the re
laxation rates are the same, Eq.~1! reduces to

xzzz
(2)5

e3r11

Lze0\2G2
M12M23M31. ~3!

To obtain the largestxzzz
(2) , therefore, one should maximiz

the product of dipole matrix elementsP (2)5M12M23M31,
which depend on the QW profile via the corresponding wa
functions. This will be the target function we want to max
mize. Clearly, we have here assumed that the off-diago
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relaxation rate~s!, i.e. the transition linewidths are essential
independent on the QW profile, which is probably justified
a good approximation.

B. Multiparameter supersymmetric optimization

In this section we consider the optimization of the seco
order nonlinear susceptibility of a QW by using the SU
YQM and IST. This approach, but in the single-parame
formulation, has been used previously and here we exten
to introduce more free parameters, which should make
method capable of exploring a larger portion of the QW p
tential space and therefore to eventually give better resu
The general expressions for the IST and SUSYQM tra
forms are given in Ref. 1, or our papers on the QW pro
optimization.2–4 Here we will mainly give the formulas ap
plying for the initial potential of Po¨schl-Teller form, since it
allows for a number of results to be obtained in analytica
~for the same reason we assume the electron effective m
m* to be position independent!. The initial potential reads

U~z!52
U0

cosh2~az!
, ~4!

and its bound states are known analytically9

Ei52
a2

b
~s112 i !2, i 51,2,3, . . . , ~5!

where

s5
A114U0b/a221

2
~6!

andb52m* /\2. The parameters determines the number o
bound ~normalizable! statesNB(NB5Int@s#) supported by
this potential.

These relations are very helpful for setting up the init
potential. For instance, to get the potential with three bou
states (s53) and with the spacingDE325E32E25116
meV between the two excited states, we findU054DE32
and a25bDE32/3. The corresponding normalized wav
functions are~for s53)

c1~z!5
A15a

4 cosh3~az!
,

c2~z!5
A15a sinh~az!

2 cosh3~az!
, ~7!

c3~z!5
A3a@124 sinh2~az!#

4 cosh3~az!
.

The ground state energy isE1523U0/4, so it is not prop-
erly spaced from state 2 to have double resonance for
SHG. However, by shifting the ground state bye5U0/6,
which is accomplished by the IST, we will obtain three sta
spaced by the required amountDE32. The potentialUIST(z)
7-2



en

tia
e

n

-
ul

ete
ntial

al

TWO METHODS OF QUANTUM WELL PROFILE PHYSICAL REVIEW B63 115327
that will support such a ground state and not affect the
ergy of any other state, is given by3

UIST~z!5U~z!2
2

b

d2

dz2
@ ln W~z!#, ~8!

whereW(z) is the Wronskian

W~z!5ce

dc1

dz
2c1

dce

dz
~9!

of the wave functionc1 and a solutionce of the Schro¨dinger
equation

d2c

dz2
1b@E11e2U~z!#c50 ~10!

at an energy that is not an eigenenergy of the initial poten
In case of Po¨schl-Teller potential this solution may b

written in terms of hypergeometric functions as

ce~z!5
tanh2~az!

cosh2~az!
2F1FA722

2
,
2A722

2
;
3

2
,2sinh2~az!G ,

~11!

which ensures thatUIST(z) and its ground state are eve
functions. The normalized wave functions ofUIST(z) are
given by3

c i IST~z!5
1

A12
e

Ei2Ej

3Fc i~z!2be
ce~z!

W~z!
E

2`

z

c i~ t !c j~ t !dtG , iÞ j

~12!

and

c j IST~z!5
C c j~z!

W~z!
, i 5 j , i , j P$1,2,3%, ~13!

where the constantC in Eq. ~13! has to be found numeri
cally. These wave functions may be further expressed f
analytically. Introducing the notation

S1~z!5 2F1FA722

2
,
2A722

2
;
3

2
,2sinh2~az!G ,

S2~z!5 2F1FA7

2
,
2A7

2
;
5

2
,2sinh2~az!G , ~14!

the Wronskian has the form

W~z!5
2aA15a

4 cosh5~az!
@S1~z!1sinh2~az!S2~z!# ~15!

and the normalized wave functions~12! and ~13! read
11532
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c1 IST~z!5A128 522a

194 307
cosh2~az!

3@S1~z!1sinh2~az!S2~z!#, ~16!

c2 IST~z!5
A5c1~z!

A3
F12

2

5

S1~z!

S1~z!1sinh2~az!S2~z!
G ,

~17!

c3 IST~z!5
2c2~z!

A3
F11

2 sinh2~az!

124 sinh2~az!

3
S1~z!

S1~z!1sinh2~az!S2~z!
G . ~18!

To make a family of potentialsU1 SS(z,l1) isospectral to
UIST(z), we use the SUSYQM method and choose to del
and restore the ground state, so the transformed pote
reads

U1 SS~z,l1!5UIST~z!2
2

b

d2

dz2 F lnS l11E
2`

z

c1 IST
2 ~ t !dtD G

~19!

and the normalized wave functions

c i S~z,l1!5c i IST~z!2

c1 IST~z!E
2`

z

c i IST~ t !c1 IST~ t !dt

l11E
2`

z

c1 IST
2 ~ t !dt

,

i 52,3 ~20!

c1 S~z,l1!5
Al1~l111!c1 IST~z!

l11E
2`

z

c1 IST
2 ~ t !dt

. ~21!

Now, by deleting and restoring the bound stateE2 of the
potentialU1 SS(z,l1) we derive the two-parameter potenti
U2 SS(z,l1 ,l2)

U2 SS~z,l1 ,l2!5U1 SS~z,l1!

2
2

b

d2

dz2 F lnS l21E
2`

z

c2 S
2 ~ t !dtD G

~22!

and the corresponding wave functions
7-3
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c i SS~z,l1 ,l2!5c i S~z,l1!

2

c2 S~z,l1!E
2`

z

c i S~ t,l1!c2 S~ t,l1!dt

l21E
2`

z

c2 S
2 ~ t !dt

,

i 51,3, ~23!

c2 SS~z,l1 ,l2!5
Al2~l211!c2 S~z,l1!

l21E
2`

z

c2 S
2 ~ t,l1!dt

. ~24!

Similar to the conventional one-parameter SUSYQM, the
rametersl1 andl2 take arbitrary values outside the segme
(21,0), so the wave functions~23! and ~24! have no singu-
larities.

The product of matrix elements in Eq.~3! now depends
on l1 andl2 as does each matrix element in it, i.e.,

Mi j ~l1 ,l2!5E
2`

1`

c i SSzc j SSdz ~25!

and the maximum ofP (2) may thus be searched for in th
(l1 ,l2) plane.

C. Optimization by variational calculus

In the variational calculus a function is varied either co
pletely freely or subject to some number of clearly defin
constraints. Therefore, effectively operating with an infin
number of degrees of freedom, it enables the global optim
to be reached. Here we use this approach to vary the
potentialU(z), which ultimately determines all the prope
ties of the QW system. It is first necessary to define the ta
@i.e., the functional ofU(z)#, which should be maximized. I
the second-order susceptibilityx (2) is of interest, this func-
tional has the form

J5
Pe f f

(2)

C
5

M12M23M31

$~\Dv21!
n1Qn%$~\Dv32!

n1Qn%
, ~26!

whereDv215v212v5(E21/\)2v andDv325v322v are
the detunings of the corresponding state spacings from
incident photon frequency. The quantity in the denomina
C5$(\Dv21)

n1Qn%$(\Dv32)
n1Qn%, clearly favors

achieving resonant conditions. Normally,n52 andQ is the
transition linewidth. More generally though,n may be any
even integer andQ a nonzero constant, which may be su
ably chosen so thatJ is strongly driven towards double reso
nance in course of optimization, while remaining finite at t
exact resonance~the precise form of the denominator b
comes irrelevant at the maximum itself!. Note that this de-
nominator was not needed in the SUSYQM based optim
tion because the system was initially chosen to satisfy
double resonance conditions and was then varied isos
trally. Within the variational approach the potential is free
varied, however, which makes it necessary to keep the r
nance denominator.
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The potentialU(z) is allowed to be arbitrary in the
‘‘physically interesting’’ optimization segment@2zL ,zR#,
and is constant outside. Furthermore, on the boundarie
this segment we assumeC i(2zL)5C i(zR)50, and
C i8(2zL)5C i8(zR)50. The matrix elements are evaluate
in this segment only, i.e.,Mi j 5*

2zL

zR C izC jdz. The entries in

the target functionalJ all depend on the potentialU(z) since
the wave functionsC i and energiesEi solve the same Schro¨-
dinger equation

2
\2

2

d

dzS 1

m* ~z!

dC i

dz D 1U~z!C i5EiC i , i 51,2,3.

~27!

In contrast to the SUSYQM procedure described above, h
we allow the effective mass to be position dependent,
m* (z)5m(z)m0, wherem0 is the free-electron mass. This
because the problem turns out not to be analytically solva
anyway, even ifm* was constant, and allowing for the po
sition dependent effectives mass makes the description m
realistic, while introducing no serious complications in t
model or in the procedure for solving it.

The maximization of Eq.~26! is a constrained maximiza
tion problem, the constraints being Eqs.~27!. This is solved
by introducing Lagrange multiplier functionsl i(z), e.g.,
Ref. 8, which recasts the problem into the unconstrained
timization of the new functional

J* 5J2(
i 51

3 E
2zL

zR
l i~z!FC i9

m
2

m8

m2
C i81biC i Gdz5J2(

i 51

3

Ji ,

~28!

wherebi(z)5(2m0 /\2)@Ei2U(z)#5q@Ei2U(z)# and the
constantq52m0 /\2 amounts to 0.2625 eV21Å22. The con-
ditions for the extremum of the functionalJ* , Eq. ~28!, are
found by equating its first-order variationdJ* to zero, i.e.,

dJ* 5dS K1M121K2M231K3M312(
i 51

3

Ji D
5dE

2zL

zR
F~z!dz50, ~29!

where

K15~M23
o M31

o !/C,

K25~M12
o M31

o !/C, ~30!

K35~M12
o M23

o !/C.

The quantitiesM12
o , M23

o , and M31
o are taken as constant

when finding the variation because they are evaluated w
fixed functionsC i

o and Uo(z) that optimize the functiona
J* . The unknown functionsyi @in the conventional notation
here these are the threeC i ’s andU(z)#, which give an ex-
tremum to Eq.~28! are to be obtained by solving the syste
of Euler-Lagrange equations
7-4
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]F

]yi
2

d

dzS F

]yi8
D 1

d2

dz2 S ]F

]yi9
D 50, ~31!

where the functionF, from Eqs.~28! and~29!, may be writ-
ten as

F5K1C1zC21K2C2zC31K3C1zC3

2(
i 51

3

l iFC i9

m
2

m8

m2
C i81biC i G . ~32!

The variation ofJ* over l i ’s is always zero, by way of
setting up Eq.~28!. In the particular problem considere
here, the system~31! becomes

l192
m8

m
l181mb1l15mz~K1C21K3C3!5F1~z!,

l292
m8

m
l281mb2l25mz~K1C11K2C3!5F2~z!,

l392
m8

m
l381mb3l35mz~K2C21K3C1!5F3~z!,

G5q~l1C11l2C21l3C3!2
1

mU
~l18C181l28C281l38C38!

50, ~33!

where account is taken of the fact that in ternary alloys of
type AxB12xC, usually used for making graded QW’s, th
potential and the effective mass are not independent v
ables, but are related viaU(z)5@DEc /Dm#m(z)[um(z),
whereDEc is the conduction band offset between the ma
rials AC and BC and Dm5mAC2mBC is the difference of
effective masses in the two. The solutions for the Lagra
multiplier functions may be written as

l i5FC1i2E
z0

z y2i~z!Fi~z!

W~z!
dzGy1i~z!

1FC2i1E
z0

z y1i~z!Fi~z!

W~z!
dzGy2i~z!, ~34!

wherey1i andy2i are the solutions of the homogeneous d
ferential equations inl i ’s of the system~33!, i.e., for Fi(z)
[0, andW(z) is the Wronskian. Given the fact that the
homogeneous equations have the form of the Schro¨dinger
equation, the two linearly independent solutions may
taken as y1i(z)5C i(z) and y2i(z)5C i(z)$C̃
1*z0

z @m(z)/C i
2(z)#dz%, where C̃ is a constant and the

Wronskian is simplyW(z)5m(z). The constantsC1i and
C2i are found from the requirement that the boundary c
ditions for the correction of the potential are satisfied, i
G(2zL)5G(zR)50 and G8(2zL)5G8(zR)50. Finding
the optimal QW profile thus reduces to evaluating the pot
tial function U(z) that will make the quantityG equal to
zero, while simultaneously satisfying all the equations fro
the systems~33! and~27!. This system of coupled equation
11532
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has no analytic solution, but may be solved iteratively a
cording to the algorithm we describe next.

~1! We first choose an initial potentialU ( i 50)(z) on the
segment@2zL ,zR# assumed constant outside it.

~2! The Schro¨dinger equation~27! is solved for the cur-
rent form of the potential and the wave functionsC j

( i ) , ob-
serving the boundary conditionsC j

( i )(2zL)5C j
( i )(zR)50

andC j8
( i )(2zL)5C j8

( i )(zR)50, are determined@here the su-
perscript~i! is the iterations counter and the subscriptj is the
bound-state index#.

~3! By substituting the functionsC i into the system~33!
and taking into account the boundary conditions for t
Lagrange multiplier functionsl i @i.e., G(2zL)5G(zR)50
andG8(2zL)5G8(zR)50#, one finds the variation over th
potentialG( i ).

~4! The steepest descent method is used to correct
potential

U ( i 11)~z!5U ( i )~z!2a ( i )G( i ), ~35!

wherea ( i ) is a constant chosen to provide the largest va
of the functionalJ* in the current iteration, i.e., such tha
J* (U2a]J* /]U)5J* (U2aG) is maximized.

~5! With the new potentialU ( i 11) one returns to step~2!
and iterates until the satisfactory convergence is achiev
i.e., J@U ( i 11)(z)#2J@U ( i )(z)#,g ~where the termination
criterium g is a small positive number!.

The results of this iterative procedure should not depe
on the choice of the initial potential. However, executing
for a few different initial potentials soon reveals that t
procedure is easily trapped in the nearest local extremum
a consequence of using the gradient type formula in step~4!.
To avoid such an unfavorable outcome, one should ob
ously start with a potential that is sufficiently close to t
final, globally optimal potential. The problems with loc
extrema are probably not specific to the target functio
used here~that for the second-order susceptibility!. Indeed,
the initial potential and the one optimized for its transmiss
properties in Ref. 8 are rather close to each other.

In this work the preparation of the initial QW profile wa
performed by the simulated annealing~SA! method. This is
an iterative stochastic optimization technique, nowadays
widespread use, with readily available algorithms. While
ways accepting a step~random change of values of variable!
that improves the target function, it also sometimes acce
steps degrading the target function and thus avoids be
trapped in local extrema. This is essential for the problem
consider, which appears to be of highly multivalley type. T
SA is here applied to multilayer QW’s~i.e., stepwise con-
stant potentials! with some reasonably small number of la
ers, of the order of ten. Each layer brings in two independ
variables—its width and potential height, and an additio
free variable is the height of ‘‘outer’’ barriers. The variable
may vary within some limits imposed physically or techn
logically. We have used the SA algorithm10 that can handle
box-type constraints. The state energies, wave functions,
7-5
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matrix elements, i.e., the target function~26! for this type of
structures may be conveniently evaluated using the tran
matrix method, and SA will vary the discrete set of laye
parameters until it finds the globally optimal structure w
prescribed total number of layers.

III. NUMERICAL RESULTS AND DISCUSSION

A. Multiparameter supersymmetric optimization

Here we consider a GaAs based QW (m* 50.067) with
three bound states. The Po¨schl-Teller potential parameter
are taken to bea50.266 nm21 and U050.464 eV, so that
the spacing between the second and third state amoun
116 meV. The state energies in this well areE1152348
meV, E252154.7 meV, andE35238.7 meV. In order to
set the spacing between the lowest-two states to 116 m
the potential UIST(z) was introduced so as to shift th
ground state bye5U0/6, i.e., 77.3 meV, its new position
beingE15E111e. To find its actual shape we first solve E
~10! and find the function~11!, then find the Wronskian~9!,
and then the potentialUIST(z) itself @Eq. ~8!#, and the corre-
sponding wave functions~16!, ~17!, and~18!. SinceUIST(z)
is even, the matrix elementM1350 and hencex (2)50 for
this well despite the double resonance. However, this po
tial is then asymmetrized by SUSYQM transform@Eq. ~19!#,
i.e., by deleting and then restoring the bound state atE1. In
this procedure we get a single-parameter-dependent pote
U1 SS(z,l1), which is fully isospectral withUIS(z) and co-
incides with it for l1→6`. For any finitel1, however,
U1 SS is asymmetric, andP (2) will generally be nonzero ac
quiring a maximum at some optimal value ofl1. With the
initial potential being symmetric,l1 may be varied over
positive values only, becauseU1 SS(z,l1)5U1 SS@z,2(1
1l1)#, and we find that the maximum occurs atl150.1 and
amounts toP (2)(l1)53472 Å3, the individual matrix ele-
ments beingM12517 Å, M1357.65 Å, andM23526.7 Å. In
Fig. 1 we give the shape ofU1 SS(z,l150.1), together with

FIG. 1. The single-parameter optimized potentialU1 SS(z,l1)
with the corresponding wave functionsc i S ~solid lines! and the
initial symmetric UIS(z) with its wave functionsc i IS(z) ~dotted
lines!.
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the symmetricUIS(z) and the wave functions in both sys
tems. The shift of wave functions, related to the poten
asymmetrization, is clearly visible. The maximum of the m
trix elements productP (2) occurs due to opposite trends
M13 on one side and inM12 and M23 on the other, asl1

varies.
Next, by deleting and then restoring the bound state atE2,

we get the two-parameter potentialU2 SS(z,l1 ,l2) isospec-
tral to U1 SS(z,l1) andUIS(z). By varying both parameters
we now find the maximum ofP (2)(l150.41, l2521.7)
53844 Å3 ~note thatl2 was given both negative and pos
tive values because the initial potential in the second tra
form was no longer symmetric!. This maximalP (2) exceeds
by approximately 10% the value obtained in the sing
parameter optimization, with the individual matrix elemen
now beingM12516.5 Å,M1358.41 Å, andM23527.7 Å. In
Fig. 2 we give the optimized single-parameter and tw
parameter potentials. The resulting dependence ofP (2) on
l1 together with the corresponding dependence in the sin
parameter case is given in Fig. 3.

We have also introduced the third free parameterl3 via
deleting and restoring the bound state atE2. However, in
contrast to a practically significant increase ofP (2) when
introducing the second free parameter, introducing the th
one did not result in any further improvement of the maxim
value ofP (2). Such behavior can be explained by tracing t
influence of individual parameters on the shapes of tra
formed potentials. This may be inferred from Figs. 1, 2, a
4, and of course, by inspecting a number of intermedi
cases. Take the parameterl1, introduced when deleting an
restoringE2, to tend from large positive values towards ze
~the situation whenl1 tends from large negative values
21 is completely analogous, essentially just reversed
space!. From the initial potential in this particular transform
there ‘‘separates’’ a part that becomes increasingly confin
asl2 gets smaller, but with the tendency of saturation~i.e.,

FIG. 2. The two-parameter optimized potentialU2 SS(z,l1 ,l2)
with the corresponding wave functionsc i SS(z,l1 ,l2) ~solid lines!
and the single-parameter optimized potentialU1 SS(z,l1) with the
corresponding wave functionsc i S(z,l1) ~dotted lines!.
7-6
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shape stabilization! as the wave function atE1 becomes
mostly confined by this part of the potential. An increas
localization of this wave function generally decreases
overlap with other wave functions and may thus decrease
dipole matrix elementsM2 j , but this is more than compen
sated by the beneficial influence of asymmetrization on
product of matrix elements, so there appears an optim
The story repeats when introducing the second parametel2,
there still appears an optimum but the optimal pair (l1 ,l2)
is now more remote from their limiting small values tha
was the case with the single parameterl1. That is, there still
is some benefit from changing the shapes of wave functio
but the system avoids strong localization that would dimin
P (2). When introducing the third parameterl3, which tends
to mostly affect~localize! the state atE3, Fig. 4, it turns out
that any amount of localization, induced whenl3 becomes
finite, actually degradesP (2) to an extent that cannot b
‘‘repaired’’ by changes in the wave function shapes. W

FIG. 3. The matrix elements productP (2) vs l1 dependence in
one- or two-parameter cases~left and right, respectively!.

FIG. 4. The two-parameter potentialUSS obtained by the
SUSYQM transform ofUIS via single deletion and restoring o
bound states atE1 and E2, once each with the parametersl1

51024 andl2521.005.
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have also checked that changing the order of factoriza
states does not make the last introduced parameter usef

The alternative way of introducing more free paramet
by repeatedly deleting and restoring the same state also
not give any improvement in maximalP (2), the overall ef-
fect of parameters obtained that way being the same as
of a single parameter.

We find, therefore, that for the shape optimization of
QW with three bound states, all three being relevant
SHG, it suffices to generate the two-parameter family
isospectral potentials. Somewhat better results might be
pected in a QW having more bound states~but only three of
them being relevant for the resonant SHG!. Introducing new
parameters by factorization of the existing irrelevant~‘‘up-
per’’! states would then allow the relevant wave functions
change shape to some extent without becoming too locali
However, this approach would require deeper wells to s
port an increased number of bound states, which may
impractical or even impossible in a given alloy system. In t
case considered here, the maximalP (2) we obtained is by
approximation 25% larger than the maximal value obtaina
in a single-step asymmetric QW (Pmax

(2) 53090 Å3, Ref. 4!.
Certainly, having obtained the optimal QW profile from th
two-parameter method, one may proceed to generate
more realistic AlxGa12xAs QW profile, where the effective
mass varies along with the potential.

B. Optimization by variational calculus

Within the variational approach we again consider
Al xGa12xAs alloy based QW. In course of thex (2) optimi-
zation we have setn54 andQ51 meV in the target func-
tional ~26!. In the first phase we used the SA based preo
mization to obtain a good starting point for the variation
method. This was done for a few structures with differe
number of fixed composition layers. The material depe
dence of parameters is now taken into account wit11

EgGaAs
51.42 eV, EgAlAs

52.67 eV, mGaAs50.067 m0, and

mAlAs50.15 m0 and the conduction band offset betwe
GaAs and AlAs,DEc50.75 eV and Vegard law was used fo
the alloys.

FIG. 5. The variationally optimized potential, providing th
largest value ofx (2) ~started with a four-layer stepwise-constant S
preoptimization!. Also displayed are the relevant bound state wa
functions.
7-7
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In one run we started with a structure with just four ‘‘in
ner’’ layers, i.e., with nine free parameters~the width and the
composition for each inner layer and the composition of
outer barriers, the latter taken to be the same on either s!.
The minimal width of any one layer was limited to 5 Å and
the maximal value of Al mole fraction toxmax50.6. The QW
optimized this way has three bound states with energiesE1

571.5 meV,E25187.5 meV, andE35303.5 meV and the
matrix elements amount toM125216.7 Å, M235225.7 Å,
and M3159.1 Å, their product beinguP (2)u53906 Å3,
clearly making this QW a good starting point for the var
tional procedure. After 142 iterations it has satisfactor
converged to a smooth potentialuopt(z) „and the accompa
nying effective massmopt(z)5@uopt(z)1V0#/u with V0

51.078 eV andu59.036 eV…, displayed in Fig. 5. The
bound state energies were nowE152381.7 meV, E25
2265.7 meV, andE352149.7 meV~with the outer barriers
potential taken as reference zero!, while the matrix elements
product amount touP (2)u54328 Å3 ~individually, M125
215.8 Å, M23524.9 Å, andM315211.0 Å!. One can note
a significant difference between the initial~SA preoptimized!
and the final~variationally optimized! potentials, as a conse
quence of a rather coarse initial potential.

In another run we started with the structure having ei
inner layers, i.e., the SA preoptimization was performed
the 17-parameter space and the search space was furthe
tended by limitingxmax to 0.73. While this has drasticall
increased the computation time, the optimized QW found
this step was considerably better, having the product of
trix elementsuP (2)u54114 Å3 ~individually, M125216.9 Å,
M235225.9 Å, andM31529.4 Å! and the bound state en
ergiesE1576 meV,E25192 meV,E35308 meV, andE4
5449.2 meV~it has four bound states but the fourth one
not relevant for the present target!. With this better initial
potential the variational procedure needed just 57 iterati
for convergence. The final optimized potential is displayed
Fig. 6 and the accompanying effective mass is evaluate
mopt(z)5@uopt(z)11.194 eV#/u. This design hasuP (2)u
54685 Å3 ~individually, M125216.9 Å, M235226.4 Å,
andM315210.5 Å! and bound states atE152449.5 meV,
E252333.5 meV,E352217.5 meV, andE45273.1 meV.

FIG. 6. Same as Fig. 5, but starting with an eight-layer stepw
constant SA preoptimization.
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Certainly, the strictly smooth profile cannot be realize
the best approximation to it could be the profile discretiz
into one crystalline monolayer thin layers of fixed compo
tion. The practicalities of fabrication may require eve
coarser discretization. This will slightly degrade the resu
obtained, more so if coarser discretization is employ
However, if one is willing to accept, e.g., two-monolay
wide steps~232.83 Å!, the degradation in performance
rather small: the structure displayed in Fig. 7 hasuP (2)u
54507 Å3 ~individually, M125216.7 Å, M235226.2 Å,
and M31510.3 Å! and bound states atE152451.4 meV,
E252335.7 meV,E352220.2 meV andE45281.5 meV,
all of them quite close to the corresponding values in cas
smooth potential. Clearly, the discretized potential could
obtained by SA with no variational procedure, but this wou
have been very time consuming because of the large num
of free variables~step widths and heights! involved. It is only
the combined use of SA and the variational method t
leads to efficient design of optimal QW profile.

By comparing the results obtained here and those st
elsewhere, e.g.,uP (2)u53090 Å3 for asymmetric step QW,4

uP (2)u'3300 Å3 obtained by SUSYQM,12 or uP (2)u53910
Å3 obtained by IST and coordinate transform method,13 we
find the improvement by at least 15% over the previous
sults ~all the data apply for the 116 meV, i.e., the CO2 laser
incident radiation!.

IV. CONCLUSION

We have proposed and analyzed two methods of QW p
file optimization to achieve maximal nonlinear susceptib
ties. One method relies on multiparameter SUSYQM a
generalization of the previously developed single-param
approach. It starts with a somewhat arbitrary potential, u
IST to bring its bound states to the required positions, a
then the SUSYQM to vary the potential isospectrally wh
searching the free-parameters space. In particular, the
parameter procedure gave'10% improvement of the result
of single-parameter procedure, but the three-parameter
cedure gave no further improvement.

The other method relies on the combined use of simula
annealing and the variational calculus and effectively p
forms a free variation of the QW profile, searching for t

- FIG. 7. The discretized, step-graded version of the optimal
tential from Fig. 6 with two crystalline monolayers wide steps.
7-8
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global optimum. The results obtained with it are better
'20% than the results obtained by the first method.

Both methods considered here improve the best achi
ments reported in the literature and both have their me
11532
y

e-
ts

and disadvantages. The SUSYQM method may allow a
lytic work to a large extent and is faster, while the S
variational method gives better final results though it is m
demanding computationally.
-
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