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der variable temperature conditions was implemented and calibrated using raw
data for microbial growth of Pseudomonas spp. in poultry under aerobic conditions. The primary model was
implemented using measurement data under a set of fixed temperatures. The two primary models used for
predicting the growth under constant temperature conditions were: Baranyi and modified Gompertz. For the
Baranyi model the maximum specific growth rate and the lag phase at constant environmental conditions are
expressed in exact form and it has been shown that in limit case when maximal cells concentration is much
higher than the initial concentration the maximum specific growth rate is approximately equal to the specific
growth rate. The model parameters are determined in a temperature range of 2–20 °C. As a secondary model
the square root model was used for maximum specific growth rate in both models.
In both models the main assumption, that the initial physiological state of the inoculum is constant and
independent of the environmental parameters, is used, and a free parameter was implemented which was
determined by minimizing the mean square error (MSE) relative to the measurement data. Two temperature
profiles were used for calibration of the models on the initial conditions of the cells.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

A mathematical model for microbial growth is a necessary
component in the efficient assessment of food contamination, shelf
life and risk assessment in supply chains (Lindqvist andWestöö, 2000;
Poshet et al., 2003; Olafsdottir et al., 2006).

Oneof themost important components in quantitativemicrobial risk
assessment (QMRA) is the development of predictive microbial growth
modelswhich are able to take into account the influence of the variation
of environmental parameters on themicrobial growth along the supply
chain (Nauta, 2002; Nauta et al., 2005; Orriss and Whitehead, 1999).

In recent times a considerable effort has been invested in the
development of mathematical models of microbial dynamics in food
products and a number of mathematical models and expressions for
predictivemicrobial growth in food have been developed (Baranyi and
Roberts, 1995; Van Impe et al., 2005; Buchanan et al., 1997; Zwietering
et al., 1990).

In all cases the microbial growth under variable environmental
conditions are described by first order kinetics i.e. by a single or by a
system of ordinary differential equations of first order (Poschet et al.,
2005; Swinnen et al., 2004; Van Impe et al., 1995).
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One of the most important environmental parameters, from the
food safety and quality point of view, is temperature. Considering the
temperature changes along the supply chain, the use of dynamic
models which are able to take into account the influence of tem-
perature variation on microbial growth is essential for prediction of
products' shelf life when considering spoilage microorganisms and/or
for risk assessment when considering food borne pathogens (Baranyi
et al., 1995; Van Impe et al., 1992; Kreyenschmidt, 2003; Bobelyn et al.,
2006; Giannakourou et al., 2005).

To obtain a dynamic mathematical model for predictive microbial
growth under variable temperature conditions, in the static experi-
mental approach two steps are employed. In the first step the micro-
bial growth data under constant environmental conditions is
generated and this procedure is repeated for different sets of environ-
mental parameters (Koutsoumanis, 2001; Baert et al., 2007; Koseki
and Isobe, 2005).

The obtained raw data is fitted with a so-called primary model i.e.
with model curves which describe the growth of the microbial
population with time. Some of the most common primary models are
modified Gompertz, Baranyi and Roberts and Logistic models
(Ratkowsky et al., 1983; Juneja et al., 2006; Fujikawa et al., 2004;
Corradini et al., 2005).

Once the model parameters under stationary environmental
conditions are determined the second step is performed and the
parameters' dependence on temperature is evaluated.
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In this paper the microbial growth of Pseudomonas spp. in poultry
under variable temperature conditions is considered. The two
alternative models previously tested and used, Baranyi and Roberts
and modified Gompertz are employed to develop the mathematical
model for microbial growth of Pseudomonas in poultry under
temperature shift to low temperature (Baranyi et al., 1995; Van Impe
et al., 1995). This is of practical relevance for predicting the shelf life
since the similar temperature shifts often occur within chilled food
supply chains (Koutsoumanis, 2001).

The static measurements are used to obtain the temperature
dependence of the model parameters needed in the secondary model.
Data from dynamic experiments are used for model calibration to the
initial conditions of the cells.

For the dynamic temperature conditions in both models a free
parameter was used to optimize the model for the specific dynamic
conditions and initial state of the cells (Baranyi et al., 1995). This will
be explained in the following sections.

2. Materials and methods

2.1. Experimental design

Chickens were slaughtered, cooled by air chilling for 3 h and
25 min and afterwards dissected into single filets at a poultry
slaughtering and processing company in Germany. Filets were
wrapped in foil, packed in a cardboard box (5–10 kg) and delivered
to a German wholesaler close to the laboratory. Fillets were then
transported in a cooling box from the wholesaler to the laboratory.
The time between the slaughtering of the chicken and the first
investigation was between 18 and 20 h.

In the laboratory filets were sliced into 100 g pieces under aseptic
conditions, put in individual pouches and wrapped with low density
polyethylene films. Initial bacterial count of Pseudomonas spp. was log
3.78±0.77 cfu/g. The pieces were stored under controlled temperature
conditions in high precision low temperature incubators (Sanyo MIR
153) at 2, 4, 10, 15 and 20 °C. Two different dynamic storage experi-
ments were conducted. In the first non-isothermal experiment the
following cycle was used: 24 h at 2 °C,12 h at 10 °C. In the second cycle
the temperature was varied in the following fashion: 10 h at 4 °C, 5 h
10 °C, 4 h 15 °C. During the experiments temperature was controlled
every 5 min by data loggers (Testo 151). Samples from the filets were
taken at appropriate time intervals and the number of Pseudomonas
spp. was investigated. Every measurement was repeated at least 6
times.

2.2. Sample preparation and microbiological analysis

For the analysis of Pseudomonas spp. a representative product
sample of 25 g was transferred to a Stomacher-bag and homogenized
for 60 s in a Stomacher 400 (Kleinfeld Labortechnik) with 225 g chilled
saline peptone diluent (0.85% NaCl with 0.1% petone). Further
appropriate 10-fold dilution of the homogenate were made with
saline peptone diluent. For each dilution blank, two replicas were
prepared. 0.1 ml from each appropriate dilution step were spread on
the surface of dried media into petri dishes. Pseudomonas spp. were
determined by using Pseudomonas agar base (Oxoid) plus CFC
supplement (Oxoid). Petri dishes were aerobically incubated at 25 °C
for 48 h.

2.3. The primary model and mathematical modelling under dynamic
temperature conditions

In this work the Baranyi and Roberts and modified Gompertz
models are used as primary models to fit the raw data for microbial
growth under a set of constant temperatures in order to obtain the
primary model curves.
These models are general and could be used for different types of
micro organisms and food (Baranyi et al., 1995; Van Impe et al., 2005).
All the model parameters which are related to the Pseudomonas
dynamics are obtained by fitting the growth curve on the measure-
ment data for Pseudomonas in poultry at different temperatures. In
this way the model parameters for each selected temperature are
obtained. In the next step the secondary model is developed where
the functional dependence of themodel parameters on temperature is
achieved.

The microbial growth under dynamical temperature conditions
according to the Baranyi and Roberts model is described by the
following set of differential equations with appropriate initial
conditions (Baranyi et al., 1995; Baranyi and Roberts, 1995; Baranyi
et al., 1993; Baranyi and Roberts, 1994)

dq tð Þ
dt

¼ m � q tð Þ; q 0ð Þ ¼ q0 ð1Þ

dN tð Þ
dt

¼ μ0 � α tð Þ � 1−
N tð Þ
Nmax

� �m� �
� N tð Þ; α tð Þ ¼ q tð Þ

1þ q tð Þ ; N 0ð Þ ¼ N0; ð2Þ

where q0 and q(t) are the quantities which are related to the critical
substance necessary for growth and characterize the physiological state
of the culture in the moment of inoculation and later time, respectively.
The temperature-dependent specific growth rate, expressed in [1/h], is
denoted by μ0. N0, Nmax and N(t) are initial, maximal and actual cell
concentration, respectively, expressed in [cfu/g],m is a shape parameter
forwhichm=1was assumed. The adjustment function,which takes into
account the lag phase during which the population adapts to the new
environment is denoted by α(t). The relative growth rate ν relates to the
critical substance and determines the quickness of the transition from
the lag phase to the exponential phase. The growth of the bacterial
culture is a result of production of the critical substances by certain
enzymatic reactions and it has been assumed that after inoculation, the
critical substance increases at the same specific rate as the cells in the
exponential phase (Baranyi et al., 1995). This suggests that specific
growth rate for quantity q is equal to the relative growth rate of
the colonies (i.e. ν=μ0) (Baranyi and Roberts,1994). The “logistic” part in
Eq. (2) limits the population growth to the value Nmax.

The specific growth rate is determined by the environmental
conditions, e.g., temperature, pH, NaCl%, water activity. In this work
only temperature dependence is considered and the other environ-
mental parameters are considered to be constant (Buchanan et al.,
1993; Buchanan et al., 1989).

The main assumptions for the dynamical temperature conditions
are that the specific growth rate is changing instantaneously with
temperature and parameters Nmax and q0 are temperature indepen-
dent (Baranyi et al., 1995).

If the temperature variation in time is described by the
temperature profile T(t), the above system of equations is solved by
integration in the following way (Baranyi and Roberts, 1994):

q tð Þ ¼ q0 � exp ∫
t

0
μ0 T t1ð Þð Þdt1

 !
ð3Þ

y tð Þ ¼ y0 þ A tð Þ− ln 1þ exp A tð Þð Þ−1
exp ymax−y0ð Þ

� �
; A tð Þ ¼ ∫

t

0
μ0 T t1ð Þð Þ � α t1ð Þ � dt1;

y tð Þ ¼ ln N tð Þð Þ; y0 ¼ ln N0ð Þ; ymax ¼ ln Nmaxð Þ; h ¼ ln 1þ 1=q0ð Þ:

ð4Þ

The quantity y(t) in the equations mentioned above is the natural
logarithm of the cell concentration N(t).

Function A(t) expresses a time delay in growth during the
transitions from lag phase to exponential growth phase, and these
transitions are determined by the rise of the critical substance given
by the quantity q(t) in Eq. (2).
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Instead of using parameter q0, the quantity h=ln(1+1/q0) is more
stable in practical calculations. For constant environmental conditions
the growth curve for the Baranyi and Roberts model has been
expressed by the following equation (Baranyi et al., 1995):

y tð Þ ¼ ymax þ ln
1− exp −hð Þ þ exp μ0t−hð Þ

exp ymax−y0ð Þ þ exp μ0 � t−hð Þ− exp −hð Þ
� �

: ð5Þ

The maximum specific growth rate could be defined as the actual
specific growth rate at the inflection point of the growth curve as
shown in Fig. 1. The inflection point and maximum specific growth
rate for the Baranyi and Roberts model are evaluated in Eqs. (A1)–(A4).
The instant and maximum specific growth rates are expressed by the
following relations respectively:

μ tð Þ ¼ 1
N tð Þ

dN tð Þ
dt

¼ dy tð Þ
dt

; ð6Þ

μmax ¼ μ tinflð Þ ¼ k � μ0; k ¼
1þ q0ð Þ � Nmax

N0
−1

� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q0ð Þ � Nmax

N0
−1

� �
þ 1

s !2 ; 0 b k b1;

Nmax NNN0 ) k ≈ 1; μmax ≈ μ0:

ð7Þ
where μ(t) is the actual specific growth rate at instant t and μmax is the
maximum specific growth rate. From the above equation it could be
seen that the correction factor k is in range between zero and one and
in the limiting case of Nmax≫N0, k is approximately equal to one and
the maximum specific growth rate is approximately equal to the
specific growth rate μ0, which follows from Eq. (7). If the model
parameters N0 and Nmax are temperature independent, the correction
parameter k is also temperature independent.

By using Eq. (6) for the inflection point the natural logarithm of the
cell concentration at the inflection point-yinfl is given by the following
equation:

yinfl ¼ y tinflð Þ ¼ ln Nmaxð Þ−1
2
ln

Nmax

N0
þ q0 � Nmax

N0
−1

� �� �
: ð8Þ

Here it is important to emphasize that μ0 is a model parameter in
the Baranyi and Roberts model with the dimension of the specific
Fig. 1. The schematic view of the growth curve with corresponding lag phase and
inflection point in the case of the Baranyi and Roberts model.
growth rate and μmax is the maximum specific growth rate i.e. actual
specific growth rate at the inflection point of the growth curve.

According to Fig. 1 the lag phase at constant environmental
conditions could be exactly expressed using the correction factor k
from Eq. (7) and the model parameters h and μ0 with the following
exact equations:

λ ¼ tinfl−
yinf l−y0
μmax

¼ h
k � μ0

¼ h
μmax

;

λaprox ¼ h
μ0

)λ ¼ λaprox

k

ð9Þ

where λ and λapprox are exact and approximate lag phase respectively.
Under the same conditions as given in Eq. (7) the following limiting

relations hold (Baranyi et al., 1993; Swinnen et al., 2004):

Nmax NNN0 ) λ � μ0 ≈ h)λ ¼ lim
t!þ∞

t−A tð Þð Þ: ð10Þ

As the quantity h only depends on the initial physiological state of
the colony, it could be concluded from the equationsmentioned above
that the product of the specific growth rate and the lag phase is
independent of the environmental parameters after inoculation
(Baranyi et al., 1995).

According to Eq. (9) the lag phase for the Baranyi and Roberts
model should be corrected with the factor k given by Eq. (7). As the
correction factor is always less than one, the estimated lag time by the
exact equation will always be higher than the lag time estimated by
the approximate equation (λNλapprox). Also from (7) follows that the
maximum specific growth rate for the Baranyi and Roberts model μmax

will always be smaller than μ0.
The modified Gompertz primary model for microbial growth has

been expressed by the following equation (Zwietering et al., 1990;
Juneja et al., 2007; Gibson et al., 1988; Buchanan et al., 1993):

y tð Þ ¼ Aþ C � exp − exp −B � t−Mð Þð Þð Þ
¼ Aþ C � exp − exp −

e � μmax

C
� t−λð Þ þ 1

� �� �
ð11Þ

where A, C, B and M are model parameters and y, λ, μmax have the
same meaning as in (4–7), i.e. the natural logarithm of the cell
concentration, lag phase and maximum specific growth rate respec-
tively, e is base of the natural logarithm.

The parameter M is the inflection point of the sigmodial curve
given by (11), A+C is the natural logarithm of the maximal
concentration ymax, and parameter A is the asymptotic value for y(t)
if the time is taken as minus infinity.

The maximum specific growth rate and the approximate expres-
sion for lag phase for the modified Gompertz model has been
expressed by (Zwietering et al., 1990; Gibson et al., 1988):

μmax ¼ B � C
e

; exp B �Mð Þ NN 1) λ ≈M−
1
B
: ð12Þ

The exact expression for lag phase, evaluated in A5 and A6 has
been expressed by the following relation (McMeekin et al., 1993):

λ ¼ M−
1
B

1− exp 1− exp B �Mð Þð Þð Þ: ð13Þ

In the case of dynamical temperature conditions, first order
kinetics should be used and growth of the bacterial populations has
been described by the following first order differential equations with
corresponding initial conditions (Van Impe et al., 1995):

dy tð Þ
dt

¼ e � μmax

C
� y−Að Þ � ln C

y−A

� �
; y 0ð Þ ¼ Aþ C exp − exp B �Mð Þð Þ: ð14Þ

The model parameter M is included only in the initial conditions.
For constant environmental conditions the above relation is equiva-
lent to the one given by Eq. (11).



Fig. 2. Raw data and fitted growth curves for Baranyi and Roberts model for five
different temperatures (bhN=1.0442).

Fig. 4. Fitted growth curves for Baranyi and Roberts model (5) at 15 °C with 90% and 95%
confidence bands.
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If we assume that parameters A and C are temperature indepen-
dent and that only parameter B is a function of the temperature the
solutions has been expressed by the following integral equation (Van
Impe et al., 1995):

y tð Þ ¼ Aþ C � exp − exp − ∫
t

0

e � μmax T t1ð Þð Þ
C

� dt1 þ C0

 ! !
;

C0 ¼ B T 0ð Þð Þ �M≈
e
C
hþ 1; h ¼ μmax � λ:

ð15Þ

By doing so, in both Eqs. (15) and (4) there is the same free
parameter h, which could be used to optimize the model during the
calibration process by comparison with data from measurements
obtained under dynamical temperature conditions. It is important to
emphasize that in the above equation we used connection between
parameter h and the maximum specific growth rate and the lag phase
from the Baranyi model given by Eq. (9).

2.4. Secondary model

To obtain the temperature dependence of the model parameters,
the growth curves for constant temperature given by Eqs. (5) and
Fig. 3. Raw data and fitted growth curves formodified Gompertz model for five different
temperatures.
(11) for Baranyi and Roberts and modified Gompertz primary
models, respectively, were fitted on the measurement data for
five different temperatures: 2, 4, 10, 15 and 20 °C. For this tem-
perature range (and also the temperature range for dynamic
conditions of 2 °C–20 °C) the Ratkowsky square root model was
used as a secondary model for specific growth rate for the both
models (Ratkowsky et al., 1983, 1982; Zwietering et al., 1991;
Amézquita et al., 2005):

ffiffiffiffiffiffiffiffiffiffi
μmax

p ¼ b � T−Tminð Þ; ð16Þ

where b is a model parameter expressed in [(h0.5 °C)−1] and Tmin is the
conceptual minimal temperature for microbial growth. Both para-
meters are obtained by fitting the experimental data for specific
growth under different constant temperatures. The above model is
valid only for the temperature range [Tmin, Topt], where Topt is the
optimal temperature for microbial growth.

The maximal bacterial concentration (Baranyi et al., 1995;
Koutsoumanis, 2001) as well as the initial physiological state of
the cells (Baranyi et al., 1995; Amézquita et al., 2005) are assumed
to be temperature independent in the considered temperature
range.
Fig. 5. Fitted growth curves for modified Gompertz model (11) at 15 °C with 90% and
95% confidence bands.



Table 1
The estimated values and standard errors for parameters in the Baranyi and Roberts
primary model in the first step, where all model parameters are variable, with pseudo
R2 and MSE (mean square error)

Tem
[°C]

y0 log
[cfu/g]

ymax log
[cfu/g]

μmax

[1/h]
h MSE Pseudo

R2

2 3.97±0.32 10.15±0.46 0.0264±0.0045 0.601±0.845 0.1373 0.9822
4 3.95±0.30 9.73±0.35 0.043±0.0075 1.3607±1.0124 0.1145 0.9860
10 3.53±0.33 10.14±0.78 0.08102±0.0146 0.3897±0.8864 0.1559 0.9804
15 4.45±0.26 9.51±0.23 0.2355±0.0423 2.659±1.1504 0.1083 0.9858
20 3.22±0.15 8.40±0.18 0.2545±0.0279 0.2098±0.4237 0.0235 0.9963

Table 2
The estimated vales and standard errors for recalculated parameters in the Baranyi and
Roberts primary model for fixed parameter h, with pseudo R2 and MSE (mean square
error)

bhN=1.0442

Tem [°C] y0 log[cfu/g] ymax log[cfu/g] μmax [1/h] MSE Pseudo R2

2 4.10±0.20 10.05±0.34 0.0284±0.0022 0.1228 0.98215
4 3.88±0.208 9.80±0.31 0.043±0.0027 0.09707 0.98577
10 3.69±0.22 9.84±0.46 0.091±0.007 0.14771 0.97842
15 4.12±0.24 9.59±0.29 0.185±0.0165 0.1406 0.9779
20 3.39±0.14 8.24±0.15 0.304±0.0173 0.03656 0.99293

Table 4
The calculated values for inflection point, maximum specific growth rate exact and
approximated lag time and correction factor k in the Baranyi and Roberts model and lag
time and specific growth rate in the modified Gompertz model

Baranyi and Roberts Gompertz

Temperature
[°C]

tinfl
[h]

μmax

[1/h]
λ-exact
[h]

λ-approx
[h]

k λ
[h]

μmax

[1/h]

2 133.794 0.0262 39.835 36.702 0.923 20.364 0.0259
4 92.644 0.0375 27.811 25.574 0.921 26.653 0.0402
10 42.656 0.0849 12.291 11.410 0.9297 6.102 0.0858
15 19.1837 0.1672 6.242 5.623 0.903 8.883 0.2027
20 10.6891 0.2637 3.959 3.432 0.871 0.951 0.2593
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2.5. Model application

Obtained measurement data were converted in ln(cfu/g) and were
fitted to the growth curves given by Eqs. (5) and (11) for the primary
Baranyi andmodified Gompertzmodel respectively. In the case of Baranyi
and Roberts in the first step the fourmodel parameters: y0, ymax, μmax, and
h in Eq. (5), were obtained by non-linear regression using the software
ORIGIN 7.5. As suggested by various authors (Baranyi et al., 1995;
Amézquita et al., 2005), the parameter h obtained for different
temperatures is averaged and mean values bhN were used in the next
step utilizing the same equation. This follows from the assumption that if
the measurement procedures are standardised then initial physiological
state of the colony, i.e. quantity h should be the same for different
temperaturesduring the staticmeasurements (Baranyi andRoberts,1994).

In the second step the three remaining model parameters: y0, ymax

and μmax are recalculated using Eq. (5) with fixed value of the quantity
bhN from the first step. The specific growth rate obtained in this way
was used in the secondary model.

3. Results and discussion

In Figs. 2 and 3 the fitted growth curves at constant temperatures
for Baranyi and Roberts (Eq. (5)) and modified Gompertz primary
models (Eq. (11)) are shown respectively.

In Figs. 4 and 5 the fitted growth curves at 15 °C with 90% and 95%
confident bands for the Baranyi and Roberts and modified Gompertz
model, respectively, are presented.

In Tables 1 and 2 the numerical values calculated for the model
parameters with standard deviation, mean square error (MSE) and
Table 3
The estimated vales and standard errors for parameters in the modified Gompertz primary

T [°C] A log[cfu/g] B [1/h] C log[cf

2 3.548±1.076 0.00945±0.004 7.468±2
4 3.866±0.498 0.0166±0.005 6.554±1
10 3.064±1.0935 0.0303±0.012 7.697±2
15 4.469±0.3391 0.1047±0.022 5.262±0
20 2.619±0.6245 0.1135±0.022 6.209±0
pseudo R2 (Bates andWatts,1988; Bickel and Doksum, 2001;Wackerly
et al., 2002) in Baranyi and Roberts primary model before and after
fixing parameter h are presented, respectively.

From the above tables it can be seen that after fixing the parameter
h on the average value the recalculated specific growth rate in the
second step has a smaller standard error in all cases. Also it could be
noticed that in the first step parameter h has the biggest uncertainty.
From the standard errors for each parameter the marginal confidence
intervals could be calculated using the student distributions (Bates
and Watts, 1988).

In Table 3 the numerical values of the model parameters with
standard errors, MSE and pseudo R2 for the modified Gompertz model
are presented.

In Table 4 the estimated values using the exact and approximated
Eqs. (7), (9), (12), (13) and (A3) are summarized. The inflection point,
the maximum specific growth rate, exact lag time, and approximated
lag time in the Baranyi and Robertsmodel are calculated using the Eqs.
(A3), (7) and (9). On the other hand, the lag time and maximum
specific growth rate in the modified Gompertz model are calculated
using the relations 12 and 13, respectively. The inflection point for the
modified Gompertz growth curve is parameter M.

From the numerical results in Table 4 it could be seen that a good
agreement between the two models at constant temperature is
obtained for the maximum specific growth rates, and a less good
agreement for the results of lag phase. As the confidence intervals for
parameters in the Gompertz model at constant temperature (Table 3)
are larger than the ones for the Baranyi and Roberts model (Table 2)
the lag times in Table 4 obtained by the Baranyi and Roberts model for
this specific case are obtained with a higher confidence then the ones
obtained by the Gompertz model.

The results in Table 4 for lag time and maximum specific growth
rate suggest that the exact Eqs. (7) and (9) instead of approximations
should be used for the Baranyi and Roberts model in the cases when
the correction factor k in Eq. (7) is considerably smaller than one. From
the results in Table 4 one can conclude that one of the most important
parameters for the shelf life, the lag time, decreases with temperature
from 39.83 h to 3.95 h as temperature increases from 2 to 20 °C. In the
same temperature range the specific growth rate increases from 0.026
1/h to 0.263 1/h according to the Baranyi and Roberts model. Similar
conclusions follow from results obtained by the modified Gompertz
model. In Figs. 6 and 7 the temperature dependence of the specific
model with pseudo R2 and MSE (mean square error)

u/g] M [h] MSE Pseudo R2

.098 108.466±24.197 0.1471 0.9816
.094 83.714±10.879 0.1133 0.9861
.2 33.341±7.245 0.1354 0.983
.591 18.403±2.095 0.1651 0.9783
.904 7.398±1.521 0.022 0.9965



Fig. 6. Square root model (16) for temperature dependence of the specific growth rate in the
Baranyi and Roberts model for variable parameter h with 90% and 95% confidence bands.

Fig. 8. Joint 90% and 95% confidence intervals for the parameters b and Tmin in the
square root model (16) for the temperature dependence of the specific growth rate in
the Baranyi and Roberts model.
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growth rate in the Baranyi and Roberts model for variable and fixed
parameter h are presented, respectively. The 90% and 95% confidence
bands for the square root model are given as well.

In Fig. 8 the joint 90% and 95% confidence intervals for the
parameters in the square root model for fixed and variable parameter
h in the Baranyi and Roberts model are presented. The highest
posterior density (HPD) regions approach is used (Bates and Watts,
1988; Bickel and Doksum, 2001). From the above figure it could be
noticed that the surface of the joint interval for the parameters in the
square root model is much smaller for the fixed than for the variable
parameter h. This implicates that the results obtained using the square
root model for Pseudomonas in the Baranyi and Roberts model
obtained in the second step using fixed value for parameter h, as
explained above, have higher confidence than the ones obtained using
variable parameter h in the first step.

In Table 5 the estimated values for the parameter in the square root
model for the fixed and variable parameter h in the Baranyi and
Roberts model are presented.

From all presented results in Figs. 6–8 and Table 5 it can be
concluded that uncertainty of the parameters in the square rootmodel
is much smaller if the parameter h is fixed.

The square root model is used for modelling the temperature
dependence of the maximum specific growth rate in the modified
Gompertz model.
Fig. 7. Square root model (16) for temperature dependence of the specific growth rate in the
Baranyi and Roberts model for the fixed parameter hwith 90% and 95% confidence bands.
In Fig. 9 the maximum growth rate as a function of temperature in
the case of the modified Gompertz model is shown together with the
90% and 95% confidence bands for the square root model. In Fig. 10
the joint 90% and 95% confidence intervals for the parameters in the
square root approach for the Gompertz model are presented. From
the Fig. 9 it can be seen that the joint confidence intervals for
parameters in the square root approach for the Gompertz model is
bigger than the same interval for fixed h in the Baranyi and Roberts
model and smaller for variable parameter h.

In Table 5 the estimated values for the parameters b and Tmin as
well as MSE and pseudo R2 for the modified Gompertz model are
presented.

The detailed experimental validation and statistical comparison of
the presented model is beyond the scope of this paper. For the used
models there has been extensive discussion in the literaturewith their
characteristics under variable conditions (Baranyi and Roberts, 1994;
Baranyi, et al., 1995; Van Impe et al., 1995; Zwietering et al., 1991).

The presented models are calibrated using the initial conditions
(initial physiological state of the culture) for the two temperature
profiles for Pseudomonas spp. in poultry. The growth curves are shown
in Figs. 11 and 12.

In both cases the six replications of measurements under same
temperature conditions are averaged and used for calibration of the
models.

To be able to calibrate the model under dynamical temperature
conditions a free parameter is used in both models, as suggested in
Section 2.5 and Eqs. (4) and (15).

For both the models the free parameter used in the calibrationwas
the initial physiological state of the culture, namely q0, or h. In both
Table 5
Estimated parameters in the square root approach in the Baranyi and Roberts and in the
Gompertz model

Baranyi and Roberts

b [1/°C h1/2] Tmin [°C] MSE Pseudo R2

Variable h
0.02045±0.0029 −5.8812±2.466 0.00188 0.9432

Fixed h
0.0212±0.00115 −5.382±0.9186 0.0003 0.9913

Gompertz
0.02015±0.00161 −5.816±1.3886 0.00058 0.98117



Fig. 10. Joint 90% and 95% confidence intervals for the parameters b and Tmin in the
square root model for the temperature dependence of the specific growth rate in the
Gompertz model.

Fig. 11. The growth curves for thePseudomonas spp. in poultry under dynamical temperature
conditions (temperature profile 1) obtained using the Baranyi and Roberts in Eq. (4) and the
modified Gompertz model in Eq. (15) compared with measurement results.

Fig. 12. The growth curves for the Pseudomonas spp. in poultry under dynamical
temperature conditions (temperature profile 2) obtained using the Baranyi and Roberts in
Eq. (4) and themodifiedGompertzmodel in Eq. (15) comparedwithmeasurement results.

Fig. 9. Square root model for temperature dependence of the specific growth rate in the
Gompertz model with 90% and 95% confidence bands.
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cases the free parameter was obtained by minimizing the MSE. If the
initial conditions differ, perhaps because different supply chain is
analyzed, the model should be readjusted by recalculating the free
parameter to the new initial conditions.

The obtained results for variable parameters h for Baranyi and
Roberts and modified Gompertz model, respectively, and the relevant
statistics for the calibration of the mathematical models used for the
growth of Pseudomonas spp. in poultry for two temperature profiles 1
and 2 are presented in Table 6.

4. Conclusions

Baranyi and Roberts and modified Gompertz models have been
applied for the prediction of growth of Pseudomonas spp. in poultry
under variable temperature conditions. The secondary models used
are the Ratkowsky model (square root model) in both cases. The exact
expressions for the maximum specific growth rate, lag time and
inflection point in the case of the Baranyi and Roberts model are
presented. The modified Gompertz model under dynamical tempera-
ture conditions is changed introducing the same free parameter h as in
Baranyi and Roberts model. The dynamical measurements are used for
calibration of the models on the initial conditions of the cells and free
parameters are obtained by minimising the MSE.

A good agreement between models and data is obtained and
similar values for parameter h are obtained in both cases in the
dynamic regime.

The presented results in this study implied that both alternative
approaches are suitable for modelling the microbial growth of Pseu-
domonas spp. in poultry under dynamic temperature conditions for
predicting the shelf life.
Table 6
The estimated optimal values for the model parameter h in the Baranyi and Roberts and
modified Gompertz models, respectively, for two temperature profiles and relevant
statistics for the calibration of the models through comparison with measured data

Baranyi and Roberts Modified Gompertz

h MSE pseudo R2 h MSE Pseudo R2

Temperature profile 1
0.5573 0.62547 0.936 0.461 0.6542 0.9229

Temperature profile 2
0.4106 0.60911 0.8999 0.361 0.5964 0.8953
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Appendix A

The instant specific growth rate is given by the following relation:

μ tð Þ ¼ dy tð Þ
dt

¼ 1
N tð Þ

dN tð Þ
dt

¼ −
exp t � μ0ð Þ � q0 � 1þ q0ð Þ � N0−Nmaxð Þ � μ0

1þ q0 � exp t � μ0ð Þð Þ � Nmax þ q0 � N0 � exp t � μ0ð Þ−1ð Þ þ Nmaxð Þð Þ :

ðA1Þ

The specific growth rate has maximum at inflection point and it is
obtained using the following equations:

dμ tð Þ
dt

¼ d2y tð Þ
dt2

¼ exp t � μ0ð Þ � q0 � 1þ q0ð Þ � N0−Nmaxð Þ � exp 2 � t � μ0ð Þ � q20 � N0 þ q0 � N0−Nmaxð Þ−Nmax
� � � μ2

0

1þ q0 exp t � μ0ð Þð Þ2� Nmax þ q0 � exp t � μ0ð Þ−1ð Þ � N0 þ Nmaxð Þð Þ2
¼ 0)

ðA2Þ

tinfl ¼
1

2 � μ0
� Ln Nmax þ q0 � Nmax−N0ð Þ

N0 � q20

 !
ðA3Þ

μmax ¼ μ tinflð Þ ¼ k � μ0; k ¼
1þ q0ð Þ � Nmax

N0
−1

� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q0ð Þ � Nmax

N0
−1

� �
þ 1

s !2 ; 0 b k b 1;

Nmax NNN0 ) k≈1; μmax ≈ μ0:

ðA4Þ

The natural logarithm of cell concentration at the inflection point
and at the initial time (t=0) are given by the following equations
(McMeekin et al., 1993):

y tinflð Þ ¼ Aþ C
e
; y0 ¼ y t ¼ 0ð Þ ¼ Aþ C � exp − exp B �Mð Þð Þ ðA5Þ

The lag time is defined as interception between tangent line at
inflection point and horizontal line at y0 (McMeekin et al., 1993):

y0 ¼ λ−Mð ÞB � C
e

þ y tinflð Þ)λ ¼ M−
1
B

1− exp 1− exp B �Mð Þð Þð Þ ðA6Þ
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