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Abstract

A dual reciprocity method multi-domain (DRM-MD) approach for modeling laser–material interaction with axial symmetry was

developed. The proposed approach is based on the fundamental solution for the Laplace equation in 2D and is much simpler for

implementation than the dual reciprocity boundary element method (DRBEM) based on the fundamental solution for axisymmetric

problems incorporating elliptic integrals. The thermal model of laser–material interaction was applied for the cases of mono as well as

multi-layer structures. Different aspects of interaction up to the melting point of considered materials are presented. The effect of

temperature dependence of the absorption coefficients on the process of laser heating was considered. Numerical results for spatial as

well as temporal temperature distribution inside the material bulk are presented and compared to analytical solutions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dual reciprocity method multi-domain (DRM-MD)
approach was applied for laser–material interaction
analysis. Laser beams have a number of applications in
different areas of science, technology, material machining,
medicine [1–3], etc. In the present work, time-dependent
thermal models of interaction in case of cylindrical
geometry and mono as well as multi-layer structures were
considered. The numerical model of laser–material inter-
action described here is restricted only to heating effects of
the targeted material without destructive and disintegra-
tion processes during interaction, i.e. the incident intensity
of laser radiation was considered to be less or equal to
critical intensity. Although some analytical solutions of
thermal interaction exist, they are mainly for one- or two-
dimensional cases (2D) [4,5]. Use of numerical approaches
e front matter r 2006 Elsevier Ltd. All rights reserved.
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offers the possibility of analyzing more complicated cases
which are of interest in real-world applications. The
numerical methods allow for various boundary and initial
conditions, geometry, as well as temporal and spatial
distributions of loads, to be used.
The dual reciprocity method (DRM) was introduced by

Nardini and Brebbia [6], and is based on the boundary
element method (BEM) which transforms the governing
partial differential equation (PDE) using Green’s second
identity into an equivalent integral equation over the
boundary of the considered domain. The BEM requires
the fundamental solution for the governing PDE to be
available in closed form [7], otherwise, the additional terms
of the PDE, that are not considered when the fundamental
solution is derived, would appear in a domain integral. To
avoid this kind of problems the DRM was introduced,
which transforms the domain integral into an integral over
the boundary, preserving this way the boundary nature of
the numerical scheme. The starting boundary integral
equation is further transformed into equivalent system of
linear equations by meshing the boundary of the problem
domain, expressing unknown functions using their nodal
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Fig. 1. Geometry of the problem domain (R—radius of the structure; h1—

thickness of upper layer; h—height of whole structure; A—absorption

coefficient).
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values and interpolation function, evaluating the boundary
integrals over each boundary element and applying the
given boundary conditions.

The advantages of these approach in engineering
applications and various numerical analysis relative to
domain methods, such as the finite element method (FEM)
[8], is in the fact that only the boundary of the problem
domain needs to be discretized, saving this way efforts in
model preparation. However, for large problems the
domain methods have lower CPU and memory require-
ments than the BEM.

The dual reciprocity method-multi-domain (DRM-MD)
approach was introduced by Popov and Power [9] who
noticed that the DRM formulation combined with domain
decomposition leads to substantial improvement in accuracy
and convergence of the DRM. The formulation was initially
applied to the problem of flow of mixture of gases through a
porous media [10,11]. Further applications included solution
of the Navier–Stokes equation [12], non-Newtonian flow
problems at low Reynolds number [13] and flow and solute
transport in fractured porous media [14,15].

The DRM-MD is based on decomposition of the problem
domain into sub-regions and applying DRM approach on
each of the sub-regions separately with corresponding
matching conditions on the interface of the adjacent sub-
domains. The main advantage of the DRM-MD is that the
size of the sub-domains can be adjusted throughout the
domain according to what the problem under consideration
requests in order that the optimal solution procedure in
terms of efficiency and accuracy is achieved. In other words,
the DRM-MD is capable of utilizing the advantages of both
types of numerical techniques, i.e. domain based and
boundary-based techniques.

In the case of axisymmetric problems a major difficulty is
finding a suitable particular solution for a given basis
function [16–18]. In this work the DRM-MD approach was
implemented for axisymmetric problems, where the La-
place operator in cylindrical coordinates was divided into
two parts: a corresponding Laplace operator in a
rectangular coordinate system and a term arising due to
the cylindrical coordinate system. The fundamental solu-
tion for the Laplace equation in 2D was applied and the
term due to the cylindrical coordinate system was
considered to be additional term in the non-homogeneous
part of the Laplace equation, which was accounted for
through the DRM approximation.

The limiting value for the axial part of the Laplace
operator on the z-axis was evaluated by taking into account
the physical processes of the analyzed problem, and should
be considered for each problem separately. For the problem
of heat transfer the limiting value was evaluated according
to the physical low for conservation of thermal energy.

2. Mathematical model of interaction

The heating process provoked by a laser beam during
interaction was assumed to be due to absorption of the
laser beam in the thin surface layer of the bulk material.
The interaction with the material was modeled as an
equivalent surface thermal source with appropriate spatial
and temporal distributions. This work was focused on
cylindrical specimens and surface distributions of absorbed
incoming laser beam fluxes, and accordingly the tempera-
ture field analysis was performed using the cylindrical
coordinate system. Though this problem is a three-
dimensional one, as axial symmetry exists, the temperature
field is a function of the radial and axial coordinates only,
i.e. the problem under consideration becomes a 2D one. In
this work only mono and two layer structures, with ideal
thermal contacts between adjacent layers, were considered.
Nevertheless, the results can be applied to multi-layer
structures and imperfect/perfect thermal contact as well as
well. The geometry of the considered problem for a two-
layer case is shown in Fig. 1.
It was assumed that the spatial and temporal distribu-

tions of the laser beam intensity on the surface of the
material specimens could be described by a product of two
independent functions of the radial coordinate and time,
e.g. q(r) and j(t), respectively [4].
It was assumed that all the thermal parameters of the

material of interest in the considered temperature range are
constant and temperature independent, while the absorp-
tion coefficient was considered to depend on the tempera-
ture in a linear fashion [4]. The initial temperature inside
the specimen was supposed to be equal to the ambient
temperature T0. Heating of the specimen, according to the
above assumptions, for a two layer cylindrical structure
(Fig. 1.), with ideal thermal contact between layers, could
be described by the following equations [4]:

1

a1

qT1ðz; r; tÞ

qt
¼ DT1ðz; r; tÞ; 0pzph1; tX0; 0prpR,

1

a2

qT2ðz; r; tÞ

qt
¼ DT2ðz; r; tÞ; h1pzph; tX0; 0prpR. ð1Þ

Subscripts 1 and 2 correspond to the upper and to the
lower layer, respectively. The corresponding boundary
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conditions are:

�l1
qT1

qz
¼ AðTÞqðrÞjðtÞ; z ¼ 0; 0prpR;

�l1
qT1

qr
¼ a1T1; r ¼ R; 0pzph1,

�l2
qT2

qr
¼ a2T2; r ¼ R; h1pzph;

�l2
qT2

qz
¼ a2T2; z ¼ h; 0prpR, ð2Þ

T1 ¼ T2; l1
qT1

qz
¼ l2

qT2

qz
; z ¼ h1; 0prpR,

qT1

qr
¼ 0; r ¼ 0; 0pzph1;

qT2

qr
¼ 0; r ¼ 0; h1pzph,

where T is the temperature difference between the interior
domain temperature and ambient one, l is the coefficient of
thermal conductivity, a ¼ l/r � c is the coefficient of ther-
mal diffusivity, c is the specific heat, r is the material
density, a is heat transfer coefficient which determines the
rate of thermal losses on boundary surface, R and h are
specimen’s radius and length, respectively, and A(T) is
absorption coefficient of the laser radiation by the material
of the upper layer at temperature difference T.

The temperature dependence of the absorption coeffi-
cient is assumed to follow the following linear form

AðTÞ ¼ A0 þ B � T , (3)

where A0 is of the absorption coefficient at ambient
temperature T0 and B are constants whose value depend
on the type of material [4]. For Al the above constants have
the following numerical values: A0 ¼ 0.642; B ¼ �4:28�
10�4 1

K
.

The thermal losses, in axial and radial directions, were
modeled by free thermal convection. Structures with three
or more layers could also be described by the above model.

3. The dual reciprocity method (DRM)

If we consider a mono-layer structure, the governing Eq. (1)
at nth time step could be transformed in the following form:

q2T

qr2
þ

q2T
qz2
¼

1

a

qT

qt
�

1

r

qT

qr
¼ b; 0prpR; 0pzph,

b ¼ b1 � b2; b1 ¼
1

a

qT

qt
�

1

aDt
ðTðr; z; ðnþ 1ÞDtÞ

� Tðr; z; nDtÞÞ

¼
1

aDt
ðTnþ1 � TnÞ; b2 ¼

1

r

qT

qr
, ð4Þ

where Dt is time step. The fundamental solution for the
Laplace equation in 2D is given by [7]:

DT� xj jð Þ þ d xð Þ ¼ 0; D ¼
q2

qr2
þ

q2

qz2
;

jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
; T�ðjxjÞ ¼

1

2p
ln

1

jxj

� �
; x ¼ ðr; zÞ. ð5Þ
By applying the Green’s identity (4) can be transformed
into the following integral form [7]:

wðxÞ � TðxÞ þ
Z
Gy

q�ðjx� yjÞ � uðyÞdGy

�

Z
Gy

T�ðjx� yjÞ � qðyÞdGy ¼ �

Z
Oy

T�ðjx� yjÞ � bðyÞdOy,

ð6Þ

w xð Þ ¼

1; x 2 O;

y=2p; x 2 G; O ¼ ðr; zÞ 0prpR; 0pzphj
� �

;

0; xeO;

8><
>: G ¼ qO,

where y is the internal angle at boundary point x in
radians, x ¼ (rx, zx), y ¼ (ry, zy), O is the problem domain,
G is the contour that encloses the domain O, n is the
direction of the normal to G, and q ¼ qT=qn; q� ¼ qT�=qn.
To avoid domain integration on the right-hand side in

(6) the non-homogenous term b could be expanded using
approximation functions in the following form [19]:

bðyÞ � ~bðyÞ ¼
XNþL

j¼1

akf ðjy� yjjÞ þ PðyÞ, (7)

where ak are unknown coefficients; f(|y�yj|) is approxima-
tion function, which belongs to a family of conditionally
positive definite (CPD) radial basis functions (RBFs) of
order k; P is a polynomial of order k�1; |y�yj| is a distance
between fixed collocation point yj and point y where the
function is approximated; L and N are the number of
boundary and internal nodes, respectively, and y ¼ (ry, zy);
yj ¼ (rj, zj) [20].
The above equation is identically satisfied in all

collocation nodes. The following additional equations are
used to achieve uniqueness of the solution of the above
system of equations [20]:

XNþL

j¼1

aj � r
b
j ¼ 0;

XNþL

j¼1

aj � z
b
j ¼ 0; b ¼ 0; 1; . . . ; k � 1. (8)

Next, an auxiliary function
_
uðy; yjÞ is introduced in the

following way [12]:

D_
uðy; yjÞ ¼

q2_uðy; yjÞ

qr2y
þ

q2_uðy; yjÞ

qz2y
¼ f ðjy� yjjÞ. (9)

Instead of using particular solutions for Laplace’s
operator in cylindrical coordinates, particular solutions
for Laplace’s operator in rectangular coordinates were
used, which can be expressed in analytical form for a large
number of RBFs [16]. Accordingly, much easier DRM-MD
numerical approach for axisymmetric problems was
obtained.
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Using expressions (7) and (9) the domain integral in (6)
could be transformed in the following way:Z

Oy

bðyÞT�ðjx� yjÞdOy

¼
XNþL

j¼1

aj

Z
Oy

Dûðy; yjÞT
�ðjx� yjÞdOy

¼ �
XNþL

j¼1

ajðwðxÞ
_
uðx; yjÞ

þ

Z
Gy

_
uðy; yjÞq

�ðjx� yjÞ

�
_
qðy; yjÞT

�ðjx� yjÞdGyÞ, ð10Þ

where
_
qðy; yjÞ ¼ ðq

_
uðy; yjÞÞ=qnj.

By substituting (10) into (6) the next equation is obtained
[19]:

wðxÞTðxÞ þ
Z
Gy

TðyÞq�ðjx� yjÞ � T�ðjx� yjÞqðyÞð ÞdGy

¼
XNþL

j¼1

ajðwðxÞ
_
uðx; yjÞ þ

Z
Gy

ð
_
uðx; yjÞq

�ðjx� yjÞ

�
_
qðy; yjÞT

�ðjx� yjÞÞdGyÞ. ð11Þ

The limiting value of the term 1=r � ðqT=qrÞ along z-axis
could be determined by using the law for conservation of
thermal energy. The thermal flux through the elementary
surface S which encloses elementary volume dV during
infinitesimally time period dt, (Fig. 2.), could be expressed
through the following relations:

dV � r � c � dT ¼ �

I
S

~q � d s
*
�dt; dT ¼

qT

qt
dtþ v

*
rT ; ð v

*
¼ 0Þ;

dV ¼ Dr2p � dz,I
~q � d~s ¼ qv � 2Drp � dzþ qz2 � qz1

� �
Dr2p

)
r � c
2

qT

qt
¼ �

qr

Dr
þ

1

2

qz2 � qz1

dz

� �
,

qr ¼ � l
qT

qr
; qz ¼ �l

qT

qz

) lim
Dr!0

1

Dr

qT

qr
¼

1

2
�

1

a

qT

qt
�

q2T
qz2

� �
, ð12Þ
dz

Δr

qr

qz1

qz2
z

r

S

Fig. 2. The thermal flux consideration along z-axis.
where a, r and c have same meaning as in relations 1 and 2,
~v is velocity of element dV, q1,2 is thermal flux in
axial direction at point z and z+dz, respectively,
and qr is thermal flux in radial direction on boundary
surface S.
After discretization of the boundary G, the unknown

functions T and q are interpolated on the linear elements
on the boundary [6], the boundary integrals are evaluated
and using collocation technique Eq. (11) is transformed
into a system of linear equations.
The nodal values T(xi),

_
uðxiÞ, q(xi),

_
qðxiÞ, b(xi), b1(xi),

b2(xi) and the coefficients ai could be expressed in matrix
form as

b ¼ F � a ¼ ½bðy1Þ � � � bðyK Þ�K�1; F ¼ ½f ðyi; yjÞ�K�K ,

a ¼ ½a1 � � � aK �K�1 ) a ¼ F�1 � b,

u ¼ ½Tðx1Þ � � �TðxK Þ�K�1; q ¼ ½qðx1Þ � � � qðxK Þ�K�1,

u

Þ

¼ ½
_
uðx1Þ � � �

_
uðxK Þ�K�1; q

Þ

¼ ½
_
qðx1Þ � � �

_
qðxK Þ�, ð13Þ

b1 ¼
1

a � Dt
u� u0ð Þ; (14)

b2i ¼

P
j;n;m

dij
1
ri

qf jn

qr
f �1nmTm; ria0;

1
2aDt

Ti � T0ið Þ �
P
j;n

1
2

q2f ij

qz2
� f �1in Tn; ri ¼ 0;

8>>><
>>>:

b2 ¼ b21 � � � b2k½ �K�1; K ¼ N þ L, ð15Þ

qf jn

qr
¼

qf y; yn

� �
qr

				
y¼yj

;
q2f jn

qz2
¼

q2f y; yn

� �
qz2

					
y¼yj

,

f �1nm ¼ F�1

 �

nm
; y ¼ r; zð Þ; yn ¼ rn; znð Þ, ð16Þ

where T0i is a temperature obtained in the previous time
step at node i, N is the number of boundary nodes, L is the
number of internal nodes, K ¼ N+L is the number of all
nodes, and dij is the Kronecker delta symbol. In the above
equations the time derivative was approximated by finite
difference.
For some RBFs the second derivative has singularity in

collocation nodes and could not be used in above manner.
To avoid this problem the second derivative could be
expressed in the following way [21]:

u ¼ F � b; )
qu
qz
¼

qF
qz
� b ¼

qF
qz
� F�1 � u,

qu
qz
¼ F � g)

q2u
qz2
¼

qF
qz
� g ¼

qF
qz
� F�1 �

qu
qz
¼

qF
qz
� F�1

� �2

� u.

ð17Þ

In all the numerical examples presented in this paper, the
above expression for second derivatives was used.
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Fig. 3. Distribution of the temperature difference along r-axis, on upper
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ATPS and 1+r RBFs, compared to analytical solution.
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the Al specimen obtained using DRM-MD (4-sub-domain), with ATPS
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Next, (11) could be expressed in matrix form by using the
following relations [12]:

Hu�Gq ¼ ðH u
Þ

�G q

Þ

ÞF�1 bþ I0, (18)

I0 ¼ I0i½ �; I0i ¼
A0

l

Z r0

0

I ry; n � Dt
� �

� T� ~y�~yi

		 		� �
� dry,

~y ¼ ry; 0
� �

; ~yi ¼ ri; zið Þ; i ¼ 1; . . . ;K , ð19Þ

where H and G are matrices whose matrix elements were
evaluated from the contour integrals. The elements of the
vector q over contour G could be expressed, according to
the boundary conditions, by the elements of vector u. The
elements of vector I0 represent the equivalent thermal loads
on upper surface of the specimen.

4. The DRM-MD approach

The DRM-MD approach is based on the decomposition
of the problem domain into sub-domains and application
of the DRM on each sub-domain separately [19]. At the
mth interface between two adjacent sub-domains i and
i+1, matching conditions are imposed in the following
way:

Tijm ¼ Tiþ1

		
m
¼ T jm; li

qTi

qn

				
m

¼ liþ1
qTiþ1

qn

				
m

, (20)

where li and li+1 are the coefficients of thermal
conductivity in the ith and i+1th sub-domain, respectively,
n is the normal on interface between sub-domains, and T|m
is the temperature on mth interface. In the case of two
different layers, as we suppose that thermal contact
between layers is ideal, the temperatures in both layers
on the interface are equal.

Using the sub-system matrices evaluated from the DRM
procedure in each of the sub-domains separately, the
system matrix for the DRM-MD formulation is assembled.
The DRM-MD system matrix is block-banded matrix with
one block for each sub-region and overlaps between the
blocks when sub-regions have common interface.

5. Numerical results

5.1. Case study 1

The governing Eq. (1) with corresponding boundary
conditions (2) for a single layer homogenous Al specimen
using the DRM-MD approach was solved. A specimen of
cylindrical geometry (Fig. 1) with the following dimen-
sions: radius R ¼ 7mm and length h ¼ 5mm was con-
sidered. Four equal sub-domains of rectangular shape with
dimensions 3.5� 2.5mm and with 21 boundary nodes on
each side were used. The total number of interior nodes
was 268. The following properties of the incoming laser
beam were considered: power of incoming laser radiation ¼
500W, coefficient of absorption was A0 ¼ 0.642 and B ¼ 0,
radius of laser beam 1mm, top head profile and constant
laser beam intensity with time duration of 1 s. The
following coefficients were used for aluminum: lal ¼
240W/mK; cal ¼ 1021.711 J/kg; ral ¼ 2700 kg/m3; aal ¼

l/r � c and aal ¼ 10W/m2K.
The temperature field distribution, in radial and axial

direction, with four sub-domains and comparison with
analytical solution [22] are presented in Figs. 3 and 4,
respectively. The results were obtained by using augmented
thin plate spline (ATPS) and the function 1+r which was
often used in the DRM in the past [19,20]. Both RBF
functions produce satisfactory accuracy, with the ATPS
being slightly more accurate than 1+r.
In Figs. 5 and 6 the comparisons of the accuracy are

shown along r and z directions, respectively, for the Case
study 1, relative to analytical results [22], using ATPS,
multi-quadric (MQ) [20] and 1+r RBFs. The dimensions
of the specimen, the parameters of incident laser beam and
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the mesh data were the same as in the previous case. Values
of shape parameters in a range from 10�7 to 103 were tested
and the best results were obtained for the value around
10�4. Results for two different values of shape parameter
for the MQ function are shown. From Figs. 5 and 6 it
could be observed that ATPS and MQ achieved the highest
accuracy, though in the case of MQ sensitivity to the value
of the shape parameter c was observed. This problem when
using MQ RBFs in combination with DRM-MD has
already been reported in the open literature [24].

In Figs. 7 and 8 comparison of accuracy for the Case
study 1, relative to analytical results, for different number
of sub-domains using ATPS-RBFs are presented. The total
number and positions of all nodes was fixed, and only the
number of subdomains was changed. In the case of
subdivision into four sub-domains, four equal rectangular
sub-domains with dimensions 3.5� 2.5 and 21 boundary
nodes on each side were used. The number of interior
nodes inside of each sub-domain was 20.
Subdivisions into one, two, three and four sub-domains

were created by merging these basic sub-domains. The
dimensions of the specimen and the parameters of incident
laser beam were the same as in the previous case.
The results show that larger number of sub-domains

leads to higher accuracy, which confirms the findings
already reported in the past [9–11].
The temperature change in time at two different

locations on the upper surface of the mono-layer speci-
mens, for the same type of problem as above, in the cases
of constant as well as linearly temperature-dependent
absorption coefficient, with A0 ¼ 0.642 and B ¼ �4.28�
10�4 1/K (Eq. (3)) are shown in Fig. 9. A domain
decomposition with four sub-domains and ATPS-RBF
was used, with the same nodes’ arrangement as in the
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Fig. 9. Change of temperature in time on the upper surface at two

different locations on the mono-layer specimen for cases of constant and

linear temperature dependence of the absorption coefficient.
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Fig. 10. The distributions of the temperature differences in axial direction

in case of two layer structures (Al–Glass) for two thicknesses of Al layer,

obtained by the DRM-MD with nine sub-domains for two values of

coordinate r.
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examples presented in Figs. 3 and 4. The dimensions of the
specimen and the parameters of the incident laser beam
were the same as in the previous case. The results show that
the case of constant absorption coefficient leads to higher
temperatures on the specimen’s surface.

5.2. Case study 2

The geometry of the problem considered is shown in
Fig. 1. The upper layer of the two-layer structure is made
of Al and the lower layer is made of glass. The following
dimensions of the structures were used: (i) Al-layer—
0.5mm, glass layer—4.5mm; and (ii) Al-layer—0.7mm,
glass layer—4.3mm thicknesses. In both cases the radius of
the specimen was 7mm. The following properties of the
laser beam were assumed: power—100W, radius of laser
beam—1mm, the laser beam has constant intensity
with the top head profile and time duration of 1 s. The
following coefficients were used for the glass layer:
lg ¼ 0.582W/mK; cg ¼ 770J/kg; rg ¼ 2400kg/m3; ag ¼ r/lc

and ag ¼ 0.02425W/m2K.
Fig. 10 shows the distributions of temperature field in

axial direction at r ¼ 0 and 7mm. The results show that as
the Al layer is thicker, the temperature achieved is lower
because of the high thermal conductivity of Al.

Because of non-homogeneity and large difference
between the physical parameters of materials (glass and
Al), for small time steps the numerical procedure may
become unstable, which was found out to be the case for
the ATPS RBF. When this function was used the results
got less accurate and only time steps larger than 0.052 s
could be used. For smaller time steps the numerical
procedure became unstable. In this case MQ-RBFs with
shape parameter c ¼ 10�4 were used leading to satisfactory
accuracy and stability of the solution. A domain decom-
position with nine sub domains, rectangular in shape, and
1181 nodes (504-boundary nodes and 677-interior ones)
was used. A linear temperature dependence of the
absorption coefficient was assumed (Eq. (3)).

5.3. Case study 3

The next example has been solved by Wrobel et al. [16]
using BEM approach based on fundamental solution
including elliptic integrals. The geometry and boundary
conditions in cases of solid and hollow cylinders are
presented in Figs. 11(a) and (b), respectively. Because of
the symmetry only one half of the hollow cylinder was
discretized.
Domain decomposition with nine sub-domains was used

with a total number of 953 nodes in the case of the solid
cylinder (504-boundary nodes and 449-internal nodes) and
729 in the case of hollow one (376-boundary nodes and
353-internal nodes).
In Tables 1 and 2 the numerical results obtained by

Wrobel et al. [16] and the present DRM-MD approach
with ATPS-RBFs are shown, for the case of the steady-
state temperature distribution inside solid and hollow
cylinders, respectively. The numerical results are compared
to analytical solution. It can be observed that the DRM-
MD approach with the present formulation achieved
accuracy of the same order as the approach applied by
Wrobel et al. [16]. This indicates that the present
formulation represents a useful alternative for solving
axisymmetric problems taking into account the simplicity
of implementation for the present formulation compared to
the formulation based on fundamental solution for
axisymmetric problems.

6. Conclusion

A DRM-MD approach for axisymmetric heat transfer
problems was developed for the case of material heating
with laser radiation.
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Fig. 11. The geometry, boundary conditions and numerical values for all parameters, in case of solid and hollow cylinder [17].

Table 1

The numerical results for the temperature distribution on the outside boundary (R ¼ 1) of the solid cylinder using DRM-MD approach (9 sub-domains,

ATPS-RBFs) for axisymmetric geometry, compared to BEM and the analytical solutions [17]

z BEM (constant) BEM (linear) Analytical DRM-MD

0.375 0.807 — 0.805 0.8051

0.500 — 0.751 0.751 0.7510

0.875 0.606 — 0.604 0.6043

1.000 — 0.560 0.560 —

1.375 0.437 — 0.436 0.4357

1.500 — 0.397 0.397 0.3972

1.875 0.289 — 0.289 0.2887

2.000 — 0.254 0.254 —

2.375 0.155 — 0.156 0.1559

2.500 — 0.124 0.124 0.1242

Table 2

The numerical results for the temperature distribution inside the hollow cylinder using DRM-MD approach (9 sub-domains, ATPS-RBFs) for

axisymmetric geometry, compared to BEM and analytical solutions [17]

r z BEM (constant) BEM (linear) Analytical DRM-9MD

3.0 4.0 0.140 0.141 0.141 0.1406

3.0 3.0 0.317 0.320 0.319 0.3183

3.0 2.0 0.556 0.556 0.556 0.5571

3.0 1.0 0.762 0.760 0.761 0.7626

3.0 0.0 0.832 0.831 0.831 0.8322

5.0 4.0 0.043 0.043 0.043 0.0431

5.0 3.0 0.088 0.088 0.088 0.0884

5.0 2.0 0.133 0.133 0.133 0.1329

5.0 1.0 0.167 0.167 0.167 0.1669

5.0 0.0 0.180 0.180 0.180 0.1796
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The thermal model of laser–material interaction in cases
of mono layer as well as multi-layer structures was
considered. This approach was used for solving the time-
dependant governing equation with corresponding bound-
ary and initial conditions for the axisymmetric case. The
time derivative was approximated by finite difference.
The spatial distributions of temperature fields inside

the multi-layer structures were analyzed. The effect of
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temperature dependence of the absorption coefficient on
the process of laser heating was taken into account.

The accuracy of the developed DRM-MD approach was
tested on three case studies including: mono and two-layer
structures for transient case and absorption coefficient
which is either constant or linearly dependent on tempera-
ture, as well as steady-state temperature distribution inside
solid and hollow cylinders. The numerical results were
compared towards analytical solutions as well as numerical
results obtained using fundamental solution for axysim-
metric case (based on elliptic integrals). Different number
of sub-domains and different RBFs were considered,
leading to good accuracy and showing high flexibility and
easy in implementation.

The developed approach can be used in the case of multi-
layer structures and non-linear or non-homogenous
problems [23].
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