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A r t i c l e  h i s t o r y  A B S T R A C T  

The paper presents three-dimensional numerical models of short concrete-filled 
steel tubular circular columns that can successfully describe the column behaviour 
under axial compression. Several of the most commonly used material models for 
the steel part and a concrete portion of the column are evaluated in the models. In 
addition, the paper presents a new proposal for the extension of the Eurocode 2 
stress-strain relation to make it suitable for describing the complex behaviour of 
concrete inside the steel tube. This model overcomes the current limitations of the 
Eurocode 2 design guide, referring to the limitation for the concrete curve in 
compression to 3.5‰ strain. The ultimate axial column strength obtained by the 
proposed model is compared to the ultimate column capacity calculated by a 
simplified method provided in Eurocode 4. All presented numerical models are 
validated on a set of experiments from the literature and demonstrate good 
agreement. The comments about the accuracy of each model are provided, along 
with the identified limitations.
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1 Introduction 

A concrete-filled steel tubular column (CFST) consists of 
an outer steel tube filled with concrete. The composite action 
between the two parts, the concrete core and steel tube, 
ensures that the concrete core stiffens the steel tube and 
postpones its local buckling. In turn, the outer steel tube acts 
as longitudinal and transverse reinforcement, permanent 
formwork, and confinement for the concrete core. CFST 
columns demonstrate excellent structural behaviour, such as 
high strength, stiffness, ductility, and good seismic behaviour 
[1], [2]. 

Due to their overall good performance, CFST columns 
have been widely used in different types of construction and 
are the subject of numerous ongoing research projects [1]. 
Various shapes and types of CFST columns have been 
constructed in the past [3]–[6]. The axial behaviour of these 
columns has been investigated experimentally and 
numerically. To date, several databases with experimental 
results exist, counting more than one thousand axially loaded 
specimens [7].  

In general, there are three approaches to the numerical 
modelling of CFST columns. The first uses the simplified 
concentrated plasticity nonlinear beam/column elements [2], 
[7]. These elements are computationally very efficient but 
have some limitations since they require the expressions of 
the yield surface, which depend on the column cross-section. 
The second approach deals with the distributed plasticity 
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fibre beam-column elements [8]–[10]. Although slightly less 
computationally efficient than elements from the first group, 
these numerical models are much more versatile and can 
account for numerous nonlinear effects, such as the 
nonlinear material behaviour of constituent parts, residual 
stresses, and nonlinear geometry. However, they can 
capture only indirectly the local buckling of the steel tube, the 
interaction of the steel tube with the concrete part, and the 
variable confinement effects of the concrete core. For these 
reasons, there is a need to develop reliable, sophisticated, 
3D finite element models that can fully describe the complex 
nonlinear behaviour of the composite columns. These 
models can also predict other important information, such as 
failure modes and deformation patterns, or capture 
phenomena such as local buckling of the steel tube and 
confinement of the concrete part of the section [11]. This third 
approach is followed in this paper.    

There are several 3D numerical models developed in the 
past [12]–[14] using the commercial program ABAQUS. The 
crucial differences among these models are the assumed 
material model behaviour, initial imperfections and residual 
stresses, modelling the steel tube–concrete core interface, 
and the boundary conditions. Most of these models proposed 
their own concrete material models [13], [15]–[17] or steel 
material models [10], [13], [15], [16]. However, there is a lack 
of numerical models that deploy the material models 
proposed by the Eurocode design guide. For that reason, the 
study presented in this paper provides a relatively simple 3D 
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numerical model developed in the commercial program 
ABAQUS that follows the general analysis method of 
Eurocode 4 (EC4) for the nonlinear analysis of axially loaded 
CFST columns. The proposal for the extension of the 
concrete material model suggested by Eurocode 2 (EC2) is 
developed to make it suitable for describing the complex 
behaviour of concrete inside the steel tube. The developed 
concrete material model is carefully evaluated and compared 
with other commonly employed concrete material models. 
Finally, the ultimate strength results are compared to the 
axial capacity of the short columns calculated by EC4 [18], 
[19]. 

2 Numerical modelling of short cfst columns 

The study presented here is focused on the efficient 
numerical modelling of short CFST columns. These columns 
are expected to develop a cross-section's full plastic strength 
capacity without failing due to buckling. According to the 
Japanese standard AIJ [20], CFST columns are classified as 
short columns when the length-to-outer column diameter 
ratio is less than or equal to four (𝐿/𝐷 ≤ 4) and this boundary 
is commonly used among researchers for the classification 
[9].  

The numerical model of the CFST columns needs to 
predict structural members' behaviour effectively and provide 
complex information regarding their structural response. On 
the other side, the model needs to be relatively simple 
because of its computational efficiency. This paper presents 
one such model for the CFST short columns under axial 
loading. The model considers the geometry, the test setup 
simulation, boundary conditions, and applied loading in a 
simplified way. It is validated based on selected test results 
from the literature and previously developed models by other 
authors. The analysis is performed as the displacement 
controlled in all these simulations and includes material and 
geometrical nonlinearities. A detailed description of the 
developed numerical model follows. 

2.1 3D model description 

Finite element analysis (FEA) was conducted using 
ABAQUS [21] version 6.9, which offers significant 
capabilities for the 3D nonlinear analysis of CFST columns. 
ABAQUS Standard solver was chosen due to the quasi-static 
nature of the loading and its ability to analyse such conditions 
accurately. The possible disadvantage of 3D modelling is 
that many elements in the model may require a long 
calculation time. For the sake of reasonable time for both 
developing the 3D model and the analysis, the intention here 
was to create a simple but reliable model that would provide 
highly accurate results.  

The outer steel tube and the concrete core are modelled 
using the 3D8-node brick elements (C3D8R) with reduced 
integration (i.e., one integration point), Figure 1. The element 
has three translation degrees of freedom at each element 
node. The single-point reduced-integration scheme is based 
on the “uniform strain formulation”, meaning that the strains 
are obtained as the average strain over the element volume. 
The advantage of the reduced integration elements comes 
from the fact that strains and stresses are calculated at 
locations that provide optimal accuracy. A second advantage 
is that the reduced number of integration points decreases 
calculation time and storage requirements [21]. For the steel 
tube, shell elements might be used as well, since they are 
generally well-suited for analysing structures with thin to 
moderately thick walls. In the presented analysis, using the 
shell elements for modeling steel tube would not have an 
effect on the results, as shown in Figure 2a below for test 
CC-0 with Model 4. 

The boundary conditions at column ends are considered 
by applying the constraints option available in ABAQUS. It 
connects all surface nodes to only one reference point (RP) 
defined in the centre of the column's top and bottom 
surfaces, as shown in Figure 1. Tests used to validate the FE 
models had steel plates for load application at both ends of 
the specimens. Some tests had these plates welded at both 
ends of specimens [11], [22], while others used plates in a  

 

Figure 1. (a) 3D model of CFST column with RP1 and RP2 with BC;  
(b) Cross-section and meshing 
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Figure 2.(a) Mesh type sensitivity analysis on specimen CC-0 using Model 4; 
(b) Mesh size sensitivity analysis on specimen CC-0 using Model 4 

 
 
testing machine only to ensure load application to the whole 
cross-sections [23],[24]. Test boundary conditions are 
modelled numerically using the constraint option on 
specimen end surfaces. This is considered adequate since 
the steel plates were very stiff. The end surface behaves 
rigidly with a master node (RP). Boundary conditions (BC) 
are set to RP1 and RP2: all displacements are restrained 
except displacement in the loading direction at RP1. A 
displacement-controlled axial loading scheme is applied to 
the RP1 only. 

The starting point for the selection of the FE mesh size 
were the conclusions from the mesh convergence studies 
presented in reference [13]. Accordingly, the optimal element 
size across the cross-section was determined to be 𝐷/15, 
where 𝐷 represents the outer diameter of a circular column. 
The element size in the longitudinal direction was 2.5 times 
larger than that in the cross-section. However, a mesh 
sensitivity study was conducted to confirm the convergence 
of results as well as the total computational time required for 
the analysis. Figure 2b shows the FEM mesh size sensitivity 
analysis for Model 4 for specimen CC-0 using the adopted 
mesh size and three other meshes, namely 𝐷/6, 𝐷/10, and 
𝐷/15. As demonstrated, the results confirm convergence, 
particularly considering that the model with 𝐷/15 took almost 
ten times longer to run. 
 

Interaction between the steel tube and the concrete core 
is simulated using the surface-to-surface contact option. The 
inner steel tube surface is chosen as the master surface, 
while the concrete surface is defined as the slave surface. 
When two surfaces are in contact, they transmit shear and 
normal forces across their interface. The normal (radial) 
contact behaviour is defined using the "hard" contact option. 
This relationship minimises the penetration of the slave 
surface into the master surface in compression and allows 
separation after contact. The tangential behaviour between 
surfaces is defined using the friction formulation with 
“penalty”. It uses the classical isotropic Coulomb friction 
model, where the critical shear stress is obtained as a 
contact pressure multiplied by a coefficient of friction. Some 
studies have investigated this particular effect [25], and the 
literature reports a coefficient range of 0.5 to 0.6 for carbon 
steel tubes. Our own investigation revealed that values 
between 0.4 and 0.7 had little impact on axial resistance. 
Therefore, we have adopted a friction coefficient of 0.6 in our 
models, as suggested in [16]. 

The initial local or global imperfections were not 
considered in the model as their influence was negligible for 
the stub columns that are the subject of this paper. Namely, 
specimens with 𝐿 ⁄ 𝐷 ≤ 3 do not demonstrate lateral 
deflections during failure tests, and the concrete infill reduces 
some possible local imperfections of the steel tube [11]. 
However, the behaviour of columns with a higher 𝐿/𝐷 ratio 
may be affected to a certain degree by global imperfections. 

2.2 Material modelling 

In this study, four different combinations of steel and 
concrete material models are assigned to the steel tube and 
the concrete core, as summarised in Table 1, and these 
models are evaluated. Therefore, all four 3D models, 
denoted as Models 1 to 4, have the same geometry, 
boundary conditions, and FE mesh but different assigned 
material models for steel tube and concrete core. Models 1, 
2, and 3 follow the commonly applied material models as 
recommended by [13], [16], and [26], respectively. Model 4 
is created using the material curves provided in Eurocode 3 
(EC3) [27] for steel tubes and the proposed extended 
material model for concrete in Eurocode 2 (EC2) [28]. These 
modifications are explained in detail later in the paper.  
 

Table 1. Numerical models with details of material 
modelling 

Model Structural steel Concrete 

Model 1 Tao et al. [13] Tao et al. [13] 

Model 2 Han et al. [16] Han et al. [16] 

Model 3 EC3 [27] Ellobody [26] 

Model 4 EC3 [27] proposed extended EC2 
model 

2.2.1 Material modelling of concrete core in ABAQUS 

Concrete under compression initially exhibits an elastic 
response. As the stress increases, non-recoverable 
(inelastic) strains occur, and the material's stiffness 
decreases. After ultimate stress is reached, the material 
softens until it can no longer carry any stress. In multiaxial 
stress states, these observations can be generalised through 
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surfaces of failure and ultimate strength surfaces in stress 
space. These surfaces are fitted to the experimental data. 

Under low confining pressures, concrete behaves in a 
brittle manner, so the main failure mechanisms are cracking 
in tension and crushing in compression. The brittle behaviour 
of concrete disappears when the confining pressure is 
sufficiently large to prevent crack propagation. Under these 
circumstances, failure is driven by the consolidation and 
collapse of the concrete´s microporous microstructure, 
leading to a macroscopic response resembling a ductile 
material with work hardening.  

In ABAQUS, the concrete damage plasticity (CDP) model 
for quasi-brittle materials is the constitutive model commonly 
adopted for concrete. This CDP model is a plasticity-based 
continuum model. The elastic response is assumed to be 
linear and isotropic, defined by the modulus of elasticity and 
Poisson‘s ratio. The plastic region requires the definition of 
stress-strain curves for both compression and tension 
behaviour. Input parameters are stress values and the 
corresponding inelastic strain. The following strain rate 
decomposition is assumed for the model: 

𝜀̇ = 𝜀̇𝑒𝑙 + 𝜀̇𝑝𝑙 (1) 

where 𝜀̇ is the total strain rate, 𝜀̇𝑒𝑙 is the elastic part of the 

strain rate while 𝜀̇𝑝𝑙 is the plastic part of the total strain [21]. 
The CDP model also requires the input of five plasticity 

parameters: dilation angle (𝜓), flow potential eccentricity (𝑒), 
the ratio of the second stress invariant on the tensile 
meridian to that on the compressive meridian (𝐾𝑐), a ratio of 
the compressive strength under biaxial loading to uniaxial 
compressive strength (𝑓𝑏0 𝑓𝑐

′⁄ ), and a viscosity parameter. 
Due to the steel tube's passive confinement, concrete 

reaches a triaxial stress state when the CFST column is 
under axial compression [13]. This confinement effect is 
more significant in circular columns than square columns, as 
reported in [29].  

The concrete elastic material´s behaviour is defined by 
the modulus of elasticity and Poisson‘s ratio. The plastic part 
requires the definition of a stress-strain curve for 
compression and tension in combination with plasticity 
parameters. The CDP model uses the concept of isotropic 
damage elasticity in combination with isotropic tensile and 
compressive plasticity to represent the inelastic behaviour of 
concrete. Modelling confined concrete behaviour in CFST 
columns has been challenging and investigated by many 
authors. The researchers proved that passive confinement 
would increase both the peak strain (ductility) and the 
strength of the concrete and the CFST column. One of the 
possibilities for including the confinement effect in ABAQUS 
is by modifying the uniaxial concrete stress-strain curve. It 
means including softening and hardening behaviour as a 
result of composite action during the lateral expansion of 
concrete.  

2.2.2 Concrete models 

As mentioned before, this study explores four different 
stress-strain concrete models. The first three models are the 
most commonly applied concrete material models in 
nonlinear 3D FEM analysis of CFST composite columns. The 
fourth model is the one that follows the concrete material 
model proposed by EC2 but is extended in order to be 
applicable for modelling the concrete core inside the steel 
tube. The corresponding curves for all four models are 
illustrated in Figure 3 for the geometry and material 
parameters of specimen 3HN [30], which will be analysed 

later. Here, 𝑓𝑐
′ refers to the 150 x 300 mm concrete cylinder 

compressive strength obtained from tests. A detailed 
description of all four models follows. 

 

Figure 3.Concrete constitutive models 1-4 illustrated for 
material properties of specimen3HN 

2.2.2.1 Concrete material model by Tao et al. [13] 

The first evaluated model for concrete is a three-stage 
𝜎 − 𝜀 relation proposed by Tao et al. [13]. This model has 
been widely exploited as it considers the strain 
hardening/softening rule of concrete confined by a steel tube. 
However, it should be noted that this model includes passive 
confinement since there is an increase in the plastic strain 
only, and there is no increase in the concrete compressive 
strength, as presented in Figure 4. 

 

Figure 4. Stress-strain model for confined concrete used in 
Model 1 

 
The first ascending stage between points O-A is defined 

by equations (2-3) until the peak stress 𝑓𝑐
′. The peak stress 

𝑓𝑐
′ is the cylinder compressive strength of unconfined 

concrete. The corresponding strain 𝜀𝑐0 at point A is 
calculated according to the relationship in equation (4): 

𝜎

𝑓𝑐
′ =

𝐴 ∙ 𝑋 + 𝐵 ∙ 𝑋2

1 + (𝐴 − 2)𝑋 + (𝐵 + 1)𝑋2
          0 < 𝜀 ≤ 𝜀𝑐0 (2) 

𝑋 =
𝜀

𝜀𝑐0
,      𝐴 =

𝐸𝑐𝜀𝑐0
𝑓𝑐
′     𝐵 =

(𝐴 − 1)2

0.55
− 1 (3) 

𝜀𝑐0 = 0.00076+√(0.626𝑓𝑐
′ − 4.33) ∙ 10−7 (4) 

𝐸𝑐 is the modulus of elasticity of the unconfined concrete 
calculated as per ACI 318 [31] with the empirical equation (5) 
where 𝑓𝑐

′ is in MPa: 
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𝐸𝑐 = 4700√𝑓𝑐
′[𝑀𝑃𝑎] (5) 

Further, a second branch is a plateau between points A-
B, representing an increased peak strain of concrete due to 
the confinement. The strain at the point B, 𝜀𝑐𝑐 , for the 
concrete model is determined by the following equation (6): 

𝑒𝑘 =
𝜀𝑐𝑐
𝜀𝑐0
 ,    

𝑘 = (2.9224− 0.00367𝑓𝑐
′) (
𝑓𝐵
𝑓𝑐
′)
0.3124+0.002𝑓𝑐

′

 

(6) 

The value 𝑓𝐵 represents the confining stress at point B 
where it is assumed that the ultimate column strength is 
reached. During the elastic stage, no confining stress is 
registered as the initial lateral expansion of the concrete is 
smaller than that of the steel tube. It originates from different 
values of Poisson's ratio of the composite materials. With the 
increase in axial strain, the lateral expansion of the concrete 
core gradually becomes more extensive than the expansion 
of the steel tube. This mechanism highlights the complexity 
of the interaction in CFST columns. Here equation (7) is 
provided for circular CFST columns only, where 𝐷, 𝑡, and 𝑓𝑦 

are the steel tube's outer diameter, wall thickness and yield 
strength, respectively.  

𝑓𝐵 =
(1 + 0.027𝑓𝑦) ∙ 𝑒

−0.02
𝐷
𝑡

1 + 1.6 ∙ 10−10 ∙ (𝑓𝑐
′)4.8

 (7) 

The third stage is the descending branch defined by the 
following relationship [32]: 

𝜎 = 𝑓𝑟 + (𝑓𝑐
′ − 𝑓𝑟)𝑒𝑥𝑝 [−(

𝜀 − 𝜺𝒄𝒄
𝛼

)
𝛽

]   𝜀 ≥ 𝜀𝑐𝑐  (8) 

in which 𝑓𝑟 is the residual stress, while 𝛼 and 𝛽 are 
parameters determining the shape of the softening branch. 
The expressions for 𝑓𝑟  and 𝛼 for circular CFST columns are 
given in (9) and (10). They are calculated as functions of the 
so-called “confinement factor” 𝜉𝑐 (11). It is defined as the 
ratio between the yield strength (𝑓𝑦) multiplied by the cross-

sectional area of the steel tube (𝐴𝑠) and the concrete 
compressive strength (𝑓𝑐

′) multiplied by the cross-sectional 
area of the concrete core (𝐴𝑐). The parameter 𝛽 in equation 
(8) has a value of 1.2 for circular CFST columns. Parameters 
𝛼, 𝛽 and 𝑓𝑟 cannot be directly derived from the tests, and their 
values are proposed based on the regression analysis as the 
best match for the test curves used in the study [13]. 

𝑓𝑟 = 0.7(1− 𝑒
−1.38𝜉𝑐)𝑓𝑐

′ ≤ 0.25𝑓𝑐
′ (9) 

𝛼 = 0.04 −
0.036

1 + 𝑒6.86𝜉𝑐−3.49
 (10) 

𝜉𝑐 =
𝐴𝑠𝑓𝑦
𝐴𝑐𝑓𝑐

′ (11) 

Concrete tensile behaviour needs to be defined to 
complete the necessary inputs for the CDP model in 
ABAQUS. In the current model, the uniaxial tensile response 
is assumed to be linear until the tensile strength of concrete 
is reached, which is taken as 0.1𝑓𝑐

′. Beyond the failure stress, 
the linear softening response is defined by the fracture 
energy 𝐺𝐹 [33]: 

𝐺𝐹 = (0.469𝑑𝑚𝑎𝑥
2 − 0.5𝑑𝑚𝑎𝑥 + 26)(

𝑓𝑐
′

10
)

0.7

𝑁/𝑚𝑚 (12) 

 

where 𝑓𝑐
′ is in MPa, 𝑑𝑚𝑎𝑥 is the maximum coarse aggregate 

size taken as 20mm. 
Once the whole material curve is completed, the concrete 

plasticity parameters must be defined. For the flow potential 
eccentricity e and viscosity parameter, the default values of 
0.1 and 0 are adopted. The ratio of the compressive strength 
under biaxial loading to uniaxial compressive strength 
𝑓𝑏0 𝑓𝑐

′⁄  is calculated by the expression proposed by 
Papanikolaou and Kappos [34]: 

𝑓𝑏0 𝑓𝑐
′⁄ = 1.52(𝑓𝑐

′)−0.075 (13) 

For the remaining CDP parameters, Tao et al. [14] 
performed the sensitivity analysis and suggested the 
following expressions: 

− dilation angle 𝜓 should depend on the confinement 
factor 𝜉𝑐: 

𝜓 = {
56.3(1− 𝜉𝑐)𝜉𝑐 ≤ 0.5

6.672𝑒
7.4

4.64+𝜉𝑐  𝜉𝑐 > 0.5
} (14) 

− the ratio of the second stress invariant on the tensile 
meridian to that on the compressive meridian 𝐾𝑐 should 
depend on 𝑓𝑐

′ and be calculated as follow: 

𝐾𝑐 =
5.5

5 + 2(𝑓𝑐
′)0.075

 (15) 

2.2.2.2 Concrete material model by Han et al.[16] 

The second concrete material model discussed here is 
by Han et al. [16]. It is well known for giving good predictions 
with the CDP model in ABAQUS [16]. It also relies on the 
idea that improving the concrete strength under triaxial stress 
states can be introduced into the FE model through the 
plastic behaviour of the equivalent stress-strain relationship 
for concrete. The plasticity of the concrete core confined by 
a steel tube demonstrates an increase in strain 
corresponding to the maximum stress and strengthening in 
the descending branch of the curve. Generally, it defines 
concrete plastic behaviour depending on the confinement 
factor 𝜉, equation (16). 

𝜉 =
𝐴𝑠𝑓𝑦
𝐴𝑐𝑓𝑐𝑘

= 𝛼
𝑓𝑦
𝑓𝑐𝑘

 (16) 

where 𝐴𝑠 and 𝐴𝑐 are the cross-sectional area of the steel and 
concrete, respectively; 𝛼(=𝐴𝑠 𝐴𝑐⁄ ) is the steel ratio; 𝑓𝑦 is the 

yield strength of the steel; and 𝑓𝑐𝑘 the characteristic strength 
of the concrete,which equals 0.67𝑓𝑐𝑢 for normal strength 
concrete; 𝑓𝑐𝑢is the 150 mm cube strength of the concrete. 

The following expressions (17-21) define the stress-
strain model in Figure 5 proposed for the FE modelling: 

𝑦 = {
   2𝑥 − 𝑥2 , (𝑥 ≤ 1)

𝑥

𝛽0(𝑥 − 1)𝜂 + 𝑥
, (𝑥 > 1)

}  ,    

𝑥 =
𝜀

𝜀0
  ,   𝑦 =

𝜎

𝜎0
 

(17) 

𝜎0 = 𝑓𝑐
′ (

𝑁

𝑚𝑚2
) (18) 

𝜀𝑐 = (1300+ 12𝑓𝑐
′) 𝑥 10−6 (19) 

𝜀0 = 𝜀𝑐 + 800𝜉
0.2 𝑥 10−6 (20) 
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where for CFST with circular section: 

{𝛽0 =
(2.36 𝑥 10−5)[0.25+(𝜉−0.5)

7](𝑓𝑐′)
0.5𝑥 0.5 ≥ 0.12

𝜂 = 2
} (21) 

and 𝑓𝑐
′ is the compressive cylinder strength of the concrete. 

The initial modulus of elasticity 𝐸𝑐 and Poisson’s ratio of 0.2 
are taken as recommended in ACI Committee 318 [31], 
equation (22): 

𝐸𝑐 = 4730√𝑓𝑐
′[𝑀𝑃𝑎] (22) 

 

Figure 5. Stress-strain model for confined concrete used in 
Model 2 

 
The model uses the same fracture energy model as in 

[16] proposed by Hillerborg [35] for concrete in tension.  
Finally, Han suggested constant values for the concrete 

plasticity parameters in the CDP model. Dilation angle (𝜓), 
flow potential eccentricity (𝑒), the ratio of the second stress 
invariant on the tensile meridian to that on the compressive 
meridian (𝐾𝑐), a ratio of the compressive strength under 

biaxial loading to uniaxial compressive strength (
𝑓𝑏0

𝑓𝑐
′ ), and 

viscosity parameters are taken as 30º, 0.1, 1.16, 2/3 and 0, 
respectively. 

2.2.2.3 Concrete material model by Ellobody [26] 

The third considered concrete material model is an 
idealised uniaxial response for the compressive stress-strain 
curve for confined concrete proposed by Ellobody. It 
originates initially from the model proposed by Mander [36] 
for confined concrete but is adjusted for application in 
modelling  CFST columns. The main inputs to be determined 
are the confined concrete compressive strength 𝑓𝑐𝑐

′  and 
corresponding confined strain 𝜀𝑐𝑐 in the equations (23-24) 
proposed by Mander. 

𝑓𝑐𝑐
′ = 𝑓𝑐

′ + 𝑘1𝑓𝑙 (23) 

𝜀𝑐𝑐 = 𝜀𝑐 (1+ 𝑘2
𝑓𝑙
𝑓𝑐
′) (24) 

where 𝑓𝑐 is the unconfined concrete cylinder compressive 
strength. The corresponding unconfined strain 𝜺𝒄 is taken as 
0.003 for plain concrete as the ACI Specification 
recommends [31]. 𝑓𝑙 is the lateral confining pressure 
imposed by the steel tube and obtained from the empirical 
equation (25): 

𝑓𝑙 =
𝜎𝜃𝑡

𝐷
 (25) 

Where 𝝈𝜽 is equal to 0.1𝑓𝑦 by Mander [36]. The factor 𝑘1 is 

taken as 4.1, and factor 𝑘2 20.5. 

 

Figure 6. Stress-strain model for confined concrete used in 
Model 3 

 
The uniaxial stress-strain curve consists of three parts, 

as shown in Figure 6. The first part considers elastic concrete 
behaviour until the proportional limit stress, which is taken as 
0.5𝑓𝑐𝑐 as per Hu [37].Recommendations also take the initial 
Young’s modulus of confined concrete 𝐸𝑐𝑐 from the ACI 
Specification [31]. Poisson’s ratio of confined concrete 𝜈𝑐𝑐 is 
taken as 0.2. 

𝐸𝑐𝑐 = 4700√𝑓𝑐𝑐
′ [𝑀𝑃𝑎] (26) 

The second part of the curve between the proportional 
limit of 0.5𝑓𝑐𝑐 and confined concrete strength 𝒇𝒄𝒄 is the 
nonlinear branch defined by the relation provided in (27). 

𝝈 =
𝐸𝑐𝑐 ∙ 𝜀

1 + (𝑅 + 𝑅𝐸 − 2) ∙ (
𝜀𝑐
𝜀𝑐𝑐
) − (2𝑅 − 1) ∙ (

𝜀𝑐
𝜀𝑐𝑐
)
2

+ 𝑅 ∙ (
𝜀𝑐
𝜀𝑐𝑐
)
3 (27) 

where 𝑅 and 𝑅𝐸 were computed using the following 
equations (28-29): 

𝑅𝐸 =
𝐸𝑐𝑐 ∙ 𝜀𝑐𝑐
𝑓𝑐𝑐

 (28) 

𝑅 =
𝑅𝐸 ∙ (𝑅𝜎 − 1)

(𝑅𝜀 − 1)2
−
1

𝑅𝜀
 (29) 

In equation (29), 𝑅𝜀 and 𝑅𝜎 are equal to 4,as 
recommended by [38]. The dilatation angle of 20  ͦis used in 
the CDP model, while for the default viscosity parameter, 
zero value is used. The Poisson coefficient is 0.2 [26]. 

2.2.2.4 The proposed extended EC2 model  

The final considered concrete material model is the EC2 
stress-strain relation for the nonlinear structural analysis for 
short-term uniaxial loading shown in Figure 7. When 
performing the general nonlinear analysis method for 
composite columns according to EC4, this is the material 
model that the engineer is referred to.   

The curve in compression is described by the 
expressions (30-35): 

𝜎𝑐
𝑓𝑐
′ =

𝑘𝜂 − 𝜂2

1 + (𝑘 − 2)𝜂
 (30) 

𝑘 =  1.05 𝐸𝑐𝑚 ∙
𝜀𝑐1
𝑓𝑐𝑚

 (31) 
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Figure 7. Schematic representation of the EC2 stress-strain 
relation for nonlinear structural analysis 

 

𝐸𝑐𝑚 = 22 ∙ 10
3(𝑓𝑐𝑚 10⁄ )0.33 (32) 

𝜂 =
𝜀𝑐
𝜀𝑐1

 (33) 

𝜀𝑐1[‰] =  0.7𝑓𝑐𝑚
0.31 ≤  2.8 ‰ (34) 

𝜀𝑐𝑢1 = 3.5 ‰ , 𝑓𝑐𝑚 ≤ 58 𝑀𝑃𝑎 (35) 

where 𝑓𝑐
′ is the mean cylinder compressive strength, 𝐸𝑐𝑚 is 

the secant modulus of elasticity, 𝜀𝑐1 is the strain at peak 
stress and 𝜀𝑐𝑢1 is the nominal ultimate strain. 

However, according to EC2, the stress-strain relation in 
(30) is only valid for 𝜀𝑐 ≤  𝜀𝑐𝑢1 = 3.5 ‰, which is insufficient 
to simulate the increased ductility and the softening 
behaviour of the CFST column. Therefore, this paper 
proposes a simple extension of this curve following the 
recommendations for the numerical modelling of CFST 
columns provided in [39].  

𝜎𝑟𝑒𝑠 =

{
 
 

 
 𝜎𝑐𝑢1

𝐷

𝑡
≤ 24

𝜎𝑐𝑢1 (1.6 − 0.025
𝐷

𝑡
)

0                      64 <
𝐷

𝑡

    24 <
𝐷

𝑡
≤ 64 (36) 

The residual stress 𝜎𝑟𝑒𝑠calculated from expression (36) 
depend on the 𝐷/𝑡 ratio and concrete stress value 𝜎𝑐𝑢1 at 
𝜀𝑐𝑢1 = 3.5 ‰ . According to [39], the concrete stress 
decreases with increasing compressive strain to a residual 
value (𝜎𝑟𝑒𝑠) at 15‰ strain. Here, it is proposed that the 
concrete stress 𝜎𝑐 decreases linearly beyond the strain limit 
of 3.5‰ to this residual value 𝜎𝑟𝑒𝑠 at 15‰ strain. Further, this 
stress value remains constant until 20‰ strain, as illustrated 
in Figure 8. 

 

Figure 8. Proposed stress-strain model for confined 
concrete used in Model 4 

 

Model 4 has the same characteristics for concrete in 
tension as adopted for Model 2. The plasticity parameters 
are also taken as for Model 2: 30º, 0.1, 1.16, 2/3 and 0, 
respectively. 

2.2.3 Material modelling of steel tube 

Structural steel properties required for ABAQUS are 
provided within a uniaxial stress-strain relationship 𝜎 − 𝜀. 
Key input parameters for defining the curve are yield strength 
𝑓𝑦, modulus of elasticity 𝐸, and the plasticity parameters that 

depend on the chosen curve. Researchers have investigated 
different stress-strain constitutive models for carbon steel, 
such as elastic-perfectly plastic, bilinear, and multilinear with 
hardening [40], [41].  

This paper considered three different constitutive models 
for steel, schematically illustrated in Figure 9 for specimen 
3HN. The first stress-strain curve is proposed by Tao et al. in 
[13] and consists of an elastic branch until the yield strain 𝜀𝑦, 

a perfectly plastic branch until 15𝜀𝑦 and hardening until the 

ultimate strain 𝜀𝑢. Hardening is defined by strain-hardening 
exponent p. 

The second is the five-stage elastic-plastic stress-strain 
model presented by Han et al. in [16]. It consists of elastic, 
elastic-plastic, plastic, hardening and fracture defined with 
𝜀𝑒 =0.8𝑓𝑦/𝐸, 𝜀𝑒1 = 1.5𝜀𝑒, 𝜀𝑒2 = 10𝜀𝑒1, 𝜀𝑒3 = 100𝜀𝑒1, respecti-

vely, where 𝜀𝑒 is the yield strain and 𝐸 modulus of elasticity. 
The third constitutive model presented is an elastic-

perfectly plastic 𝜎 − 𝜀 relationship for structural steel given in 
EC3 [27]. Steel material properties used in tests are provided 
in Table 2. Poisson's ratio is taken as 0.3.  

 

Figure 9. Steel models used illustrated for material 
properties of specimen 3HN [30] 

 
However, this study showed that the choice of the steel 

stress-strain model does not significantly impact the 
numerical results. The same observation was previously 
reported in the literature [5]. 

3 Validation of the proposed 3d models 

Proposed models have been validated based on test 
results provided in the literature. Here the validation is 
presented on eight short circular specimens with test results 
from various studies for columns with 𝐿 𝐷⁄ ≤ 3 to minimise 
the member slenderness effects. Table 2 lists the material 
properties of specimens and their references. The 
specimens are gradually loaded in all selected experiments 
with increasing axial loading. The loading is simultaneously 
applied to the whole cross-section. 
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Table 2. Details of specimens with material properties for concrete and steel 

No. 
Specimen and 

reference 

Specimen details  Concrete Steel 

D t  L  D/t L/D ξ fc'  fy E 
Pois. 
ratio 

[mm] [mm] [mm] - - - [MPa] [MPa] [GPa] - 

1 3HN [30] 150.0 3.20 450.00 46.88 3.0  1.05  28.7 7.4 200.0 0.30 

2 CC-0 [11] 139.1 2.79 420.00 49.86 3.0  0.92  41.2 388.5 203.8 0.28 

3 cfst8-L35-0-a [22] 140.0 2.74 420.00 51.09 3.0  0.72  40.8 309.0 181.0 0.27 

4 cfst12-L35-0-b [22] 140.0 3.90 420.00 35.9 3.0  1.15  40.8 335.3 205.0 0.27 

5 310-60-3.6 [24] 114.0 3.60 250.00 31.67 2.2  0.83  60.0 310.0 200.0 0.30 

6 310-60-5.6 [24] 114.0 5.60 250.00 20.36 2.2  1.36  60.0 310.0 200.0 0.30 

7 310-60-3.1 [24] 167.0 3.10 250.00 53.87 1.5  0.47  60.0 310.0 200.0 0.30 

8 C1-178-40-C00 [23] 178.0 6.55 548.33 27.18 3.1  1.91  40.0 403.0 209.6 0.30 
 
 
 

Figures 10-19 show the axial load–axial strain (𝑁 − 𝜀) 
relations for specimens from Table 2.  Diagrams contain 
results obtained numerically using presented FE Models 1-4 
compared to the results obtained from experiments. When 
results in the test were originally reported as axial load–axial 

shortening (𝑁 − Δ) relations, they are converted by dividing 
axial shortening Δ with the column initial length L to obtain 
(𝑁 − 𝜀) relations [9], [13]. 

 

 

Figure 10. N-ε diagram for specimen 3HN  

 

 

Figure 11. N-ε diagram for specimen CC-0  

 

Figure 12. N-ε diagram for specimen cfst8-L35-0-a 

 

 

Figure 13. N-ε diagram for specimen cfst12-L35-0-b 
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Figure 14. N-ε diagram for specimen 310-60-3.6 

 

Figure 15. N-ε diagram for specimen 310-60-5.6 

 

Figure 16. N-ε diagram for specimen 310-60-3.1  
 
Figures 10-17 show that, in general, a satisfactory 

agreement between the numerical and test results is 
achieved with all four models regarding the ultimate column 
capacity. In tests shown in Figures 14, 16, 17, and slightly in 
Figure 10, the numerical results missed matching the 
experimental results during the initial elastic stage. This is 
due to differences in the actual value of the elastic modulus 
of concrete and the calculated values used in the numerical 
models. Since the measured values of the elastic modulus of 
concrete are not reported in all tests, the elastic modulus of 
concrete is calculated from the corresponding expressions 
described in Section 2 in all numerical models. Regarding the  

 

Figure 17. N-ε diagram for specimen C1-178-40-C00 
 

full 𝑁 − 𝜀 curves, the differences between models are more 
pronounced. Model 1 has been shown to be the most 
accurate in this analysis. It successfully simulated CFST 
column behaviour for most specimens regarding ultimate 
capacity and the 𝑁− 𝜀 response curve. The results obtained 
by Model 2 have also shown a good correlation with the 
experimental results for the specimens with a 𝐷/𝑡 ratio 
higher than 30. One possible reason for the different 
behaviour of specimens with a lower 𝐷/𝑡 ratio is an 
overestimation of the confinement effect and the 
strengthening of columns with a ticker steel tube in the post-
peak stage. Model 3 gives results that agree well with the 
experimental results for specimens with concrete strengths 
higher than 40 MPa. It comes from the Mander concrete 
material model in Model 3, which considers the increase in 
concrete ductility and peak strength due to confinement 
effects. This is not the case for the concrete material models 
in Models 1 and 2. Finally, the results of Model 4 are in very 
good agreement with the experimentally obtained results for 
all tests. These results are similar to those obtained by Model 
1. Therefore, the extension of the concrete material model 
from EC2 enabled Model 4 to capture well the peak and post-
peak behaviour of the CFST column. 

The shape of the 𝑁 − 𝜀 response depends on the 
confinement factor 𝜉 [42][43], equation (16), which varies 
based on the cross-sectional shape of the column. For 
different types of CFST’s cross-sections, different critical 
values 𝜉0 are defined. Circular CFST columns are estimated 
to be around 1.01 to 1.21 [43]. When the actual confinement 
factor is less than 𝜉0 the 𝑁 − 𝜀 response has a “strain 
softening” shape. When it is equal to 𝜉0, the response is 
“perfectly plastic”, while for values of 𝜉 higher than 𝜉0, the 
response is of the “strain hardening” type. The value of 𝜉 for 
each of the analysed specimens is calculated in Table 2. 
Clearly, this factor is the smallest for specimen 310-60-3.1 
(equal to 0.47); therefore, its response exhibits the most 
noticeable strain-softening shape. The numerical models 
also predict this softening branch, but due to previously 
discussed differences in the initial stiffnesses, there are 
discrepancies between the numerical and experimental 
responses.  

In addition, it should be noted that nonlinear static 
analysis in ABAQUS using the CDP model is sensitive to the 
variation of plasticity parameters. Moreover, it should be 
underlined that the presented specimens belong to different 
experimental studies. Test data were carefully reviewed to 
understand the test setup, instrumentation and results, 
especially in describing the test, steel and concrete material 
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properties. However, not all necessary data is reported, and 
the missing values are calculated from the available 
expressions.   

Finally, as mentioned in the introductory part of the paper, 
one significant advantage of the detailed 3𝐷 model is its 
ability to predict the failure modes correctly. All selected 
specimens experienced very similar drum-like failure modes 
with or without local buckling of steel tubes near column 
ends. It should be emphasised that the concrete core within 
the steel tube postpones or even completely prevents local 
buckling of the steel tube. All analysed specimens have a 

𝐷/𝑡 ratio well below the limit value according to EC4 (equal 

to 90 ∙ 235/𝑓𝑦) and can be considered not prone to local 

buckling. Therefore, local buckling effects were not dominant 
in these tests. Figure 18 shows the numerically obtained 
failure modes for all analysed specimens. Here, for each test, 
the figure on the left side (in green) shows the deformed 
shape in the last calculation step, while the figure on the right 
side (in colour) shows the vertical displacements (Z direction) 
for the middle cut of the corresponding specimen. There is a 
good correlation between the experimental evidence and 
numerically obtained failure modes. 

 

Figure 18. Deformed shapes of circular stub specimens under axial load 
 
 
4 Ultimate column compression capacity and 

comparison with EC4 design code calculations 

In this section, the numerically obtained column axial 

compression capacity 𝑁𝑢,𝑖from Models 𝑖 = 1,2,3,4 for each 

specimen is compared with the ultimate strength 
𝑁𝑢,𝑡𝑒𝑠𝑡reported in tests. The value 𝑁𝑢,𝑖 is determined in the 

following way. For the specimen with a noticeable peak 
(maximum) value that is achieved for strains lower than 1%, 
that value is taken as the ultimate capacity 𝑁𝑢,𝑖. For 

specimens that have hardening-type behaviour, the ultimate 
capacity 𝑁𝑢,I is taken to be equal to the force value 

corresponding to the strain value of 1%,as suggested by[6]. 
It should be noted that the test values 𝑁𝑢,𝑡𝑒𝑠𝑡 are taken to be 

equal to the values reported by the corresponding authors, 
although, in some tests, these ultimate strengths correspond 
to unrealistically high strains (e.g., in test C1-178-40-C00, 
the ultimate strain is 140 ‰). Also, for each specimen, the 
ratio 𝑁𝑢,𝑖/𝑁𝑢,𝑡𝑒𝑠𝑡is calculated, and these values are reported 

in Table 3. The results show that the average ratios are 93%, 
98%, 106% and 91%, respectively, for Models 1 to 4. The 
corresponding standard deviations are 6%, 5%, 11% and 
4%, respectively, for Models 1 to 4. These results lead to 
similar conclusions as previously derived regarding the 
whole 𝑁 − 𝜀 response. Here, Model 2 gives the best 

predictions with an average ratio of 98% and a standard 
deviation of 5%. Model 1 and the proposed Model 4 have 
slightly lower average ratios but still give good predictions of 
the column's ultimate capacity. The results of Model 3 are 
the least accurate, with an average ratio of 106% for the 
𝑁𝑢,𝑖/𝑁𝑢,𝑡𝑒𝑠𝑡  and the highest standard deviation. 

According to EC4, the resistance to axial compression of 
a doubly symmetrical and uniform composite cross-

section 𝑁𝐸𝐶4 can be determined using a simplified method of 
design. The plastic resistance to compression of a 
composite-cross section should be calculated by adding the 
plastic resistances of its components, steel tube and 
concrete core. In the case of concentric loading on concrete-
filled tubes of circular cross-sections,  𝑁𝐸𝐶4 may take into 
account the decrease in steel strength by a factor 𝜂𝑎 and the 
increase in the strength of concrete by a factor 𝜂𝑐 due to 
confinement effects, equations (38-39). This confinement 
effect can be taken into account only if the relative 

slenderness 𝜆̅ defined by equation (40) does not exceed 0.5. 
The effective buckling length of the column 𝑙0was taken as 
0.5𝐿, corresponding to the fixed-ended boundary conditions 
reported in the tests. The values of the 𝑁𝐸𝐶4 are calculated 
with material data reported in tests without applying the 
partial factors for material properties or any other safety 
factors in the expression (37). 
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Table 3. Summary of ultimate axial strength Nu results 

 
 
 

𝑁𝐸𝐶4 = 𝜂𝑎𝐴𝑠𝑓𝑦 +𝐴𝑐𝑓𝑐
′(1 + 𝜂𝑐

𝑡

𝐷

𝑓𝑦
𝑓𝑐
′) (37) 

𝜂𝑎 = 0.25(3+ 2𝜆̅) ≤ 1.0 (38) 

𝜂𝑐 = 4.9− 18.5𝜆̅ + 17(𝜆̅)
2 ≥ 0 (39) 

𝜆̅ = √
𝑁𝑝𝑙
𝑁𝑐𝑟

 (40) 

𝑁𝑝𝑙 = 𝐴𝑎𝑓𝑦 + 𝐴𝑐𝑓𝑐
′ (41) 

𝑁𝑐𝑟 = 𝜋
2
(𝐸𝐼)𝑒𝑓𝑓

𝑙0
2  (42) 

(𝐸𝐼)𝑒𝑓𝑓 = 𝐸𝑎𝐼𝑎 + 0.6𝐸𝑐𝑚𝐼𝑐 (43) 

where: 
𝑁𝑝𝑙,𝑅𝑘 is the characteristic value of the plastic resistance 

to compression, 
𝑁𝑐𝑟 is the elastic critical normal force for the relevant 

buckling mode, calculated with the effective flexural stiffness 
(𝐸𝐼)𝑒𝑓𝑓, 

𝐼𝑎 , 𝐼𝑐 are the moments of inertia of the steel section and 
the concrete section. 

 
 

The values of 𝑁𝐸𝐶4 are compared with the experimental 
data 𝑁𝑢,𝑡𝑒𝑠𝑡  in the last column of Table 3. The results show 

that this ratio's mean value and standard deviation are 109% 
and 6%, respectively. However, the results are not on the 
safe side, and EC4 overestimates the ultimate strength 
capacity of the column when calculated with data from the 
tests. Figure 19 presents a comparison of 𝑁𝑢,4/𝑁𝑢,test ratios 

obtained for the proposed Model 4 and EC4 predictions. On 
the other hand, the predictions of the column's ultimate axial 
capacity obtained by Model 4 are on the safe side for all 
specimens. 

 

Figure 19. Model 4-to test and EC4 prediction - to test 
ultimate strength capacity 

Specimen 

test 
data 

Model 1 Model 2 Model 3 Model 4 EC4 

𝑁𝑢,𝑡𝑒𝑠𝑡 𝑁𝑢,1 
𝑁𝑢,1
𝑁𝑢,𝑡𝑒𝑠𝑡

 𝑁𝑢,2 
𝑁𝑢,2
𝑁𝑢,𝑡𝑒𝑠𝑡

 𝑁𝑢,3 
𝑁𝑢,3
𝑁𝑢,𝑡𝑒𝑠𝑡

 𝑁𝑢,4 
𝑁𝑢,4
𝑁𝑢,𝑡𝑒𝑠𝑡

 𝑁𝐸𝐶4 
𝑁𝐸𝐶4
𝑁𝑢,𝑡𝑒𝑠𝑡

 

[kN] [kN] [%] [kN] [%] [kN] [%] [kN] [%] [kN] [%] 

3HN 1001 1027 103% 1053 105% 1233 123% 980 98% 1175 117% 

CC-0 1212 1178 97% 1164 96% 1470 121% 1112 92% 1340 111% 

cfst8-L35-0-a 1143 1051 92% 1043 91% 1129 99% 1012 89% 1182 103% 

cfst12-L35-0-b 1511 1260 83% 1408 93% 1400 93% 1269 84% 1476 98% 

310-60-3.6 1095 1030 94% 1039 95% 1100 100% 1044 95% 1186 108% 

310-60-5.6 1365 1220 89% 1402 103% 1303 95% 1235 90% 1464 107% 

310-60-3.1 1873 1805 96% 1804 96% 1967 105% 1738 93% 2091 112% 

C1-178-40-
C00 

2781 2579 93% 2905 104% 3050 110% 2465 89% 3134 113% 

Mean value  93%  98%  106%  91%  109% 

St dev.   6%  5%  11%  4%  6% 
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5 Conclusion 

The paper investigates the numerical modelling of CFST 
columns' behaviour in ABAQUS software. The presented 3D 
finite element models simulate the behaviour of circular 
CFST stub columns under axial compression with high 
accuracy. The selected four models are validated on a set of 
experimental tests and have been shown to predict well both: 

the full 𝑁– 𝜀 diagrams and the failure modes. Models 1, 2 
and 3 are the most commonly applied models for the 
nonlinear analysis of CFST columns. Model 1 is proven to 
simulate the actual behaviour very well for all specimens. 

Model 2 describes the 𝑁– 𝜀 relations very well for specimens 
with a D/t ratio higher than 30 due to overestimating the 
confinement of the ticker steel tube. Model 3 is the most 
complex of the selected models regarding consideration of 
the confinement effects. It provides a good prediction of the 

full 𝑁– 𝜀  column response for specimens with concrete 
strengths higher than 40 MPa. 

The proposed Model 4 is a simple model that shows good 

agreement with test results regarding the full-range 𝑁 − 𝜀 
diagram. This model overcomes the current limitations of the 
EC4 and EC2 design guides referring to the limitation of the 
stress-strain relation by EC2 for concrete in compression to 
3.5‰ strain and the absence of a suggested relation for 
concrete in tension. Also, it considers the concrete core 
confinement effects. Finally, according to the results of this 
study, the simplified method of the EC4 for the determination 
of the short column ultimate compression capacity gives 
ultimate compression values close to the test values. 
However, for most of the selected specimens, these values 
are not on the safe side. The ongoing study investigates this 
issue in detail on a much larger data set. 
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Notation list 

𝐷  outer diameter of a circular column 
𝐿  length of a column 
𝑡  wall thickness of the steel tube 
𝜓  dilation angle 
𝑒  flow potential eccentricity 
𝐾𝑐  ratio of the second stress invariant on the tensile 

meridian to that on the compressive meridian  
𝑓𝑏0 𝑓𝑐

′⁄   ratio of the compressive strength under biaxial 
loading to uniaxial compressive strength 

𝑓𝑐
′  cylinder compressive strength of unconfined 

concrete 
𝑓𝑐𝑘  characteristic strength of the concrete 
𝑓𝑐𝑢  cube strength of the concrete 
𝑓𝑐𝑐
′   confined concrete compressive strength 
𝑓𝑙  lateral confining pressure 
𝜀𝑐  concrete strain 
𝜀𝑐0  concrete strain at cylinder compressive strength of 

unconfined concrete 
𝜀𝑐𝑐  concrete strain at peak stress 
𝜀𝑦  steel yield strain  

𝜀𝑢  ultimate strain of the steel 
𝐸 modulus of elasticity of steel tube 
𝐸𝑐  modulus of elasticity of the unconfined concrete 

𝐸𝑐𝑐  modulus of confined concrete  
𝑓𝐵 confining stress  
𝑓𝑦 yield strength of the steel tube 

𝑓𝑟 residual stress 
𝐴𝑠 cross-sectional area of the steel tube  
𝐴𝑐 cross-sectional area of the concrete core 
𝜉𝑐 confinement factor  
𝐺𝐹 fracture energy 
𝑑𝑚𝑎𝑥 maximum coarse aggregate size 
𝜉 confinement factor 
𝐸𝑐𝑚 secant modulus of elasticity  
𝜀𝑐1 concrete strain at peak stress 
𝜀𝑐𝑢1  concrete nominal ultimate strain 
𝜎𝑐  concrete stress 
𝜎𝑟𝑒𝑠 concrete residual stress  
Δ column shortening 
𝑁𝑢,𝑖  column axial compression capacity from Models 

𝑖 = 1,2,3,4 
𝑁𝑢,𝑡𝑒𝑠𝑡  column test ultimate strength 

𝑁𝐸𝐶4  resistance to axial compression by EC4 
𝜂𝑎 , 𝜂𝑐  factors related to the confinement of concrete 

𝜆̅  column relative slenderness 
𝑁𝑝𝑙,𝑅𝑘  characteristic value of the plastic resistance to 

compression 
𝑁𝑐𝑟  elastic critical normal force for the relevant buckling 

mode 
𝐼𝑎 , 𝐼𝑐  moments of inertia of the steel section and the 

concrete section 
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