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A B S T R A C T   

Hydrological climate-change-impact studies depend on climatic variables simulated by climate models. Due to 
parametrization and numerous simplifications, however, climate-model outputs come with systematic biases 
compared to the observations. In the past decade, several methods of different complexity and dimensionality for 
adjustment of such biases were introduced, but their benefits for impact studies and accurate streamflow pro-
jections are still debated. In this paper, we evaluated the ability of two state-of-the-art, advanced multivariate 
bias-adjustment methods to accurately reproduce 16 hydrological signatures, and compared their performance 
against two parsimonious univariate bias-adjustment methods based on a multi-criteria performance evaluation. 
The results indicated that all bias-adjustment methods considerably reduced biases and increased the consistency 
of simulated hydrological signatures. The added value of multivariate methods in maintaining dependence 
structures between precipitation and temperature was not systematically reflected in the resulting hydrological 
signatures, as they were generally outperformed by univariate methods. The benefits of multivariate methods 
only emerged for low-flow signatures in snowmelt-driven catchments. Based on these findings, we identified the 
most suitable bias-adjustment methods for water-resources management in Nordic regions under a changing 
climate, and provided practical guidelines for the selection of bias-adjustment methods given specific research 
targets and hydroclimatic regimes.   

1. Introduction 

Streamflow regimes are considerably impacted by climate change 
due to simultaneous effects of rising temperatures and changing pre-
cipitation patterns (Villarini and Wasko, 2021). Higher temperatures 
cause increasing atmospheric water demand, which, in turn, changes 
precipitation timing and amount (Cheng et al., 2019; Hanus et al., 2021; 
IPCC, 2014). At the same time, higher temperatures affect the timing 
and duration of snow season (Gergel et al., 2017), snowmelt (Hakala 
et al., 2018) and resulting streamflow (Clow, 2010). Concurrent shifts in 
precipitation and temperature also influence the availability and access 
to water (Clifton et al., 2018), as well as the timing and magnitude of 
extremes like floods or droughts (Dankers et al., 2014; Dankers and 
Feyen, 2009; Villarini and Wasko, 2021). 

In Nordic countries, changes in hydroclimatic drivers of streamflow 
have already been observed through warming temperatures, resulting in 

shorter ice cover durations (Hallerbäck et al., 2021) and general wetting 
trends (Chen et al., 2021a). Current future projections indicate an 
intensification of climate change in the Northern Hemisphere by the end 
of the century (IPCC, 2021), which would inevitably influence flow re-
gimes in Nordic regions (Teutschbein et al., 2015). Anticipated changes 
include e.g., a decrease in daily flows (Matti et al., 2017), shorter snow 
seasons (Hallerbäck et al., 2021), an earlier onset of spring floods with 
lower peaks, slightly lower summer flows, and higher winter base-flows 
in snowmelt-driven catchments (Teutschbein et al., 2015). Together, 
these changes could lead to a higher frequency of rainfall-driven floods 
in Nordic catchments (Bergström et al., 2001; Matti et al., 2016) and to a 
shift in the current flood regimes from spring/summer to autumn/winter 
(Arheimer and Lindström, 2015; Vormoor et al., 2015). In contrast, 
rainfall-driven catchments in southern regions of the Nordic countries 
will likely experience streamflow reductions during most of the year, 
except for winter, due to increasing evapotranspiration rates and longer 
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growing seasons (Teutschbein et al., 2017). Such shifts can severely limit 
the availability of water for ecosystems (Carpenter et al., 1992), and 
adversely affect human-livelihood by threatening water availability for 
agriculture and hydropower (Berghuijs et al., 2014). To develop effi-
cient mitigation and adaptation strategies, water resource managers 
need reliable information generated by hydrological impact studies. 

Hydrological impact studies rely on a modeling chain to simulate 
future streamflow projections (Hakala et al., 2019; Wagener et al., 
2022). Climate models (CMs) provide global scale meteorological data 
representative for one or several greenhouse gas concentration path-
ways (Refsgaard et al., 2014). The data can be further utilized as initial 
and boundary conditions for regional CMs to obtain meteorological 
projects at finer spatial and temporal resolutions. Theoretically, the 
outputs of the regional CMs could be used as direct input to hydrological 
models to simulate climate impacts on the water cycle at the catchment 
scale (Hakala et al., 2019). Nevertheless, due to parametrization and 
numerical limitations, CMs generally provide biased simulations with 
systematic errors, compared to observations (Maraun, 2016; Teutsch-
bein and Seibert, 2012). These biases can manifest in the amount, 
timing, and the dependence between the climate variables at hand 
(François et al., 2020; Hakala et al., 2018; Piani and Haerter, 2012; 
Tootoonchi et al., 2022a; Wilcke et al., 2013). 

To reduce these biases, different bias-adjustment methods have been 
suggested. These range from simple univariate bias adjustment (BA) 
methods, such as delta-change, quantile mapping (QM) or the delta 
mapping method (DM), to more advanced multivariate BA methods such 
as copula and bias correction in multiple dimensions (MBCn). 

Univariate BA methods adjust only one climate variable at the time 
(e.g. in Hakala et al., 2018; Teutschbein & Seibert, 2012). In particular, 
the QM methods, such as distribution scaling (DS) and quantile delta 
mapping (QDM), are often preferred due to their simple implementation 
procedure and their arguably robust capabilities to adjust various as-
pects of CM simulations (Berg et al., 2022; Gudmundsson et al., 2012; 
Teutschbein and Seibert, 2012; Tootoonchi et al., 2022a). Multivariate 
methods, however, account for the interlinkages between climate vari-
ables and adjust both univariate and multivariate characteristics of these 
series (e.g. in François et al., 2020; Meyer et al., 2019; Räty et al., 2018; 
Mehrotra et al., 2018; Mehrotra and Sharma, 2021), which can be 
relevant for extreme and compound events (Meyer et al., 2019; Too-
toonchi et al., 2022a; Zscheischler et al., 2019). But these methods can 
be more challenging to implement compared to univariate ones, as they 
demand more computational resources, and advanced statistical and 
programming skills of the user. They may also adversely affect temporal 
characteristics of the climate variables: for example, they can distort 
autocorrelation in the series (François et al., 2020; Tootoonchi et al., 
2022a; Van de Velde et al., 2022). 

In a Nordic context, previous research showed that both multivariate 
methods (copula and MBCn) perform similarly to their univariate 
counterparts (DS and QDM, respectively) in adjustment of biases in 
univariate characteristics of precipitation and temperature series in 
numerous Swedish catchments (Tootoonchi et al., 2022a). However, the 
multivariate BA methods outperformed their univariate counterparts in 
reproducing the positive dependence between precipitation and tem-
perature during colder winter months, the negative dependence during 
warm summer months, and the Clausius-Clapeyron relation. Correla-
tions between precipitation and temperature varied across catchments 
(i.e., latitudes and climates) and seasons. Although both multivariate 
methods performed well in this regard, they were inferior to the uni-
variate methods in adjusting temporal characteristics, such as cross- 
correlation. 

Considering the advantages of multivariate methods in accounting 
for dependence between the adjusted variables, their impact on the 
accuracy of simulated streamflows is not clear. Specifically, the question 
if the use of advanced multivariate BA methods results in considerably 
more reliable streamflow projections compared to their univariate al-
ternatives has remained opened. On one hand, it is well recognized that 

univariate behavior of climate variables, such as mean and variance of 
temperature and precipitation, should be well represented (Guo et al., 
2020; Teutschbein and Seibert, 2012; Tootoonchi et al., 2022a) to 
properly simulate future streamflows. On the other hand, other char-
acteristics, such as temporal behavior or the dependence between pre-
cipitation and temperature may also play a key role in the accuracy of 
streamflow simulations (Chen et al., 2021a). For instance, dependence 
between precipitation and temperature influences water holding ca-
pacity of the atmosphere (Panthou et al., 2014), which can affect both 
intensity and timing of extreme precipitation (Myhre et al., 2019), 
evapotranspiration (AghaKouchak et al., 2014), and snowmelt (Hakala 
et al., 2018). As a result, preserving the dependence between climatic 
variables could be critical to reliably project future water balance, as 
well as the timing and severity of future floods or droughts (Guo et al., 
2020; Meyer et al., 2019; Zehe and Sivapalan, 2009). To reliably 
simulate streamflow from simulated climate data, hydrological models 
need to be calibrated (Pool et al., 2017). Model performance in the 
calibration (and evaluation) periods have traditionally been quantified 
in term of efficiency measures, such as Nash-Sutcliffe (Nash and Sut-
cliffe, 1970) or Kling-Gupta coefficients (Gupta et al., 2009; Yilmaz 
et al., 2010). While these measures are good indicators of the overall 
model performance, they do not indicate the ability of a hydrological 
model to reproduce specific features of streamflow regimes (i.e., hy-
drological signatures), such as the timing or magnitude of (seasonal) 
high or low flows (Addor and Fischer, 2015; Feng and Beighley, 2020; 
Mendoza et al., 2016). Such signatures are, however, essential for flood 
hazard assessment and water resource management (Brunner et al., 
2021; Todorović et al., 2022). Thus, we argue that using a range of 
hydrological signatures (Kabuya et al., 2020; McMillan, 2021; Zhang 
et al., 2018) is an essential to complement traditional efficiency mea-
sures and enable a process–informed evaluation of BA methods. 

While a number of studies evaluated the impact of univariate BA 
methods on simulated hydrological variables (e.g., Hakala et al., 2018; 
Muerth et al., 2013; Teutschbein & Seibert, 2012), relatively few studies 
evaluated multivariate BA methods in this context. For instance, Räty 
et al. (2018) compared streamflow simulations after applications of two 
univariate and two multivariate BA methods in four European catch-
ments, but did not find any substantial improvement after application of 
multivariate BA methods in these catchments. Meyer et al. (2019), 
however, found that multivariate BA outperformed univariate BA when 
simulating water storage in snow and glaciers in two Swiss alpine 
catchments. A North American study found that multivariate BA 
methods improve accuracy of streamflow simulations more in catch-
ments of arid and warm regions, than in catchments in colder regions 
with a prolonged snow season (Guo et al., 2020). It remains, however, 
unclear if these findings can be transferred to Nordic catchments. 
Additionally, research in this field has so far produced little guidance for 
impact modelers who are interested in one or several specific streamflow 
characteristics, and who need to select a BA method that is both easily 
applicable and fit for a specific task at hand. 

To bridge these gaps, this study assessed the suitability of different 
BA methods for accurate reproduction of hydrological signatures rele-
vant for water resources management in the Nordic regions under 
climate change. This assessment was based on the outputs of 10 CMs in 
50 Swedish catchments, which covered a large variety of climatic and 
hydrologic conditions. Climate variables in this multi-catchment 
ensemble were adjusted with two parsimonious univariate, and two 
advanced multivariate bias adjustment methods. Bias-adjusted temper-
ature and precipitation series were then used to force the hydrological 
HBV-light model (Bergström, 1976; Lindström et al., 1997; Seibert and 
Vis, 2012) and to simulate streamflows in each catchment. 

Evaluation of the BA methods was based on a comprehensive set of 
hydrological signatures describing (a) the overall water balance and 
streamflow dynamics, (b) seasonal streamflows, (c) low- and (d) high- 
flow characteristics. The evaluation was tailored to enable addressing 
the following research questions: 
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1) Performance and similarities of BA methods: Can the application of BA 
methods improve the accuracy in reproducing hydrological signa-
tures in Nordic catchments, and are there any considerable differ-
ences among the BA methods, or recurring similarities can be found?  

2) Robustness of BA methods: Do more complex, multivariate BA 
methods outperform parsimonious univariate BA methods by 
frequent improvements and consistent performance across (a) 
climate models, (b) catchments and (c) hydroclimatic regimes?  

3) Comparison-based recommendations: Can we identify one or several 
BA method(s) that consistently outperform(s) the other methods in 
simulating hydrological signatures relevant for water resources 
management under changing climate in the Nordic regions? 

We synthetized all results to provide specific recommendations for 
the selection of BA methods depending on the hydrological signature of 
interest, and put these recommendations in the context of effective 
water resources management under changing climate conditions. 

2. Material and methods 

2.1. Study area 

Sweden, a country with a land area of roughly 408,000 km2, is 
heavily forested (69% of the land area) with a large number of lakes, 
wetlands and streams (9%). Roughly 8% of the land is covered by shrubs 
and grass land, 8% are agricultural land, 3% urban areas and 3% open 
land and glaciers. Sweden stretches over three Köppen-Geiger (Beck 
et al., 2018) climatic zones (Fig. 1a): (1) the polar tundra climate zone 
(ET) with monthly mean temperatures below 10 ◦C covers the 

Scandinavian Mountains in North-western Sweden, (2) the subarctic 
boreal climate (Dfc) with cool summers, and winters with persistent 
seasonal snow and soil frost covers Central and Northern Sweden, and 
(3) the warm summer hemiboreal climate zone (Dfb) covers Southern 
Sweden. 

In this study, we used a set of 50 Swedish catchments (Fig. 1a) spread 
latitudinally from 55.95◦N to 68.37◦N and longitudinally between 
11.54◦E to 22.31◦E. Catchment areas spanned from 2 to 8425 km2 with 
average elevations between 12 and 942 m.a.s.l.. Selection of the catch-
ments was primarily dictated by the availability of data, i.e., only those 
catchments for which continuous daily temperature, precipitation and 
streamflow observations were available for the period 1961–2004 were 
included. Additional selection criteria included a low percentage of 
lakes (<37%), glaciers and urbanized areas (<3.1%), and a low degree 
(<30.2%) of regulation, i.e., reservoir volume relative to the mean 
annual flow volume from its draining area (cf., Todorović et al., 2022). 
The resulting 50 catchments were spatially distributed across all three 
climatic zones of Sweden (Fig. 1a) and, thus, featured diverse hydro-
climatic characteristics. 

During the period 1961–2004, total annual precipitation over the 
chosen catchments ranged from 1500 mm⋅year1 in north-western Swe-
den to 400 mm⋅year− 1 in southern Sweden (Fig. 1b), while annual mean 
temperature varied from − 3.0 ◦C in the North to + 7.7 ◦C in the South 
(Fig. 1c). Hydrological regimes also featured a north–south gradient 
(Fig. 1a, right panel), with snowmelt-driven regimes in northern regions 
and rainfall-driven regimes in southern regions (Arheimer and 
Lindström, 2015; Matti et al., 2017). 

Fig. 1. Overview of the study area, including the (a) spatial span of the three Köppen-Geiger climatic zones covering Sweden (Beck et al., 2018) with the location of 
the 50 catchments and three selected catchments showcasing the different flow regimes in each climate zone, with typical runoff regimes in catchments of these three 
climate zones, (b) mean observed annual precipitation, and (c) mean annual temperature over the period 1961–2004. 
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2.2. Data 

2.2.1. Observed variables: Precipitation, temperature, and streamflow 
Gridded daily mean values of observed temperature and precipita-

tion were obtained from the Swedish Meteorological and Hydrological 
Institute (SMHI) as spatially interpolated 4 km × 4 km national grids for 
the period 1961–2020 (Johansson, 2002). Daily streamflow records 
were downloaded from a publicly accessible streamflow database 
(https://vattenwebb.smhi.se/) hosted by SMHI, while geospatial data of 
the catchment boundaries for each of the 50 catchments were obtained 
from SMHI’s SVAR database (Eklund, 2011). 

2.2.2. Climate data 
To cover a wide range of uncertainty, we used outputs from different 

combinations of global and regional climate models (CMs) for the his-
toric period of 1961–2004 (Table 1), acquired from the Coupled Model 
Inter-comparison Project Phase 5 (CMIP5) together with Coordinated 
Regional Climate Downscaling experiment (CORDEX) initiative (Jacob 
et al., 2014). We selected only those CMs that had both historic and 
future precipitation and temperature simulations available until the end 
of the century (2100), for three greenhouse gas concentration trajec-
tories (i.e., RCP 2.6, 4.5 and 8.5), and for the highest available resolution 
0.11◦ (roughly 12.5 km). This selection protocol left us with 10 RCM- 
GCM combinations. If simulations were available in several versions 
(e.g., v1 and v2), we opted for the most recent version (i.e., v2). Gridded 
daily precipitation and temperature data were spatially averaged over 
each catchment from values in all grid cells (partly) covering the 
catchment of interest. 

2.3. Bias adjustment of climate models 

We selected four different BA methods: two commonly used uni-
variate methods and two more recently developed multivariate 
methods. The selected methods either rely on a theoretical probably 
distribution (hereafter referred to as distribution-based methods) or 
follow a distribution-free approach. While other univariate methods, e. 
g., linear scaling (Lenderink et al., 2007) or variance scaling (Chen et al., 
2011), as well as alternative multivariate methods, e.g., dynamical 
optimal transport correction (Robin et al., 2019), exist, the four selected 
methods represent the most frequently utilized to date. Note that 
multivariate methods can additionally be categorized according to their 
conceptual features (i.e., if they show stochastic or deterministic 
behavior), or the order in which the dependence is adjusted (François 
et al., 2020). 

Each BA method was calibrated to adjust CM simulations to 

precipitation and temperature observed over 22 years (between 1961 
and 1982). Precipitation and temperature data recorded in the subse-
quent 22 years (evaluation period 1983–2004) were adjusted directly 
based on the parameters estimated during the calibration period. This 
set-up was selected both due to data availability (i.e., historic simula-
tions of CMIP5 CM outputs span until 2005) and due to the requirements 
of equally long time series for forming the empirical copula. For each 
period, BA was performed on a monthly basis to preserve seasonal 
variations. In accordance with the common practice, drizzle days 
with<1 mm⋅day− 1 of precipitation were set to dry days (i.e., days with 
zero precipitation) before the evaluation of the BA methods (Teutsch-
bein and Seibert, 2012; Tootoonchi et al., 2022a). 

2.3.1. Univariate methods 
Quantile mapping (QM) is a category of univariate BA methods that 

adjusts the entire probability distributions of CM outputs to match the 
corresponding distribution of observations (Chen et al., 2013; Gud-
mundsson et al., 2012). QM methods have been shown to be superior to 
other univariate methods, such as linear scaling or variance scaling 
(Teutschbein and Seibert, 2012), and are, thus, considered the bench-
mark to compare multivariate methods with. We adopted two versions 
of QM: (1) the distribution-based method called distribution scaling (DS), 
and (2) the distribution-free method called quantile delta mapping 
(QDM). 

Distribution scaling (DS) implies the selection of particular theo-
retical distribution families to form cumulative distribution functions 
(CDFs) of variables. Typically, a Gamma distribution with the shape 
parameter α and the scale parameter β is used to represent precipitation 
intensity on wet days (Thom, 1951), while a Gaussian distribution with 
mean µ and variance σ is often applied to temperature of the entire re-
cord. In line with the previous studies (e.g., Gudmundsson et al., 2012; 
Teutschbein & Seibert, 2012; Yang et al., 2010), our preliminary anal-
ysis confirmed the suitability of these two distribution families to 
represent CM outputs, and hence we used them in this paper. 

In contrast to DS, the distribution-free quantile delta mapping 
(QDM) approach explicitly preserves relative changes in simulated CM 
outputs (Li et al., 2010), and, at the same time, adjusts biases in quan-
tiles of the simulated variables by taking into account observations in 
the calibration period (Cannon et al., 2015; Olsson et al., 2009; Willems 
and Vrac, 2011). This method is, thus, beneficial if there is enough 
confidence in the plausibility of the change signal simulated by the CM 
(Cannon, 2018; Maraun, 2016). A visual representation of QDM 
approach in comparison to other quantile mapping methods can be 
found in the paper by Berg et al. (2022). 

2.3.2. Multivariate methods 
In contrast to univariate BA methods, multivariate methods addi-

tionally adjust the dependence between variables along with their uni-
variate features (Piani and Haerter, 2012). Two frequently used 
multivariate methods in impact studies include distribution-based 
copula, and distribution-free multivariate bias correction in n di-
mensions methods (MBCn). 

In copula adjustment methods, the joint rank dependence of two 
(or more) variables is represented by a mathematical function, which 
couples their marginal distributions. For two continuous random set of 
variables X and Y, the copula can be represented as (Sklar, 1959): 

H(X,Y) = C[F(X),G(Y)] (1)  

where H(X,Y) features the cumulative distribution function (CDF) of the 
bivariate distribution of X and Y, F(X) and G(Y) are their respective 
univariate (marginal) CDFs, and C the copula function that joins two 
marginal CDFs together. For a comprehensive introduction to the gen-
eral concept and mathematical basis of copulas the reader is referred to 
seminal papers by Genest & Favre (2007) and Nelsen (2006). 

For adjusting biases in CM simulations, copulas were either used by 

Table 1 
Selected climate model combinations from CMIP5 - EURO CORDEX archive.  

CM 
ID 

Institute Global Climate 
Models (GCMs) 

Parameters Regional 
Climate 
models 
(RCM) 

Version 

1 CLMcom ICHEC-EC-EARTH r12i1p1 CCLM4-8–17 v1 
2 CNRM CNRM-CERFACS- 

CNRM-CM5 
r1i1p1 ALADIN53 v1 

3 CNRM CNRM-CERFACS- 
CNRM-CM5 

r1i1p1 ALADIN63 v2 

4 DMI ICHEC-EC-EARTH r3i1p1 HIRHAM5 v2 
5 GERICS NCC-NorESM1-M r1i1p1 REMO2015 v1 
6 KNMI ICHEC-EC-EARTH r12i1p1 RACMO22E v1 
7 KNMI CNRM-CERFACS- 

CNRM-CM5 
r1i1p1 RACMO22E v2 

8 MPI-CSC MPI- 
M− MPI− ESM− LR 

r2i1p1 REMO2009 v1 

9 MPI-CSC MPI- 
M− MPI− ESM− LR 

r1i1p1 REMO2009 v1 

10 RMIB- 
UGent 

CNRM-CERFACS- 
CNRM-CM5 

r1i1p1 ALARO-0 v1  
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fitting theoretical copula families to the series (Li et al., 2014; Räty et al., 
2018) or in empirical form (Bárdossy and Pegram, 2012; Piani and 
Haerter, 2012; Vrac, 2018). Here, we tested four theoretical copula 
families, consisting of three Archimedean copulas (Frank, Clayton and 
Gumbel) and one elliptical copula (Gaussian). 

To apply the copulas, the formal procedure by Tootoonchi et al. 
(2022b), was adopted in this study: first, the data was pre-processed and 
screened for non-stationarity, trends and ties. Ties are data with the 
same rank, such as days with zero precipitation (dry days). As daily data 
featured numerous dry days, a jittering algorithm similar to the one 
proposed by Pappadà et al. (2017) was applied to the precipitation series 
to break the ties. In this approach, adjustment of precipitation is per-
formed by replacement of zero precipitation values (i.e., dry days) with 
extremely small random but nonzero values (Vrac et al., 2016). 

Thereafter, theoretical copula families were fitted to the observed 
data. To ensure the suitability of the selected theoretical copula families, 
the Cramér-von-Mises goodness-of-fit test was applied (Genest et al., 
2009). When the test failed to provide an admissible copula, i.e., the test 
yielded p-value < 0.05 (following e.g., Brunner et al., 2019b; Genest 
et al., 2009; Genest and Remillard, 2008), empirical copulas were used 
instead. Using the fitted copula parameters, a new copula was computed 
for the CM-simulated precipitation and temperature, creating adjusted 
dependence characteristics. Thereafter, the DS method was applied on 
the margins (i.e., precipitation and temperature) to adapt the univariate 
characteristics of these series. For more detailed explanation of the 
copula approach, the reader is referred to other papers (e.g., Genest and 
Favre, 2007; Tootoonchi et al., 2022b). 

Recently, Cannon (2018) introduced MBCn to the bias adjustment 
community, which is available as a free R package (https://rdrr.io/cran/ 
MBC/man/MBCn.html). Since its publication, MBCn has been adopted 
as the benchmark for testing multivariate methods in numerous studies 
(e.g., de Velde et al., 2022; François et al., 2020; Meyer et al., 2019; 
Singh & Reza Najafi, 2020). In this method, randomly generated 
orthogonal matrices are repeatedly applied on the variables, rotating 
them in space. At each rotation, a selected univariate method (e.g., 
QDM) is applied on each of variables separately to adjust biases in their 
univariate features. This iterative process is continued until the variables 
feature multivariate similarity according to the following energy- 
distance metric (Székely and Rizzo, 2013): 

D2(F,G) = 2E‖X − Y‖ − E‖X − X′‖ − E‖Y− Y′‖ (2)  

where X={X1, X2, …,Xn} and Y={Y1, Y2, …,Yn} are two independent 
random vectors (here precipitation and temperature series), and F and G 
are CDFs of X and Y, while E is the expected value of the Euclidean norm 
‖.‖ , and X′ and Y′ are independent identically distributed copies of X and 
Y after rotation. For more information regarding this method, the reader 
is refer to Cannon (2018), and for specific details of energy distance 
method to Rizzo & Székely (2016). 

2.4. Hydrological modeling with the HBV-light model 

2.4.1. The HBV-light model 
Daily streamflow was simulated in each of the 50 catchments with 

the standard version of the HBV-light model (Seibert and Vis, 2012), 
which has been widely adopted in many regions (Seibert and Bergström, 
2022). The model consists of (1) snow, (2) soil moisture, (3) response, 
and (4) routing routines (Seibert and Vis, 2012). In this study, we used 
the spatially-lumped standard version of the HBV-light model. The 
model required daily precipitation, temperature and potential evapo-
transpiration as inputs. Series of daily potential evapotranspiration were 
computed from the temperature series (observed and simulated by the 
CMs, raw and bias-adjusted) by applying the Hamon method (Hamon, 
1961). 

2.4.2. Calibration and evaluation of HBV-light 
Following a one-year warm-up period from 1961 to 1962, HBV-light 

was calibrated in each catchment against 21 years of daily streamflow 
observations (from 1963 to 1982). The calibration was performed in 
each catchment separately by using the built-in GAP optimization al-
gorithm (Seibert, 2000). 

The GAP-optimization was run 5000 times after randomly drawing 
50 initial parameter sets. The model calibration was performed by 
maximizing a composite objective function (Fobj), which was selected to 
achieve a balanced model performance in high- and low flows, and in 
reproducing streamflow volume: 

Fobj = 0.75(NSE)+ 0.2(logNSE)+ 0.05(VE) (3)  

where NSE denotes the (high-flow sensitive) Nash-Sutcliffe efficiency 
(Nash and Sutcliffe, 1970) computed from daily flows, logNSE is the 
(low-flow sensitive) Nash-Sutcliffe efficiency computed from log- 
transformed flows to put more emphases on low flows (Oudin et al., 
2006; Santos et al., 2018), and VE denotes volumetric efficiency (Criss 
and Winston, 2008). 

Values of the three components of the objective function in the 
calibration and evaluation periods (Fig. 2) suggested a good model 
performance and, therefore, provide a solid ground for assessing the 
performance of the selected BA methods in reproducing hydrological 
signatures. 

2.4.3. Streamflow simulations 
The calibrated HBV-light model was then used to simulate daily 

streamflow in each of the 50 catchments for the period 1963–2004 with 
three different sets of input:  

1. Observed precipitation and temperature (the reference simulations),  
2. Raw precipitation and temperature simulated by the 10 CMs, and  
3. Bias-adjusted precipitation and temperature simulated by the 10 

CMs and the four BA methods. 

To reduce the effect of model uncertainty on the evaluation of BA 
methods, a set of 16 hydrological signatures (Table 2, see section 2.4.3) 
obtained from streamflows simulated with the observed precipitation 
and temperature was used as reference. Hydrological signatures 

Fig. 2. Values of the three components of the objective function (NSE, logNSE 
and VE) in the calibration (1963–1982) and evaluation (1983–2004) periods. 
The ranges of the boxplots show the spread of the values across the 50 catch-
ments within each period. 
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obtained from streamflows simulated with raw or bias-adjusted CM 
precipitation and temperature (i.e., inputs 2 and 3) were, thus, evalu-
ated against this reference rather than against signatures of streamflow 
observations. This evaluation protocol eliminates the uncertainties 
caused by hydrological model structure and/or parameter estimates, 
and is in line with the recommendations by Hakala et al. (2019) for the 
assessment of uncertainty stemming from the BA methods. 

2.5. Hydrological signatures 

The 16 signatures were selected to capture complementary charac-
teristics of streamflow regimes, which relate to (a) water balance and 
flow dynamics, (b) seasonal flows, (c) low flows, and (d) high flows 
(Table 2). Considering that the selected signatures generally reflect 
annual streamflow behavior (e.g., spring flows, mean annual flows or 
timing of the spring pulse day), they were firstly computed from daily 
streamflows separately for each year, and then averaged over the entire 

Table 2 
List of 16 hydrological signatures used in this study. Signatures were categorized 
into 4 categories representing (a) water balance and flow dynamics (b) seasonal 
flows (c) low flows and (d) high flows. Within each category, the signature name 
is stated together with the abbreviation that is used throughout the paper, fol-
lowed by the signature description (including equations) and the related 
references.   

Hydrological 
signatures 
(abbreviation) 

Description Reference category 

1 Mean annual 
flow, (Q_mean) 

Average flow in a 
year (mm year− 1).  

water balance 
and flow 
dynamics 2 Runoff 

coefficient, 
(Q_coeff) 

Fraction of the 
total yearly 
precipitation that 
generates 
flow:Qcoeff =
∑

iQi
∑

iPi
, Where Qi 

represents the 
daily flow (in 
mm⋅day− 1) and 
Pi, daily 
precipitation, 
both of which 
were summed 
over a year. 

(Merz and 
Blöschl, 2009) 

3 Timing of the 
center of mass of 
annual flow, 
(COMt) 

Timing is 
computed from 
daily flows Qi and 
for each 
year:COMt =
∑

iQiti
∑

iQi
where ti 

represents ordinal 
day of a year. 

(Kormos et al., 
2016; 
Mendoza et al., 
2016) 

4 Spring onset 
(spring “pulse 
day”), (SPD) 

Spring onset is the 
ordinal number of 
the day in which 
the negative 
difference 
between the 
streamflow mass 
curve and the 
mean streamflow 
mass curve is the 
greatest. Spring 
onset series is 
obtained from 
values in each 
year 

(Cunderlik and 
Ouarda, 2009) 

5 Mean spring 
flow, (Q_spring) 

Flows in the 
spring (1st March 
through 31st 
May) in each year. 

(Chen et al., 
2017) 

seasonal 
behavior of the 
flows 

6 Mean summer 
flow, (Q_summer) 

Flows in the 
summer (1st June 
through 31st 
August) in each 
year.  

7 Mean autumn 
flow, (Q_autumn) 

Flows in the 
autumn (1st 
September 
through 30st 
November) in 
each year.  

8 Mean winter 
flow, (Q_winter) 

Flows in the 
winter (1st 
December 
through 28th 
February) in each 
year.  

9 Low-flow 
frequency, 
(LFfreq) 

Number of days in 
a year with flows 
smaller than 20% 
of the mean 
observed flow in 

(Addor et al., 
2018) 

low flow 
characteristics  

Table 2 (continued )  

Hydrological 
signatures 
(abbreviation) 

Description Reference category 

the complete 
simulation period 
(1963–2004). 

10 Timing of 30-day 
low flow, 
(T_minQ30) 

Ordinal day in 
which 15th day of 
the 30-day 
minimum annual 
flow occurred, 
obtained in each 
year. If there were 
several 
consecutive days 
with the same 
minimum flows, 
the mean timing 
of these days in a 
year is adopted. 

(Parajka et al., 
2016; Vis 
et al., 2015) 

11 7-day low flow, 
(minQ_d7) 

Minimum 
flows averaged 
over a given 
number of 
consecutive 
days (here, 7 
and 30) 
obtained in 
each year. 

(Olden and Poff, 
2003; Richter 
et al., 1996) 

12 30-day low 
flow, 
(minQ_d30) 

13 High flow 
frequency, 
(HFfreq) 

Number of days in 
a year with flows 
larger than 80% 
in the full 
simulation period 
(1963–2004) 
computed from 
the observed 
flows. 

Following  
Krysanova 
et al. (2017) 
and  
Westerberg & 
McMillan 
(2015) 

high flow 
characteristics 

14 Timing of the 1- 
day high flow, 
(T_maxQ1) 

Ordinal day in 
which the 
maximum annual 
flow occurred, 
obtained in each 
year of the 
simulation period 
(1963–2004). 

(Richter et al., 
1996) 

15 30-day high flow, 
(maxQ_d30) 

Maximum flows 
averaged over a 
given number of 
days (here, 30 and 
1) obtained in 
each year. 

(Dankers et al., 
2014; Vis 
et al., 2015) 16 1-day high flow, 

(maxQ_d1)  
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period between 1963 and 2004. Such protocol, which is adopted in 
many hydroclimatic studies, suggests evaluate of BA methods’ perfor-
mance over long periods (François et al., 2020; Maraun and Widmann, 
2018). Focusing on the entire 42-year period was recognized as the most 
robust split-sample strategy (Maraun and Widmann, 2018; Shen et al., 
2022), and, as such, was also applied in numerous previous studies (e.g., 
Meyer et al., 2019; Zscheischler et al., 2019). 

2.6. Evaluation framework for the comparison of bias correction methods 

We compared the performance of four BA methods (section 2.3) in 
reproducing 16 hydrological signatures (section 2.5) obtained from 
simulated streamflows with the outputs of 10 different CMs (section 
2.2.2) and observed climate series in the 50 Swedish catchments (section 
2.1). The evaluation was based on absolute errors (MAE), computed as 
follows: 

MAE =
1
N

∑N

i=1

⃒
⃒Ri − Rref

⃒
⃒ (4) 

where Ri denotes a signature computed from the outputs of the HBV- 
light model forced with the raw and four bias-adjusted outputs of the 
climate modelling chains separately. Conversely, Rref denotes a signa-
ture obtained with the reference model (i.e., model forced with observed 
precipitation and temperature). 

We then addressed the research questions in a framework consisting 
of (1) performance, (2) robustness and (3) a comparison-based evalua-
tion of BA methods, which guided the practical recommendations in the 
final section of this paper. 

The performance of BA methods was visually analyzed with the help 
of separate heatmaps for raw and the four bias-adjusted CM outputs, 
which allowed an evaluation of emerging patterns across catchments 
and CMs. The Pearson correlation coefficient (Pearson, 1920) based on 
500 pairs of values (50 catchments × 10 CMs) for each possible com-
bination of the 5 CM simulations (1 raw and 4 BA methods) for each of 
the 16 hydrological signatures (Table 2) was then used to detect simi-
larities in the performance of the applied BA methods across catchments 
and CMs. In this study, we considered BA-method pairs with correlation 
coefficients higher than 0.7 similar. 

The overall robustness of BA methods was evaluated based on the 
concepts of accuracy and precision that have often been applied to 
measurements (McMillan et al., 2018) or model predictions (Wagener 
et al., 2022), and are here applied to the bias-adjusted model simula-
tions. Accuracy here refers to the ability of a bias-adjusted model to yield 
simulations close to the observations (i.e., have a low bias), and it was 
quantified by averaging MAEs across the 50 catchments and 10 CMs 
(500 instances), and also by the frequency of improvements (i.e., how 
many times a BA method reduced the raw bias). Precision refers to the 
low variability of bias-adjusted simulations provided by multiple CMs (i. 
e., have a low variance). Thus, the variance across CMs and across 
catchments was computed under the assumption that robust BA methods 
perform consistently well (i.e., have a low variability) regardless of the 
climate models used, or catchment properties. To further check the 
consistency across hydroclimatic regimes, the robustness was analyzed 
separately for the snowmelt-driven regimes in northern regions (i.e., 
within ET and Dfb climate zones), and for rainfall-driven regimes in 
southern regions (i.e., Dfc climate zone). The differences in runoff re-
gimes between these two groups of catchments are clearly shown in 
Fig. 1a: the snowmelt-driven catchments were characterized by a pro-
nounced runoff seasonality, with the highest runoff in spring and early 
summer, as opposed to rainfall-dominated catchments that exhibited 
rather subtle runoff variation throughout the year. 

The final comparison-based evaluation was based on the following 
eight criteria, which described each BA method’s ability to:  

• strongly reduce biases, i.e., to yield low MAE values (criterion 1) 

• frequently reduce biases, i.e. to have a high frequency of improve-
ment (criterion 2)  

• robustly reduce biases across various CMs that had different boundary 
conditions and process representations, i.e., to yield a low variance 
in MAE values across CMs (criterion 3)  

• robustly reduce biases across a multitude of catchments with various 
catchment characteristics and hydroclimatic properties, i.e., to yield 
a low variance in MAE values across catchments (criterion 4)  

• strongly reduce biases across hydroclimatic regimes dominated by 
snowfall and melt, i.e., to have low MAE values in northern catch-
ments (criterion 5)  

• frequently reduce biases across hydroclimatic regimes dominated by 
snowfall and melt, i.e., to have a high frequency of improvements in 
the northern catchments (criterion 6)  

• strongly reduce biases across hydroclimatic regimes dominated by 
rainfall, i.e., to have low MAE values in southern catchments (cri-
terion 7)  

• frequently reduce biases across hydroclimatic regimes dominated by 
rainfall, i.e., to have a high frequency of improvements in the 
southern catchments (criterion 8) 

For each of these criteria, the performance of every BA method was 
categorized as high (≥75% of max–min range), medium (<75% and 
greater than 25%), or low (≤25%) to reveal if particular BA methods 
consistently outperformed the remaining ones in simulating signatures 
relevant for water resources management under changing climate. 

3. Results 

3.1. Performance of BA methods 

3.1.1. Performance across the signature groups 

3.1.1.1. Water balance and runoff dynamics signatures. Runoff signa-
tures simulated with raw CMs typically featured considerable biases 
(expressed as MAE). For annual mean flow (Q_mean), raw biases were as 
high as 2 mm⋅day− 1 (Fig. 3a, left panel), nearly three times the reference 
value, i.e., mean flow simulated with the observed meteorological input. 
The runoff coefficient (Q_coeff) demonstrated substantial biases of up to 
0.3 (Fig. 3b). Signatures characterizing streamflow dynamics also 
showed considerable biases in raw simulations: the center of mass 
(COMt) was biased up to 35 days, or roughly one month (Fig. 3c), and 
biases in the timing of the spring flood (SPD) reached up to 200 days, i. 
e., more than 6 months (Fig. 3d). Considerably stronger biases in SPD 
were detected in southern catchments with latitudes below 60◦N 
(Fig. 3d). 

All BA methods were able to reduce the initial biases in these sig-
natures obtained from raw CM outputs (Fig. 3a-d). Main differences 
were visible between the two groups of distribution-based (DS and 
copula) and distribution-free methods (QDM and MBCn), while the 
differences between uni- (DS and QDM) and multivariate methods 
(copula an MBCn) were less pronounced. Biases in raw Q_mean were 
reduced from 2 mm⋅day− 1 down to a maximum of 0.2 mm⋅day− 1 with 
distribution-based methods (DS and copula), and down to a maximum of 
0.4 mm⋅day− 1 with distribution-free approaches, i.e., QDM and MBCn 
(Fig. 3a). Biases in raw Q_coeff were considerably reduced after appli-
cation of all the methods (Fig. 3b). The distribution-based methods 
reduced MAEs to maximum of 0.03, and distribution-free methods up to 
0.06 (Fig. 3b). For COMt, all four BA methods performed similarly, 
resulting in biases between 13 days with DS, and 16 days with copula 
(Fig. 3c). Biases in SPD after applying the distribution-based methods 
were noticeably lower (approximately up to 70 days) than after applying 
the distribution-free methods that resulted in biases up to approximately 
120 days (Fig. 3d). 

Within both groups of distribution-based and distribution-free 
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methods, similar patterns emerged in the remaining biases in all sig-
natures of the group (Fig. 3). The exception in this regard was SPD 
(Fig. 3d), for which the patterns obtained with copula diverged from 
those of the remaining methods. Generally, patterns obtained with all 
BA methods differed from those obtained with the raw CM-outputs in all 
cases, with exception of SPD, which was characterized by pronounced 
change with the latitude. In contrast to the variation across latitudes, i. 
e., catchments, the variation in biases across CMs generally did not 
exhibit any apparent pattern, i.e., no CM consistently resulted in lower 
biases across all signatures of the group obtained and with all BA 
methods. 

3.1.1.2. Seasonal flows signatures. Seasonal flows obtained with uncor-
rected CM outputs featured biases of up to 2.3 mm⋅day− 1 in Q_spring 
(Fig. 4a) and up to 6 mm⋅day− 1 in Q_summer (Fig. 4b). The MAEs were, 
however, lower for the other two seasons, only reaching as high as 1.6 
mm⋅day− 1 for Q_autumn (Fig. 4c) and 1.1 mm⋅day− 1 for Q_winter 
(Fig. 4d). In all four cases, raw biases were substantial and at least twice 
the reference values (in case of Q_autumn even 7 times). 

Biases in seasonal flows also featured a distinct spatial pattern, with 
much higher MAE values in the North in the spring and summer (Fig. 4a, 
b), whereas the opposite behavior was observed in the winter (Fig. 4d). 

The distribution-free methods (QDM and MBCn) reduced biases in 
Q_spring (Fig. 4a) to a maximum of 0.7 mm⋅day− 1, while the 
distribution-based methods resulted in biases of up to 0.55 mm⋅day− 1 

and 0.35 mm⋅day− 1 with DS and copula, respectively (Fig. 4a). For 
Q_summer (Fig. 4b), univariate BA methods resulted in MAEs of up to 

1.8 mm⋅day− 1, while simulations based on the multivariate BA methods 
featured smaller errors (up to 1.3 mm⋅day− 1). Distribution-based 
methods performed similarly for Q_autumn (maximum MAE of 0.83 
mm⋅day− 1) (Fig. 4c), and generally better than distribution-free ap-
proaches, which performed similarly taking values up to 1.3 mm⋅day− 1. 
Through simulations with all four methods, bias ranges in Q_winter 
(Fig. 4d) were somewhat similar, and took values of up to 0.45 
mm⋅day− 1 with distribution-based methods, and up to 0.55 mm⋅day− 1 

with the distribution-free ones. 
In all signatures of this group (Fig. 4a-d), the two distribution-free 

methods exhibited similar MAE patterns. Furthermore, similarities in 
the MAE patterns could also be observed in the univariate methods (DS 
and QDM) for Q_summer (Fig. 4b) and Q_winter (Fig. 4d). The copula 
method resulted in a completely different MAE pattern in Q_winter 
(Fig. 4d), particularly in the southern catchments. Additionally, 
Q_summer and Q_winter exhibited a distinct spatial pattern, i.e., MAEs 
in Q_summer were notably higher in the northern catchments, while 
Q_winter showed the opposite pattern. The patterns obtained with the 
raw CM outputs were generally altered by applying the BA methods, 
although a slight resemblance in MAE patterns could be detected for the 
summer and winter flows. Visual inspection of the panels with the sig-
natures obtained with bias-adjusted climate variables did not identify 
any CM that consistently yielded lower biases across the BA methods and 
signatures. 

3.1.1.3. Low flows signatures. Biases in the low-flow frequency (LFfreq, 
Fig. 5a) and timing of low flows (T_minQ30, Fig. 5b) were generally high 

Fig. 3. MAEs for signatures representing water balance (a-b) and runoff dynamics (c-d) obtained from the flows simulated with the HBV-light model with uncor-
rected (i.e., raw) CM outputs (left panel) and with bias adjusted variables using four BA methods (the other four panels) over 1963–2004 period. Latitudes of the 
catchments are indicated on the panels’ y-axis, while the x-axis represents CM-IDs (Table 1). Note that the colorbar range corresponds to the min–max ranges of MAEs 
in the signatures obtained from the simulations with the four BA methods (not including raw). 
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(up to 100 days) for simulations with uncorrected CM outputs. The other 
two signatures representing the magnitude of low flows featured biases 
as high as 0.22 mm⋅day− 1 in minQ_d7 (Fig. 5c), and up to 0.25 
mm⋅day− 1 in minQ_d30 (Fig. 5d), both of which exceeded the reference 
values by more than three times. 

Biases in all low-flow signatures with bias-adjusted CM simulations 
were considerably cut down. The MAE values in LFfreq (Fig. 5a) were 
similar across all four BA methods, ranging between 40 days after 
applying the distribution-based methods, and 45 days after the appli-
cation of the distribution-free methods. The distribution-based methods 
resulted in lower ranges of MAEs in T_minQ30 (up to 40 days with DS 
and up to 55 days with copula, Fig. 5b) compared to distribution-free 
methods, which showed errors of up to 80 days after applying QDM, 
and up to 100 days after applying MBCn. For minQ_d7 (Fig. 5c) and 
minQ_d30 (Fig. 5d), DS, QDM and MBCn reduced the original raw biases 
to a similar extent, resulting in MAE values of up to 0.16 mm⋅day− 1 and 
0.18 mm⋅day− 1, respectively. However, the application of the copula 
method resulted in considerably lower biases of only up to 0.8 
mm⋅day− 1 in minQ_d7 (Fig. 5c), and of 0.1 mm⋅day− 1 in minQ_d30 
(Fig. 5d). 

While similarities in the MAE patterns could be observed between 
distribution-free methods (Fig. 5a-d), the copula approach again stood 
out by featuring considerably different patterns in T_minQ30 (Fig. 5b). 
MAEs in none of the signatures obtained with bias-adjusted CM outputs 
exhibited any apparent pattern across CMs or latitudes, except for 
copula for T_minQ30 that yielded slightly higher MAEs in the South. 
Such behavior was consistent with the signatures obtained with raw 
outputs, which did not display any distinct north–south pattern. 

Nevertheless, close similarities between the patterns obtained from raw 
and adjusted CM outputs could not be detected in these signatures. 

3.1.1.4. High flows signatures. High-flow signatures based on the un-
corrected CM outputs featured considerable biases (Fig. 6a-d). Biases in 
the frequency-related signature HFfreq (Fig. 6a) and timing-related 
signature T_maxQ1 (Fig. 6b) were up to 100 days, particularly in 
southern catchments in the latter. MAEs in maxQ_d30 (Fig. 6c) and 
maxQ_d1 (Fig. 6d) featured higher MAEs in the northern catchments of 
up to 8 mm⋅day− 1 respective 12 mm⋅day− 1, both of which amounted to 
over two times the references values. 

After bias adjustment, biases in HFfreq (Fig. 6a) were considerably 
reduced with all four methods, taking values of up to 20 days with the 
distribution-based methods (DS and copula), and up to 35 days for the 
distribution-free methods (QDM and MBCn). A noteworthy pattern 
emerged: while all four BA methods were able to considerably reduce 
biases in T_maxQ1 in the northern catchments, the distribution-based 
methods struggled in the southern catchments and basically did not 
result in a distinct reduction of MAEs (Fig. 6b). On the contrary, after the 
application of DS, several catchments featured biases in T_maxQ1 as 
large as 100 days, which exceeded the original raw biases. This problem 
was even more pronounced for the copula method, which to a large 
extent inflated the raw biases in the southern catchments (Fig. 6b). For 
maxQ_d30 (Fig. 6c), all methods performed similarly, with copula 
featuring the lowest biases (up to 2 mm⋅day− 1), and QDM the highest 
biases (up to 3.5 mm⋅day− 1). Biases in maxQ_d1 (Fig. 6d) featured 
similar ranges for DS, copula and MBCn (up to 5.5 mm⋅day− 1), while 

Fig. 4. MAEs for signatures representing seasonal flows (a-d) obtained from the flows simulated with the HBV-light model with uncorrected (i.e., raw) CM outputs 
(left panel) and simulations with bias adjusted variables using four BA methods (the other four panels) over 1963–2004 period. Latitudes of the catchments are 
indicated on the panels’ y-axis, while the x-axis represents CM-IDs. Note that the colorbar range corresponds to the min–max ranges of MAEs for the simulations with 
the four BA methods (not including raw). 
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MAEs with QDM were somewhat larger, exhibiting values of up to 8 
mm⋅day− 1 (Fig. 6d). 

For all high-flow signatures, similarities could be observed in pat-
terns obtained with the distribution-free methods (QDM and MBCn). 
Note that the patterns in MAEs after applying the copula approach were 
again somewhat different from the other methods (Fig. 6a-d). Most 
evidently, we could observe horizontal lines in Fig. 6a-d, which indi-
cated rather low variation across the CMs. The MAE values in HFfreq 
(Fig. 6a) did not feature a distinct north–south gradient; however, 
spatial variations across latitudes were apparent in the other three high- 
flow signatures. For example, biases in T_maxQ1 (Fig. 6b) were mostly 
higher in the southern catchments, while the opposite behavior was 
exhibited by maxQ_d30 and maxQ_d1. As for the latter, larger biases in 
the northern catchments were also obtained with the raw CM outputs. 
No CMs could be identified as the most robust in the ensemble, since no 
CM consistently yielded the lowest residual biases. 

4. Similarity of BA patterns 

Similarities between the patterns in the signatures were detected in 
many instances, as outlined in section 3.1.1. First, we analyzed to what 
degree BA methods maintained the patterns obtained with raw CM data 
(i.e., correlations between raw and each of the BA methods). Thereafter, 

we examined the correlations between all pairwise combinations of the 
four BA methods. We considered the Pearson correlation coefficients 
greater than 0.70 to be an indication of a strong correlation. 

Overall, correlations between the signatures obtained from adjusted 
CM outputs and those obtained with raw ones were weak, as indicated 
by rather low values of the Pearson correlation coefficients. Signatures 
that had the lowest correlations to MAE obtained from raw simulations 
included COMt (Fig. 7a, third panel), T_minQ30 (Fig. 7c, second panel) 
and HFfreq (Fig. 7d, first panel), with the copula method showing the 
lowest correlation with uncorrected CMs in these signatures. The highest 
correlation coefficients between MAEs in raw and the bias-adjusted 
values were detected in Q_mean, Q_summer, maxQ_d30 and maxQ_d1. 
In all cases, except for Q_mean, the multivariate methods (copula and 
MBCn) featured stronger correlations with raw CM than the univariate 
ones (DS and QDM). 

As opposed to correlations to the signatures obtained from raw CM 
outputs, some rather strong correlations between signatures obtained 
with BA methods could be detected. More specifically, strong correla-
tions were detected in three pairs of BA methods: (1) most frequently 
between distribution-free methods QDM and MBCn (for all 16 signa-
tures), (2) between distribution-based methods (DS and copula) for 
seven signatures, and (3) between the univariate methods (DS and 
QDM) for four signatures. The correlation between the two multivariate 

Fig. 5. MAEs for signatures representing low flows (a-d) obtained from the flows simulated with the HBV-light model with uncorrected (i.e., raw) CM outputs (left 
panel) and simulations with bias adjusted variables using four BA methods (the other four panels) over 1963–2004 period. Latitudes of the catchments are indicated 
on the panels’ y-axis, while the x-axis represents CM-IDs. Note that the colorbar range corresponds to the min–max ranges of MAEs for the simulations with the four 
BA methods (not including raw). 
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methods was generally lower than for the other couples (i.e., in the 
range 0.03 – 0.63). 

4.1. Robustness of BA methods 

4.1.1. Overall robustness 
All BA methods were able to consistently reduce the initial raw 

biases, which was demonstrated by considerably smaller MAE values 
(averaged over all 50 catchments and 10 CMs) compared to the simu-
lations based on raw CM data (indicated by smaller circles in Fig. 8). 
Biases in the signatures related to water balance and flow dynamics 
(Fig. 8a), as well as in the seasonal flows (Fig. 8b), were generally 
reduced, i.e., the application of the BA methods resulted in average bias 
reductions of more than 50% of the initial bias. Biases in signatures 
related to low- (Fig. 8c) and high flows (Fig. 8d) were reduced less well, 
which was particularly pronounced in e.g., timings of 30-day low flows 
(T_minQ30, Fig. 8c) and of the annual maximum flows, T_maxQ1 
(Fig. 8d). 

To examine whether the BA methods reduced the biases not just in a 
few instances, but rather consistently across all 500 simulations (50 
catchments × 10 CMs), we also analyzed the frequency of improve-
ments. These results generally corroborated the MAE values. Water 
balance and flow dynamics signatures (Fig. 8a) as well as seasonal flows 
(Fig. 8b), had somewhat higher rates of bias reductions (on average, 
improvements in 81% and 78% of simulations, respectively), compared 
to the other signatures. Application of the BA methods led to improve-
ments in 74% of the simulated low flow signatures (Fig. 8c), and 75% of 
high flow signatures (Fig. 8d). The lowest frequency of improvements 
was found in T_minQ30 and T_maxQ1 (both 57%), while the highest 

frequency was achieved in summer flows, Q_summer (93%, Fig. 8b), and 
in the runoff coefficients, Q_Coeff (92%, Fig. 8a). 

In most cases, the best results were obtained with the distribution- 
based methods (DS and copula), which resulted in lower MAE values 
than their distribution-free counterparts, but also a higher frequency of 
improvements. The only two signatures for which the opposite pattern 
was obtained were T_minQ30 and T_maxQ1. 

It is also noteworthy that uni- and multivariate methods within the 
same group of either distribution-based or distribution-free BA ap-
proaches generally resulted in rather similar values of averaged MAE 
and frequency of improvements, especially in the signatures related to 
water balance and flow dynamics (Fig. 8a) and the seasonal flows 
(Fig. 8b). The only exception in this regard was the copula method, 
which struggled to adjust biases in T_minQ30 (Fig. 8c), and even inflated 
existing biases in T_maxQ1 (Fig. 8d). 

4.1.2. Consistency across climate models 
The application of BA methods led to noticeably reduced MAE values 

(compared to raw) across all climate models for all 16 signatures, with 
exception of copula and T_maxQ1 (as elaborated in detail in the previous 
section). The reduction in biases is apparent not only in the median 
values, but also in the interquartile ranges of MAE values across the 10 
CMs, which were consistently smaller than those of the raw simulations 
(Fig. 9). 

Distribution-free methods generally showed higher variability of the 
errors (i.e., larger inconsistency) than distribution-based methods 
(Fig. 9, depicted by the circles on top of each boxplot representing the 
variance), with MBCn demonstrating the highest variance across CMs 
for half of the signatures and never featuring the lowest variance. This 

Fig. 6. MAEs for signatures representing high flows (a-d) obtained from the flows simulated with the HBV-light model with uncorrected (i.e., raw) CM outputs (left 
panel) and simulations with bias adjusted variables using four BA methods (the other four panels) over 1963–2004 period. Latitudes of the catchments are indicated 
on the panels’ y-axis, while the x-axis represents CM-IDs. Note that the colorbar range corresponds to the min–max ranges of MAEs for the simulations with the four 
BA methods (not including raw). 
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was closely followed by QDM, which featured the highest variance in 
five signatures and the lowest in one. In contrast, copula stood out by 
resulting in the lowest variance across CM (i.e., the highest consistency) 
for 14 of the 16 signatures, closely followed by DS (Fig. 9). 

The largest variances (i.e., inconsistencies) were found in the low- 
flow signatures (Fig. 9c), for which the minimum–maximum ranges 
across the CMs were relatively large, and in particular for minQ_d7 and 
minQ_d30. Although these ranges were not excessive in the absolute 
terms (i.e., they took values up to 0.05 mm day− 1), they were nearly as 
large as for the raw simulations, especially with the QDM method. 

4.1.3. Consistency across catchments 
The performance of BA methods was generally more variable across 

catchments compared to their variance across CMs, which was reflected 
by a wider interquartile range and a larger variance (Fig. 10). However, 
the application of the BA methods still led to a visible reductions in the 
median MAE for all signatures, and in lower variability of MAE values 

across catchments, which was consistently smaller than raw values for 
the majority of signatures. 

The distribution-based methods (DS and copula) featured generally a 
higher variability (i.e., larger inconsistencies), with copula having the 
largest variance in nine of the 16 signatures, and DS in four cases. 
Distribution-free methods were mostly associated with lower variance of 
MAEs, with QDM featuring only once and MBCn only twice the highest 
variance among the BA methods. However, differences across the BA 
methods in variances across catchments were less pronounced than in 
variances across CMs. 

Variance across catchments was generally a little smaller for signa-
tures representing the water balance and runoff dynamics (Fig. 10a) and 
seasonal streamflows (Fig. 10b) than for the signatures representing 
low- (Fig. 10c) and high flows (Fig. 10d). Inconsistencies were partic-
ularly large in T_minQ30, for which the raw variance was even inflated 
by the copula and MBCn methods (Fig. 10c, second panel), and in 
T_maxQ1, for which all methods except MBCn inflated the variance 

Fig. 7. Pearson correlation coefficients based on the 500 pairs of MAE values (50 catchments × 10 CMs) for each possible combination of the five simulations (one 
raw and four BA methods) for the 16 hydrological signatures. BA-method pairs with correlation coefficients higher than 0.7 are highlighted with darker shades of 
purple and white text color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(Fig. 10d, second panel). 

4.1.4. Consistency across hydroclimatic regimes 
Given the variability in biases across catchments (Fig. 11), we further 

assessed whether systematic differences in performance of BA methods 
in the northern catchments with dominantly snowmelt-driven stream-
flow regimes (located above latitude 60◦N), and southern, primarily 
rainfall-driven catchments (located below 60◦N), could be detected. 

In the northern catchments (Fig. 11a-d), initial raw biases were 
consistently reduced with all BA methods in all 16 signatures. Notable 
were the high remaining biases and relatively low frequency of im-
provements for Q_winter (Fig. 11b), particularly with the univariate 
methods. In contrast, Q_summer (Fig. 11b) and T_maxQ1 (Fig. 11d) only 
had small biases remaining, and featured a high rate of improvements. 
In signatures representing the water balance and runoff dynamics 
(Fig. 11a) in the northern catchments, distribution-based methods 
resulted in slightly lower MAEs than distribution-free methods. The 
same behavior was detected for Q_spring and Q_autumn (Fig. 11b). For 
Q_summer, however, univariate methods outperformed the multivariate 
ones, as opposed to Q_winter. Similarly, both multivariate BA methods 
reduced biases in low-flow signatures more than the univariate ones 
(Fig. 11c), except for T_minQ30, for which copula performed worse than 
the other three methods. Biases in high-flow signatures were reduced 
most by the distribution-based methods, with the exception of maxQ_d1, 
for which copula resulted in the largest remaining bias (Fig. 11d). Fre-
quencies of improvement with the BA methods were largely consistent 
with the MAE values, i.e., lower remaining biases were accompanied 
with the highest rate of improvements. 

The BA methods were generally able to reduce biases in the southern, 
mainly rainfall-driven catchments (Fig. 11e-h). In most cases, the 

distribution-based BA methods outperformed distribution-free ones. 
Both distribution-based methods performed similarly, i.e., DS and 
copula each performed best for half of the signatures. On the other hand, 
in the distribution-free methods, QDM outperformed MBCn in the ma-
jority of signatures (14 out of 16). For COMt (Fig. 11e), T_minQ30 
(Fig. 11g) and T_maxQ1 (Fig. 11h), however, the opposite pattern 
emerged, i.e., the distribution-free methods resulted in lower MAEs and 
a higher frequency of improvements compared to distribution-based 
ones, especially copula. Especially the copula method showed a low 
performance with remaining biases nearly as high as raw biases (in 
COMt), or even higher (in T_minQ30 and T_maxQ1). Similarly to the 
northern catchments, frequencies of improvement with the BA methods 
were consistent with the reduction in biases. In other words, a higher 
frequency of improvement was typically connected to lower MAEs. 

4.2. A comparison-based evaluation 

Based on the eight robustness criteria (section 2.6) assessed in the 
previous sections, we here (Fig. 12) provide a comprehensive compari-
son of the BA methods aimed at identifying the most suitable method(s) 
for assessment of climate change impact on streamflow regime features 
represented by 16 signatures. 

While application of each of the BA methods led to considerable 
improvements, their overall performance varied for each criterion 
across signatures. For example, distribution-based BA methods were 
generally more robust than the distribution-free methods for signatures 
related to water balance and flow dynamics (Fig. 12a), as well as for 
seasonal flows (Fig. 12b). In both groups of signatures, univariate DS 
frequently displayed a high performance across the criteria (in 20–21 
out of 32 cases), and resulted in only 5 cases of low performance 

Fig. 8. Mean biases (MAE) and frequency of improvement in the four groups of hydrological signatures (a-d) obtained with the four BA methods relative to the raw 
CM outputs. Circles represent the MAE values (averaged over all CMs and catchments), where larger circles indicate higher MAE values, i.e., greater bias in the 
hydrological signature. Shadings of the cells indicate the frequency of improvement, i.e., the percentage of cases (with 10 CMs in 50 catchments) in which application 
of a BA method resulted in lower bias in a particular signature than the raw simulations. A dark background and small white circle indicate a robust BA method. 
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(Fig. 12a,b, first panel), closely followed by the multivariate copula 
approach with 18–20 high-performance cases and 8–9 low-performance 
cases (Fig. 12a,b, third panel). The multivariate variant of distribution- 
free methods (MBCn), however, performed worse than its univariate 
counterpart (QDM), with MBCn showing a low performance in 23 
(Fig. 12a, fourth panel) respective 22 (Fig. 12b, fourth panel) cases, 
whereas QDM ranked low only for 9 (Fig. 12a, third panel) and 14 
(Fig. 12b, third panel) instances, respectively. 

Remarkable was the robust performance of distribution-based 
methods in reproducing signatures related to low flows (Fig. 12c) and 
high flows (Fig. 12d). These methods resulted in many more instances of 
high performance (14 each for DS and 18–21 for copula) than the 
distribution-free methods (9–12 cases for MBCn and 7–8 for QDM). In 
the case of low flows (Fig. 12c), multivariate BA methods performed 

slightly better than their univariate counterparts (i.e., copula performed 
better than DS, and MBCn better than QDM). For the signatures repre-
senting high flows (Fig. 12d), the application of multivariate methods 
resulted in a larger number of high-performing instances compared to 
their univariate counterpart. However, the number of low-performing 
cases also increased, leaving fewer chances for medium performance 
across these methods. The two multivariate methods, namely, copula 
(Fig. 12d, third panel) and MBCn (Fig. 12d, fourth panel), had only 2 and 
5 medium performing cases, while DS (Fig. 12d, first panel) and QDM 
(Fig. 12d, second panel) had as many as 11 and 15 of such cases, 
respectively. 

Averaging the performance over the signatures within each signature 
group (Fig. 12e) revealed that the distribution-based methods yielded 
similar performances that were better than those of the distribution-free 

Fig. 9. Mean biases (MAE) and their variance across CMs in the four groups of hydrological signatures (a-d) obtained with the four BA methods relative to raw CM 
output (gray background). Boxplots represent the range of MAE values (averaged over all 50 catchments) across the 10 CMs, circles on top represent the variance, 
with smaller circles depicting lower variance. The BA method with the largest variance is highlighted as a reference with a hollow circle (normalized to have same 
size across signatures), the other BA methods are scaled accordingly. 
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methods, as indicated by their lower MAEs (criterion 1) and higher 
frequencies of improvements (criterion 2). While the distribution-based 
methods also showed higher consistency across CMs (criterion 3), they 
came with slightly lower consistency across catchments (criterion 4). 
Generally, there were slight differences between univariate and multi-
variate methods, which were often overshadowed by the strong differ-
ences between distribution-free and distribution-based methods. 
Noticeable differences between uni- and multivariate methods only 
emerged for the snowmelt-driven catchments (located above 60◦N), 
where advanced multivariate methods resulted in frequently better 
performance compared to their univariate counterparts (criteria 5–6). 
Nonetheless, distribution-based methods resulted in better performance 
compared to distribution-free methods. In the rainfall-driven catch-
ments (located below 60◦N), the differences were again rather found 

between distribution-based and distribution-free methods (criteria 
7–8), where the former performed similar to each other, and better than 
the latter, with low performance of the advanced MBCn method across 
all four categories of signatures. 

5. Discussion 

5.1. Performance and similarity of BA methods 

Our results indicated that in the studied Swedish catchments, the 
HBV-light model driven by uncorrected CM outputs (i.e., precipitation 
and temperature) resulted in substantial biases in all hydrological sig-
natures representing (1) water balance and flow dynamics, (2) seasonal 
flows, (3) low flows and (4) high flows. The magnitude of these biases 

Fig. 10. Mean biases (MAE) and their variance across catchments in the four groups of hydrological signatures (a-d) obtained with the four BA methods relative to 
raw CM output (gray background). Boxplots represent the range of MAE values (averaged over all 10 CMs) across the 50 catchments, circles on top represent the 
variance, with smaller circles depicting lower variance. The BA method with the largest variance is highlighted as a reference with a hollow circle (normalized to 
have same size across signatures), the other BA methods are scaled accordingly. 
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varied across signatures, CMs, catchments and their hydroclimatic re-
gimes. It is difficult to isolate signatures with the largest biases, since 
they all have different units. They take values that differ in orders of 
magnitude (e.g., signatures related to timings can take value up to 366, 
as opposed to runoff coefficient, which is <1), which also hinders 
comparisons across the signatures. Nevertheless, all signatures obtained 
with raw CM outputs have in common great raw biases that can exceed 
the reference values by several times, which brings informativeness and 
potential applicability of such signatures into question. 

Variations in biases across the CMs did not exhibit any distinct 
behavior (i.e., no CM consistently resulted in the highest/lowest biases 
across signatures), but certain patterns across catchments, i.e., their 
hydroclimatic regions, could be detected. For example, seven signatures 
related to seasonal and extreme flows showed clear spatial patterns. 
Among them were the 1-day and 30-day high flows, as well as spring and 

summer flows, which demonstrated higher systematic errors in northern 
snowfall-dominated catchments located above 60◦N in the ET or Dfb 
climate zones. Winter flows, timing of 1-day high flow and spring pulse 
day featured the opposite pattern by having larger biases in the southern 
catchments (below latitude 60◦N in the Dfc climate zone). This behavior 
can be a consequence of different dominating hydrological regimes: 
specifically, regimes in northern Sweden are generally snowmelt-driven, 
resulting in a pronounced flow seasonality with low flows during win-
ters due to snow accumulation, and a flood peak that typically occurs 
over springs and summers (Arheimer and Lindström, 2015; Matti et al., 
2017; Teutschbein et al., 2022, Teutschbein et al., 2015). There are, 
thus, higher absolute flows in the north over spring and summer, which 
consequently result in larger biases (expressed in absolute terms in this 
study). In contrast, flows in southern Sweden are generally rainfall- 
driven (Matti et al., 2017) and are affected by higher evaporative 

Fig. 11. Mean biases (MAE) and frequency of improvement in the four groups of hydrological signatures in snowmelt-driven catchments (a-d) and rainfall-driven 
catchments (e-h) obtained with the four BA methods relative to raw CM output. Circles represent the MAE values (averaged over all CMs and catchments), where 
larger circles indicate higher MAE values, i.e., greater bias in the hydrological signature. Shadings of the cells indicate the frequency of improvement, i.e., the 
percentage of cases (with 10 climate models in 50 catchments) in which application of a BA method resulted in lower bias in a particular signature than the raw 
simulations. A light-colored background and small white circle indicate a robust BA method. 
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demands in the summer. As a consequence, there are generally lower 
flows in the summer and higher flows in winter in this region, implying 
also higher biases (in absolute terms) in winter flows, as demonstrated 
by our results (section 3.1.1.2). Larger biases in timings of annual 
maxima in these catchments can be attributed to spatiotemporal vari-
ability of extreme precipitation (Barlow et al., 2019) that affects the 
timing of rainfall-driven flow peaks, which also results in less pro-
nounced flow seasonality (i.e., “flatter” intra-annual flow distribution) 
than in the northern catchments with snowmelt-driven regimes. Biases 
in the other nine signatures did not show distinct spatial patterns. 

Generally, the detected biases in hydrological signatures obtained 
with the raw CM outputs can be attributed to simplified representations 
of, e.g., atmospheric convection (Lucas-Picher et al., 2021), aerosol 
behavior (Huang and Ding, 2021) or humidity (Bastin et al., 2019) in 
CMs, which are then translated into simulated streamflows through the 
impact modelling chain (Brunner and Slater, 2022; Chen et al., 2021b; 
Dobler et al., 2012; Teutschbein and Seibert, 2012). Biases in simulated 
streamflows or hydrolgic signatures stemming from these simplifica-
tions cannot be expected to get alleviated with the application of the 
latest generation of CMs (i.e., CMIP6), since there is no evidence for their 
superiority in representing different characteristics of climatic variables 
over the previous CM versions (Bourdeau-Goulet and Hassanzadeh, 

2021; Seneviratne and Hauser, 2020). 
Application of bias adjustment methods has been debated over the 

past decade (e.g., Chen et al., 2021b; Ehret et al., 2012). Some studies 
indicated that BA methods can potentially impair spatiotemporal char-
acteristics of the CM outputs (Ehret et al., 2012), whereas some studies 
clearly demonstrated their merits in minimizing overall uncertainty 
associated with hydrological simulations (Muerth et al., 2013; 
Teutschbein and Seibert, 2013; Velázquez et al., 2013), including even 
field-scale agricultural impact studies (Glotter et al., 2014; Laux et al., 
2021). This paper corroborates conclusions presented in both groups of 
studies and specifically shows that application of BA methods can 
considerably modify simulated signals by raw CMs. Our results also 
demonstrated that the application of BA methods in the vast majority of 
cases substantially decreases biases in the simulated hydrological sig-
natures in the Scandinavian catchments, regardless of their hydro-
climatic or geomorphological characteristics. Considering that CM- 
induced biases can adversely affect results of the hydrological impact 
studies and, hence, hinder identification of adequate climate change 
adaptation strategies, the results of our study support common practice, 
which implies bias adjustment of simulated climate variables to be an 
integral part of impact studies (Dobler et al., 2012; Hakala et al., 2019; 
Teutschbein and Seibert, 2012). 

Fig. 12. Visual guidelines for selecting the most suitable BA methods for assessment of climate change impact on 16 hydrological signatures within four categories 
(a-d), derived from 8 evaluation criteria. The final row represents a holistic evaluation within each of these categories. Note that all BA methods generally resulted in 
improvement and the ranking here is only relates to the direct comparison of BA methods with each other. For each criterion, high and low performance is considered 
as the 75th and 25th percentile of values obtained from the four BA methods. 
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The four BA methods used in this study can be either categorized by 
the number of variables simultaneously being adjusted (i.e., uni- versus 
multivariate), or by their underlying approach to map the distributions/ 
quantiles (i.e., distribution-free versus distribution-based). DS and 
copula both rely on the distribution-based DS method for adjustment of 
univariate (marginal) biases in precipitation and temperature, while 
QDM and MBCn share the distribution-free QDM method for adjustment 
of univariate characteristics. Therefore, by construction, the perfor-
mance of each pair of methods was similar in reducing biases in uni-
variate characteristics of precipitation and temperature, which are 
drivers of hydrological modeling (Tootoonchi et al., 2022a). 

Our study revealed strong correlations in the remaining biases in 
simulated hydrological signatures obtained with the BA methods. The 
strongest and most frequent correlations in this study were obtained 
between QDM and MBCn. This demonstrates that the additional 
adjustment of the (quite weak) precipitation-temperature dependence, 
which is conducted with MBCn, does not affect the similarities between 
these two distribution-free methods, since MBCn does not rely on heavy 
stationarity assumptions for dependence or temporal sequencing of 
climate models (Cannon, 2016). Such strong correlations between QDM 
and MBCn could be explained by the fact that the distribution-free 
methods do not require identification of appropriate distribution func-
tions at any step, as opposed to the DS and copula methods that 
exhibited strong correlations less frequently. This can be seen as a great 
flexibility in selecting a distribution-free BA method, which is relevant 
for future impact studies (Berg et al., 2022; Gudmundsson et al., 2012). 

Strong correlations were also found between the residual biases of DS 
and copula in many signatures. The largest discrepancies between these 
two BA methods emerged in seasonal streamflows. These results can 
indicate that seasonality of simulated streamflows is affected by accu-
racy in bias adjustment of precipitation-temperature dependence, which 
is a multivariate feature that is better adjusted with copula than with 
univariate DS (Tootoonchi et al., 2022a). 

Correlations of residual biases obtained with distribution-based and 
distribution-free BA methods to raw biases were largely similar but low. 
However, the weakest correlations in this regard were obtained with the 
copula method (e.g., winter flows or timing of annual minima, section 
3.1.1). The copula method includes a shuffling algorithm (Vrac, 2018) 
that is typically stationary and based on the reference precipitation 
signal (François et al., 2020). Thus, the original signal of the raw CM 
simulations is completely lost for precipitation and temperature, which 
further reflects on simulated streamflow and hydrological signatures. 
This might also explain some of the differences between DS and the 
copula approach. To overcome this issue, Vrac & Thao (2020) recently 
introduced a flexible shuffling algorithm that takes different shuffling 
options into consideration. They, however, also highlighted that in the 
context of impact studies further evaluations are needed to find optimal 
temporal reference characteristics at different locations. 

Rather strong correlations between QDM and MBCn, together with 
the fact that QDM slightly outperformed its multivariate counterpart in 
most instances in this study, point to a conclusion that the added 
complexity and computation time needed to implement the multivariate 
MBCn method might not necessarily provide added value over QDM in 
simulating hydrological signatures. Interestingly, previous research on 
the robustness of the BA methods in Nordic catchments pinpointed 
MBCn as a rather robust method when it comes to bias adjustment of 
various (including multivariate) features of precipitation and tempera-
ture series (Tootoonchi et al., 2022a). However, results presented in this 
study indicated that adding a hydrological model to the modeling chain 
can suppress benefits gained with a particular BA method (in this case, 
MBCn). In other words, nonlinearity of the hydrological models (Beven, 
2012), which is inevitable to describe the highly nonlinear nature of 
catchment responses (Todini, 1996), can completely overturn conclu-
sions on the robustness of BA methods based on their performance in 
reproducing features of precipitation and temperature series alone, 
regardless of how thorough and exhaustive those evaluations are. We, 

thus, argue that the adjustment of the dependence between precipitation 
and temperature might come with the cost of hampering the accurate 
representation of the temporal features of these series, for which the 
resulting impacted variable (here, streamflows and hydrological signa-
tures) might pay the price. More specifically, the copula method 
significantly distorts temporal characteristics of the climatic variables 
(Tootoonchi et al., 2022a), which affected the resulting streamflow 
simulations. In other words, multivariate BA methods do correct the 
dependencies between climatic variables, but this does not necessarily 
translate into the streamflow simulations. Our results clearly suggest 
that evaluations of the ability of BA methods in reproducing climatic 
variables are simply not sufficient to justify their selection for a hydro-
logical impact study at hand in Nordic catchments. Thus, examination of 
BA methods based on impact variables that integrate the climatic vari-
ables are crucial, and we recommend further assessments of hydrolog-
ical signatures in other catchments with various physiographic 
characteristics and hydroclimatic regimes. 

5.2. Robustness of BA methods 

Previous studies (e.g., François et al., 2020; Tootoonchi et al., 2022a) 
showed merits of multivariate BA methods for adjusting multiple fea-
tures of CM outputs. In term of hydrological simulations, however, the 
consequences of applying intricate BA methods varied across different 
studies and in different regions. Some studies demonstrated superior 
performance of the multivariate BA methods in specific regions (Singh 
and Najafi, 2020) or in reproducing specific components of runoff 
(Meyer et al., 2019). Other studies detected modest performance of the 
multivariate BA methods that led to deteriorations in the hydrological 
simulations (Van de Velde et al., 2022), or found no substantial differ-
ence between the performance of uni- and multivariate BA methods 
(Guo et al., 2020; Räty et al., 2018). However, many of these studies 
analyzed only performance measures like Nash-Sutcliffe (Nash and 
Sutcliffe, 1970), which could provide only limited information on the 
complex role of BA methods in streamflow simulations. Thus, to provide 
deeper and more detailed insights into the effects of BA methods on 
hydrological modeling results, we here used a suite of 16 hydrological 
signatures that described various streamflow characteristics, which in 
turn represent an integration of the temporal and bivariate aspects of 
precipitation and temperature at the catchment scale (Hakala et al., 
2018). Our evaluation in this study was tailored to accommodate con-
cepts of accuracy and precision, which were here applied to bias- 
adjusted model simulations. As elaborated in section 2.6, accuracy 
was represented by low average biases and high frequency of 
improvement (in comparison to raw CM outputs), while precision was 
represented by low values of variance across CMs and catchments. 

Based on our holistic evaluation of performance of the BA methods in 
all 50 Swedish catchments, we found no considerable differences be-
tween the accuracy of uni- and multivariate BA methods. The multi-
variate methods performed similarly to their univariate counterparts 
both in reducing biases and in the frequency of improvement. The only 
noticeable difference was the higher frequency of improvement by 
multivariate methods in winter flows, compared to the univariate ones. 
Larger dissimilarities were, however, detected between distribution- 
based and distribution-free methods. Distribution-based methods 
consistently resulted in lower MAEs and higher frequency of improve-
ment, except for the signatures representing temporal aspects (i.e., 
COMt or timing of minimum and maximum flows). This might be 
attributed to their poorer performance in reproducing temporal features 
of climate variables, i.e., cross- (copula) and autocorrelation (DS) in the 
precipitation and temperature series (Tootoonchi et al., 2022a). These 
features might result in an improperly reproduced “chronology” in these 
series, which reflects in timings of simulated streamflow series and, 
consequently, in these signatures. 

Robust BA methods are expected to consistently reduce biases in 
simulated streamflows and hydrological signatures, i.e., to demonstrate 
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high precision by yielding low variability in biases across signatures, 
CMs or catchments, including different hydroclimatic regimes 
(Teutschbein and Seibert, 2012). Application of all four BA methods 
generally reduced the variability in biases across both CMs and catch-
ments in comparison to raw biases. The distribution-based methods 
showed lower variability across CMs, meaning that distribution-based 
methods (especially copula) are less “sensitive” to the selection of 
CMs. The lowest variability was obtained with copula, which almost 
cancelled out any variability across CMs in many signatures. Although 
this can be considered to be an appealing property of the copula method, 
it also gives rise to concerns that in this way signals in raw CM outputs 
are completely concealed, which might result in loss of information 
offered by CMs (Cannon, 2018; Maraun, 2016). 

On the contrary, copula had the highest variability across catch-
ments, while the distribution-free BA methods generally showed lower 
variability. This in turn suggests that the performance of distribution- 
free approaches in reproducing hydrological signatures is less sensitive 
to hydroclimatic or other properties of catchments. This outcome was 
further confirmed by dividing the catchments into two distinct groups 
that represent snowmelt-driven (northern) and rainfall-driven (south-
ern) streamflow regimes. Indeed, distribution-based methods in the 
southern catchments performed poorly in reducing biases in timing- 
related signatures and even inflated the biases in timing of 1-day 
annual maxima. In general, the exact timing of extreme precipitation 
is typically not accurately captured in CM simulations (Lind et al., 
2020). This can impair the predictably of extreme streamflows in 
southern catchments, where floods are mainly generated by heavy and/ 
or prolonged rainfall events. In contrast, high flows in the northern 
catchments are better simulated by the modelling chain, as they mostly 
depend on the snow accumulation over a period of several months, 
during which the exact timing of precipitation events is of less impor-
tance. We here found that catchments with typically thin snowpacks 
(located in the southwest of Sweden) are at particular risk of large biases 
in the timing of flood peaks, mostly because slight melting might 
entirely diminish the snowpack in these catchments, which then causes 
the flood peaks to become entirely rainfall-dependent, and to potentially 
shift to a different season. 

The separate evaluation of the BA methods in the northern and 
southern catchments also shed light on the added value of application of 
the multivariate methods. For example, the multivariate methods were 
superior in the cold winter season in representation of all signatures 
depicting low flows in the northern snowmelt-driven catchments. 
Apparently, in these snowmelt-driven environments, the dependence 
between precipitation and temperature distinguishes between liquid 
precipitation and snow (Meyer et al., 2019), and snowmelt timing de-
fines runoff generation, which consequently influences the seasonal 
cycle of streamflow. Therefore, multivariate bias-adjustment methods, 
such as copula and MBCn, both of which perform quite well in repro-
ducing the dependence between precipitation and temperature (Too-
toonchi et al., 2022a), also shine in the reproduction of low-flow 
signatures in these regions. 

With global warming causing shorter snow duration, less snow 
accumulation on the ground and earlier snowmelt onset (Addor et al., 
2014; Coppola et al., 2018; Klein et al., 2016; Ye and Cohen, 2013), the 
magnitude of high flows are expected to drastically decrease (Hakala 
et al., 2020), resulting in lower streamflows after a normal snowmelt 
period, and causing so-called warm snow season droughts (Van Loon 
and Van Lanen, 2012). Such changes may have considerable negative 
impacts on the environment, e.g., by jeopardizing aquatic life and 
impeding sediment transport. Northern Sweden (Perers et al., 2007) also 
hosts many hydropower plants, which require reliable operational low 
flow forecasts, at both short and long time scales for their optimal 
functionality (Abgottspon and Andersson, 2016; Boucher and Ramos, 
2018), or assessment of required environmental flows (Gain et al., 
2013). Shifting hydrological regimes require adaptation of farming 
practices to mitigate risks of loss in crops (Cervantes-Godoy et al., 2014). 

Thus, even slight improvements in accuracy of low-flow forecasts and/ 
or projections by applying the multivariate BA methods may prevent 
considerable ecological and financial losses in these regions. For riparian 
studies that analyze 30-day annual maxima, which are essential for 
assessment of riparian forest patch persistence, distribution-based BA 
methods were proven superior in this study. 

In rainfall-driven southern catchments, multivariate methods did not 
demonstrate any distinct superiority in performance. The univariate DS 
method even outperformed other three methods, closely followed by 
copula. Therefore, greater reduction in biases in the south was obtained 
by BA methods that adjust well univariate and temporal features of 
precipitation (Tootoonchi et al., 2022a). Good performance was ob-
tained in reproducing annual maxima and minima of different durations 
in these catchments. These results suggest that application of 
distribution-based methods is preferred for studies aimed at e.g., flood 
hazard or flood risk assessment, or design of water intakes and estima-
tion of environmental flows. Although not directly tested in their study, 
this outcome was already suspected by Zscheischler et al. (2019), who 
argued that in cases of (1) two climate variables not being strongly 
correlated, or (2) the process of interest (e.g., rainfall-driven floods) 
being predominantly dependent on one climate variable, the impact of 
adjusting dependence might be of less importance, compared to the 
proper representation of the most influential climate variable. There-
fore, analyzing the dependence between the contributing hydrometeo-
rological variables at the relevant spatiotemporal scale might be crucial 
and time-saving (Tootoonchi et al., 2022b). If there is little to no evi-
dence of dependent behaviour, application of rather intricate multi-
variate methods might not add any significant value. 

5.3. A comparison-based evaluation 

While there was not a single method that exceled according to all 
eight evaluation criteria, the application of any BA method generally 
improved streamflow simulations by reducing systematic errors and 
increasing consistency in performance across CMs and catchments. 
These results emphasize the need for bias adjustment as an essential step 
that should be taken prior to any hydrological modeling exercise to 
ensure long-term sustainability of water resources management. The 
choice of an appropriate BA method is, however, not straightforward, 
and it depends on the study location, data, computation resources, as 
well as water management issue and related research question at hand. 
Concerning the two univariate methods (DS and QDM), distribution- 
based DS generally outperformed distribution-free QDM, except for 
the timings of high flows and low flows. Between the two multivariate 
methods, copula resulted in considerably better performance than 
MBCn. More specifically, in rainfall-driven catchments, MBCn per-
formed poorly across all four categories of signatures. Nonetheless, both 
multivariate methods resulted in better performance in low-flows in 
snowmelt-driven catchments. MBCn outperformed copula in all four 
signatures within this category, and generally showed a higher skill in 
adjusting signatures depicting timing of flows. 

Overall, the two distribution-based methods performed rather simi-
larly, and outperformed distribution-free methods in rainfall-driven 
catchments. Simple univariate DS even resulted in slightly better per-
formance in the signatures that represent water balance and flow dy-
namics, as well as seasonal flow, whereas copula demonstrated its merits 
in reproducing signatures related to low- and high flows. This behavior 
was also consistent between the two distribution-free BA methods, 
where simple applications (such as those for reproducing annual or 
seasonal flows) were adjusted adequately with univariate QDM, while 
extreme flows benefited from the application of more complex MBCn 
method. As discussed is section 4.1, although evaluation of the BA 
methods clearly revealed robustness of MBCn in reproducing various 
features of precipitation and temperature series (Tootoonchi et al., 
2022a), when applied within the entire modeling chain that includes 
also hydrological models, this robustness fades out. Nevertheless, it 
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should be noted that multivariate methods that account for dependence 
between precipitation and temperature might be crucial for assessing 
compound extreme events (AghaKouchak et al., 2014; Brunner et al., 
2019a; Teutschbein et al., 2023). 

6. Concluding remarks 

This study evaluated the ability of four bias adjustment methods to 
reproduce various features of hydrologic regimes in a 42-year long re-
cord period (1962–2004) in 50 Swedish catchments. To this end, the 
bias adjustment methods were applied within the ensemble of modelling 
chains comprising ten climate models and the HBV-light hydrological 
model. Special emphases in the evaluation were placed on the differ-
ences and similarities among these methods (research question 1). The 
results elucidate that the application of BA methods is crucial and still an 
essential step for hydroclimatic impact studies, and that simulation 
outputs (specifically, hydrological signatures) for water resources 
management planning strongly depend on the selection of a specific 
method. However, no method was proven superior for all signatures and 
according to all evaluation criteria considered in this study. 

Additionally, the robustness of the BA methods across climate 
models, catchments and hydroclimatic regimes was assessed to provide 
deep insights into different aspect of BA performance (research question 
2). We here demonstrated robust performance of distribution-based 
methods across CMs, indicating that they are less sensitive to the se-
lection of climate models with different boundary conditions and pro-
cess representations than distribution-base approaches. All BA methods 
were highly sensitive to the selection of catchments, which emphasizes 
the need to incorporate process understanding to the bias-adjustment 
step to provide bias-adjusted and simultaneously physically meaning-
ful data for hydrological impact studies in different parts of the world. 
However, these results remain to be confirmed for other study areas with 
different hydroclimatic conditions and streamflow regimes. 

Finally, in this study we sought to identify the most suitable BA 
method(s) for the simulation of hydrological signatures relevant for 
water resources management under changing climate in the Nordic re-
gions (research question 3). To conclude, in most cases the simple and 
straightforward univariate distribution scaling method is the best choice 
as it has the highest potential to robustly reduce biases across a variety of 
signatures. Application of the multivariate methods (copula or MBCn) 
might be worth the additional efforts only in snowmelt-driven catch-
ments or for particular purposes that require correct timing of high- or 
low flows. In these cases, however, one should be aware that these 
multivariate methods might add further uncertainties due to various 
assumptions for adjustment of dependence between precipitation and 
temperature, and consequent modifications of temporal characteristics. 
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Bárdossy, A., Pegram, G., 2012. Multiscale spatial recorrelation of RCM precipitation to 
produce unbiased climate change scenarios over large areas and small. Water 
Resour. Res. 48 https://doi.org/10.1029/2011WR011524. 

Barlow, M., Gutowski, W.J., Gyakum, J.R., Katz, R.W., Lim, Y.-K., Schumacher, R.S., 
Wehner, M.F., Agel, L., Bosilovich, M., Collow, A., Gershunov, A., Grotjahn, R., 
Leung, R., Milrad, S., Min, S.-K., 2019. North American extreme precipitation events 
and related large-scale meteorological patterns: a review of statistical methods, 
dynamics, modeling, and trends, Climate Dynamics. Clim Dyn 53 (11), 6835–6875. 

Bastin, S., Drobinski, P., Chiriaco, M., Bock, O., Roehrig, R., Gallardo, C., Conte, D., 
Domínguez Alonso, M., Li, L., Lionello, P., Parracho, A.C., 2019. Impact of humidity 
biases on light precipitation occurrence: Observations versus simulations. Atmos. 
Chem. Phys. 19, 1471–1490. https://doi.org/10.5194/acp-19-1471-2019. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 
2018. Present and future köppen-geiger climate classification maps at 1-km 
resolution. Sci. Data 5, 1–12. https://doi.org/10.1038/sdata.2018.214. 

Berg, P., Bosshard, T., Yang, W., Zimmermann, K., 2022. MIdAS — MultI-scale bias 
AdjuStment 1–25. 

Berghuijs, W.R., Woods, R.A., Hrachowitz, M., 2014. A precipitation shift from snow 
towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 4, 583–586. 
https://doi.org/10.1038/nclimate2246. 

Bergström, S., 1976. Development and application of a conceptual runoff model for 
Scandinavian catchments. Norrköping, Sweden.  
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