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A B S T R A C T

The objective of this research is to develop a numerical model of one widely used bolted beam splice connection
that dissipates energy through structural damping. The reference experimental setup is carefully designed to
obtain the highly nonlinear dynamic response due to the suddenly released load. The fact that the monolithic
beam with welded connection has a linear response is utilized for the initial calibration of the numerical and
experimental models. Then, the numerical model of bolted beam splice connection is verified and adopted
through an iterative process. The influences of time and spatial integration, bolt load application, element
type, contact formulation, bulk viscosity, and mass scaling are discussed. A special attention is given to the
load application and load release functions. After the verification, the Abaqus/Explicit numerical model is
validated through the comparison with experimental data, where an appropriate friction coefficient is adopted.
It is demonstrated that the nonlinear structural damping occurs due to the complex micro slip behavior at the
contact interface.
1. Introduction

The design of modern steel and aluminum structures requires vari-
ous mechanical connections. One of the most prominent types of these
mechanical joints is the bolted splice connection (BSC), designed by
introducing a large compression force between the elements in contact
interaction. The basic function of a BSC is to connect two elements and
to allow the force transfer between them. The mechanical behavior of
these joints plays an important role in the overall dynamic response of
complex engineering structures. Eigenmodes of vibration and nonlinear
structural response heavily depend on contact interactions in BSCs. For
example, the stress distribution and slip/stick phenomena in joints can
affect the stiffness, plasticity, and frictional damping [1]. Therefore, a
great amount of existing research is dedicated to the development of
accurate, general, and efficient computational and experimental models
of structures with mechanical connections and interfaces [2,3].

Different types of mechanical connections are displayed in Fig. 1.
The connection shown in Fig. 1a represents a basic scheme of the BSC
with its stick, slip and opening regions. Due to the bolt tightening
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Bulevar Vojvode Stepe Stepanovića 77/3, 78000 Banja Luka, Bosnia and Herzegovina.

E-mail addresses: aleksandar.borkovic@aggf.unibl.org, aborkovic@tugraz.at (A. Borković).

force, the stick region exists near the bolt shank while the slip occurs
near the perimeter of the washer. Further away from the washer, the
contact pressure decreases while the relative displacement between
joined elements increases. This can be followed by the opening, where
the contact pressure and slip vanish. Fig. 1b shows a bolted beam splice
connection (BBSC), which is one of the most common connections in
structural engineering. Furthermore, the various BSCs that are predomi-
nantly used in the aviation industry are displayed in Fig. 1c. The fir-tree
connections between turbine blades and the mounting disc are shown
in Fig. 1d. They require special attention due to the complexity of the
wear, damage, and energy dissipation processes [6,7].

The standard numerical approach for the analysis and design of
mechanical connections is the finite element (FE) method [8–10]. It can
estimate eigenmodes and system response, therefore allowing engineers
to design with respect to a given criterion and material properties. One
of the remaining challenges is to implement uncertainties of geometric
and material properties of the BSC contact interactions in the FE codes.
This leaves the problem of accurate and efficient modeling of BSCs
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Fig. 1. Typical mechanical connections: (a) the simple overlap connection with stick, slip and opening regions, (b) the bolted beam splice connection in steel structures, (c) the
plice connection in the aviation industry [4], (d) turbine blades with fir-tree connections [5].
n
t
i
a
t
f
t
c
o
t
e
e
d
a
h
m
a
a
f
l
a

d
g
f
b
r
o
r
a
a

s
j
d
H
t
d
t
p
m
d
t
t
o
t
p
t
a

m
[
a

uring the nonlinear dynamic response still open. The main issue is
he modeling of structural damping, which is the prevailing mechanism
f energy dissipation in jointed structures. Structural damping strongly
ffects the dynamic response and eigenmodes, making the problem of
ointed structures highly nonlinear. Despite its utmost importance, this
henomenon is yet to be well-understood.

Structural damping of jointed structures largely depends on the
roperties of surfaces in contact interactions and on the activation
f stick/slip regions during the dynamic response. As the structure
ets excited, a relative motion between surfaces in contact initially
ccurs across small regions of contact interface, while the majority
f contact surfaces stays fixed with respect to each other. The areas
here these states exist are defined as the slip and the stick regions,

espectively. The phenomenon of relative motion over small regions
f contact interface is designated as the micro slip. As the intensity
f excitation force increases, the slip region increases as well. If the
xcitation exceeds a threshold value, the slip occurs across the entire
ontact interface and this phenomenon is known as the macro slip
11–13]. A well-designed bolted connection prevents macro slip, but
ome micro-slipping is always present in real-life working conditions
2,3].

Let us briefly discuss some of the main factors that influence con-
act interaction. The problem is more complex than the pure friction
escribed by Coulomb’s law and the friction coefficient [14–16]. Ad-
itional parameters are material change, plastification, and degrada-
ion [16,17]. These are followed by unpredictable changes in the total
eal contact area involved in the interaction [18] and by changes in
tick/slip conditions [19,20]. Another important property is the surface
oughness, which is crucial for some engineering applications. For the
efinition of contact geometry, Greenwood–Williamson’s and Persson’s
odels are readily used [21–23]. The contact geometry and separation

re highly nonlinear, and their numerical solution requires a massive
omputational algorithm [24,25]. Therefore, an accurate modeling of
ontact geometry is a challenging task, whether with experimental, an-
lytical, or numerical approaches [16,17,19,20,26–32]. The complexity
f contact modeling increases with a decrease in scale while gaining
urther insight into its real nature. The contact interaction of two
eneral bodies at an atomic or nano-level is a multi-physical problem
here several scientific disciplines intertwine [33].

It is fascinating that practically all surfaces found in nature have
oughness, with the exception of some unique materials such as mica,
hich has a smooth molecular surface [34]. Segalman and Brake

nvestigated the influence that contact surface roughness, as a micro
cale quantity, has on the overall macro response of a bolted connection
2,3,35]. In these studies, the authors emphasize the contact roughness
nfluence on the jointed structure response and on contact pressure
istribution. Furthermore, Fantetti et al. examined the dry friction
etween two stainless steel wedges with a contact interaction surface of
nly 1 mm2 [36]. Despite the extremely small contact area, the change
f roughness in contact surfaces due to the sliding friction caused a
ignificant change in the eigenmodes of the complete experimental
etup that had a weight of 22.4 kg! This experiment clearly indicates
he substantial influence that roughness has on dynamic response.
2

When we limit the research to dry friction and aim to compare
umerical and experimental results, we should consider what dry fric-
ion actually is, and whether and in what way it is possible to achieve
deally dry and clean metal surfaces without the influences of oxides
nd humidity [17,37,38]. It is remarkable that even an apparently
rivial phenomenon, such as air humidity, can significantly affect the
riction in joints [39,40], and thus, structural damping. Also, oxides and
heir formation time considerably influence the friction in mechanical
onnections [16,17,41]. The physical and mechanical characteristics
f the oxide and its effect on the friction and overall response of
he jointed structures are yet to be fully understood [17,42]. Various
xperimental procedures have shown that, after the oxide thickness
xceeds the limit of 5–10 nm, the friction between steel surfaces reduces
ue to adhesion reduction [43–45]. For very clean, smooth surfaces
nd for tests performed in a vacuum immediately after cleaning, it
as been found that the friction can increase by several orders of
agnitude [41,46–48]. Furthermore, during the high frequency micro-

nd macro-slipping under large pressure, the micro asperities yield
nd melt, which requires a proper thermodynamical formulation and
urther complicates the dry friction contact modeling. A process of the
ocal heating and melting of micro asperities is known as flash-heating,
nd it reduces friction [49–51].

Besides the aforementioned phenomena that are mostly related to
ry friction, let us note additional parameters that affect friction in
eneral: type of material [52–54], lubrication and presence of different
luids [55–57], and changes in the material phase and structure caused
y heating or radiation [58]. Again, this brief review of the main pa-
ameters that influence contact interactions reveals why the modeling
f connections in engineering structures is an active and challenging
esearch area. In essence, the impact that processes at the nano and
tomic levels have on the macro scale system response perplexes the
ccuracy and efficiency of mechanical models [34,59].

Segalman discussed the lack of proper understanding of jointed
tructures [2]. Twenty researchers were asked: ‘‘How do you model
ointed connections?’’ It was found that there were more ways to
escribe mechanical connections than there were survey participants.
ence, there is no uniform solution or agreement when it comes to

he computational modeling of mechanical connections and structural
amping. However, one can distinguish between three main approaches
o the study of joint dynamics. The first approach is to define the exact
hysics of interactions inside the bolted connection starting from the
icro scale and to consider a variety of uncertainties related to the
escription of surfaces that come in contact. The second approach is
o investigate the joint dynamics at the macro scale, thus avoiding
he description of micro scale surface geometry and the conditions
f contacting parts. The objective of this approach is to investigate
he dynamic response of the joint as a whole, and to identify crucial
arameters that allow the prediction of structural response. Finally,
here is a multi-scale approach that acquires data from the micro scale
nd applies it via appropriate parameters to the macro scale models.

Regarding the macro scale approach that is in the focus of our study,
any different experimental and numerical methods exist

13,60–65]. Most of these methods are based on detailed experimental
nd numerical analyses of simple models. A detailed insight into the
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nonlinear response of bolted joints is accomplished through a series of
experiments and by the development of a numerical procedure using
a four-parameter Iwan model [2,3,66–70]. The importance of scaling
between the bolt tightening force and the excitation force magnitude
is observed in these studies. When the disturbing force magnitude is
small in relation to the bolt tightening force, the connection will not
be activated. In other words, the size of the slip region inside the
contact interaction will not reach a threshold value that triggers the
nonlinear dynamic response and structural damping. If this is the case,
the majority of the contact interaction is in the stick regime and only
material damping will occur. For simple steel structures, such as beams
and brackets, the material damping ratio is around 0.001 [2,3,63].

This brief review shows that contact in structural connections is a
phenomenon that requires further investigation. The contact between
two bodies and the process that takes place within the interaction of
their contact surfaces can be classified as an exceedingly nonlinear
dynamic problem for which no single and uniform solution exists [2,3,
24,71,72]. Furthermore, the papers dealing with the structural damp-
ing in BBSCs are rare in the literature. Motivated by the importance
and complexity of contact interactions for bolted structures, we have
studied in detail one mechanical joint in this paper.

Accurate and efficient numerical modeling of one connection is
a first and crucial step towards the final goal: the development of
a numerical model that can predict energy dissipation of an overall
structure. With this capability, we could improve the design process,
assess structural health, detect early signs of wear, and prevent failure
of a structure. Our research follows a macro scale approach and the
secondary phenomena arising in bolted connections that can influence
structural response. Some preliminary findings are already discussed
in previous papers [73,74]. The main contributions of the presented
research are the comprehensive calibration, verification, and validation
of a numerical model of one BBSC. The experiment was carefully
designed to trigger a significant nonlinear dynamic response of an IPE
cantilever beam. For the initial verification and validation, we utilized
a monolithic model with welded connection. Then, by a deliberate
calibration of the Abaqus/Explicit numerical model, we obtained a
reasonably accurate structural response. The adopted numerical model
of BBSC allows an insight into the complex stick/slip state that is the
main cause of structural damping.

The adopted numerical model has 69 contact pairs, which presents
a complicated problem from the point of view of contact mechanics.
Yet, from the point of view of structural engineering, this joint is
a simple and widely-used connection. To bridge this gap, one must
balance between the accuracy and the efficiency provided by available
formulations and tools. For the present study, we have utilized several
different hardware configurations, but the results are given for the
reference configuration with i7-9700K CPU and 32 GB RAM.

The paper is organized as follows. The next section considers gen-
eral remarks on the comparison of numerical and experimental results,
required for the validation of our numerical model. The third section
presents the experimental setup, results, and post-processing procedure.
The calibration, verification, and validation of the numerical model are
given in Section 4. The main findings and conclusions are discussed and
summarized in the last two sections.

2. Experimental analysis

The experimental analysis consists of three steps: (i) design, prepa-
ration, and realization of the experimental testing, (ii) processing of the
obtained data, and (iii) analysis of the results. These steps are discussed
in detail in this section. In addition to the experimental model, an
outlook towards the numerical model and its results is given. This
kind of presentation is warranted since the numerical and experimental
analyses are intertwined.
3

2.1. Preliminary remarks

Our analysis aims to develop and validate a numerical model via a
comparison of the experimental and numerical results. The considered
beam is a typical structural member with relatively small fundamental
frequency due to added mass. Since the utilized load predominantly
excites the fundamental mode of vibration, our study deals with a
low-frequency response during a relatively long time interval. This
profoundly affects the explicit nonlinear numerical analysis. Since the
time increment of an explicit algorithm can be very small, the record-
ing of results at every increment produces large output files and has
high computational costs. The common solution is to calculate output
variables at each 𝑛𝑜𝑢𝑡 integration steps or each 𝑡𝑜𝑢𝑡 intervals of time.
However, this procedure can lead to aliasing issues that occur when
a signal is sampled at discrete points, but not enough data points are
saved to correctly describe the original signal [75,76]. The variables
with high frequencies and large amplitudes, such as the accelerations
and the reaction forces, are the most susceptible to aliasing [77]. The
NASA Technical Memorandum [78] shows that even 104 outputs per
second are not enough to avoid aliasing in drop test simulations. One
method to mitigate aliasing is to apply an anti-aliasing filter, but such
a procedure is not straightforward [79,80]. Another way to avoid these
issues is to consider velocities that are significantly less sensitive to
sampling rates and high-frequency noise. To enable consistent com-
parison of the experimental and numerical data, we have numerically
integrated the experimental acceleration responses in cf. Section 2.4.1
and the velocity field is referenced almost exclusively. Furthermore,
the outputs in our numerical model were taken every 0.00781 s, which
corresponds to the sampling rate of 128 results per second. This rate
is the same as in the experimental analysis, cf. Section 2.2.1. The time
period considered with the numerical analysis was approximately 6.5 s.
For the adopted numerical model, Abaqus required close to 53 h of
computational time during which 3 × 107 increments were calculated.

2.2. Experimental setup

To enable a consistent comparison of the experimental and numer-
ical results, it is necessary to properly define the experimental setup.
This includes the design of connections and load, definition of the
loading procedure, and design of the clamped boundary condition.

2.2.1. General considerations
The aim of the experimental analysis was to examine the nonlinear

behavior of one IPE 80 beam with a commonly utilized BBSC. The free
vibration response due to the suddenly released load was observed. To
simulate real-life working conditions, the experiment was set up in the
open, with relative air humidity of approximately 70%–80%. Although
the focus of our research is on the model with a bolted connection, a
model with a welded beam splice connection (WBSC) was considered
as well. The free vibration response of such a beam is linear, making
the WBSC model ideally suited as a reference for the calculation of the
material damping and the initial calibration of the numerical model.
A reasonable assumption is that the WBSC model represents the limit
case of the BBSC model when the slip is negligible. In such a case, the
bolted connection behaves as monolithic, see Section 4.

A detailed drawing and an image of the physical model are given
in Fig. 2. At the free end, the beam had a fixed mass (M1) and an
additional mass (M2). After a sudden removal of the additional mass,
the beam entered the free vibration response. This additional mass was
applied monotonically in increments of 25 kg. The additional mass was
then released by cutting the attached wire that is 3 mm thick. In order to
educe the effect of wire cutting on the consistency of the experimental
esults, we have also tested wires that are 1.5 mm and 2 mm thick.
owever, the 3 mm wire was the thinnest one that could carry the
dditional mass. The 3 mm wire was near the yield point, so only a
mall damage was required for it to break. This approach is similar to
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Fig. 2. Experimental setup. Detailed drawing and physical model.
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the modeling of a suddenly released load by Pagnini in [81], where
a specially designed test tube was calibrated to break after the load
reaches the desired value.

The main subject of our study is the response of the BBSC model that
is excited with respect to the major principal axes of inertia. Regarding
the simple WBSC model, we have examined its response with respect
to both principal axes of inertia, in order to estimate the influence of
geometry on the material damping.

The free vibration response was measured with a one-axis ac-
celerometer fixed near the free end, see Fig. 2. The accelerometer has
a sensitivity of 96.6 mV∕g and a frequency range of 0.3–6000 Hz. The
sampling rate was set at 128 outputs per second, which is sufficient to
capture the considered acceleration response.

2.2.2. Design of clamped boundary condition
One of the most important initial challenges was the design and

construction of the clamped boundary condition. Failing to properly
build the clamped end can result in parasitic vibrations due to the
rotation of the connection plates. To define a physical model that can be
constructed, we considered an initial numerical model. Additionally, a
numerical model with an idealized fixed boundary condition was made.
The main requirement for the calibration of the model with designed
clamped end was the agreement between the fundamental frequencies
of these two numerical models. The agreement is achieved through a
variation of several approaches and parameters, and the adopted model
was successfully constructed, see Fig. 2.

The beam was welded to a 200× 200× 20 mm connection steel plate
via rigid angles and 4×4 mm fillet welds, Fig. 2. This assembly was then
welded to a carrying steel plate with dimensions 550×350×30 mm. An
approximate weld size between the connection and carrying steel plates
is 10 × 10 mm. The oversized steel plates and welds were intentionally
used to ensure an absolutely rigid connection between the beam and the
carrying plate. Finally, the carrying plate was connected to a 300 mm
thick concrete wall with four M20 bolts, as shown in Fig. 2. With
such a construction, we achieved an almost ideally clamped boundary
condition.
 s

4

2.2.3. Model with the bolted beam splice connection
As discussed in the introduction, it is crucial to ensure the activation

of micro slip regions in the connection to obtain the nonlinear response
of the BBSC. Furthermore, to guarantee consistent results over all tested
models, an initial macro slip had to be allowed during the application of
the load. We achieved these requirements by means of a careful design
of the connection with respect to the applied load.

The position of the connection was set at 250 mm from the clamped
end. To simulate real-life working conditions, the static loading by
the masses M1 and M2 was designed to utilize 50% of the elastic
moment capacity of the observed section [82,83]. Since the BBSC
model had been analyzed only with respect to the major principal axis,
the required mass was adopted as 125 kg, of which the fixed mass was
M1 = 25 kg and the additional M2 = 100 kg.

After defining the static loading, the BBSC was designed, see Figs. 2
and Fig. 3a. The connection consists of two 65× 46× 2 mm outer flange
splice plates and two pairs of 65 × 18 × 2 mm inner flange splice plates.
Additionally, the web splice plates are 62×50×2 mm. The tightening was
achieved by four M8 bolts for the flanges and six M6 bolts for the webs.
The grade of utilized bolts is 8.8, while the diameters of bolt holes are
10 mm and 8 mm for M8 and M6 bolts, respectively. The holes were
designed to provide a 1 mm gap around the bolt’s shank. Also, a 1 mm
gap was left between the two parts of the beam that had been joined.

The BBSC model was tested for three levels of the bolt tightening
force. The values of 𝑀𝑟 = 25 Nm and 𝑀𝑟 = 10 Nm were adopted as the
maximum tightening torques for M8 and M6 bolts, respectively. These
torques resulted in respective tightening forces of 𝐹𝑝 = 16 kN and 𝐹𝑝 =
kN [84,85], Table 1. The considered levels of bolt tightening forces
ere measured with respect to these maximum values. The appropriate
odels were designated as BBSC100, BBSC50, and BBSC30, and they

efer to 100%, 50%, and 30% of the respective maximum tightening
orce.

These design choices satisfied the requirements for the nonlinear
esponse and the consistent results across different models. The macro

lip is anticipated for all models during the quasi-static application
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Fig. 3. Experimental setup. Images and detailed drawings of connections in physical models. (a) Bolted beam splice connection. (b) Welded beam splice connection.
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Table 1
Approximate values of the bolt tightening forces for the three BBSC models.

Model Tightening force
M8 [kN]

Tightening force
M6 [kN]

Percentage of
maximum force [%]

BBSC100 16 8 100
BBSC50 8 4 50
BBSC30 5 2.5 30

of the additional mass, and the micro slip during the free vibration
response. Furthermore, due to the allowed initial macro-slipping, a
complex stress state is expected to arise in the connection.

2.2.4. Model with welded beam splice connection
The WBSC consists of two 65 × 45 × 4 mm outer flange splice plates

and two 62 × 50 × 2 mm web splice plates. Let us note that the two
flange splice plates at 2 mm thick are applied to the BBSC, while only
one flange splice plate 4 mm thick is used for the WBSC. Nevertheless,
the moment capacity of both connections is similar if the reduction of
the cross-sectional area due to the bolt holes is neglected, Fig. 3b.

For the loading case with respect to the major principal axis, the
masses are the same as for the BBSC: M1 = 25 kg and M2 = 100 kg.
Regarding the loading case with respect to the minor principal axis,
we have set a requirement that the maximum normal stresses due to
the gravity should be close for both loading cases. Since the elastic
section moduli with respect to the principal axes of the IPE 80 section
are 𝑊𝑒𝑙,𝑦 = 20.03 cm3 and 𝑊𝑒𝑙,𝑧 = 3.69 cm3, the masses M1= 0 kg and
M2= 25 kg are adopted for the case of bending with respect to the
minor principal axis.

2.3. Experimental results

The experiment was based on the free vibration response approach.
The acceleration time history was recorded and an auto spectrum
response (ASR) was found via the Fast Fourier Transform [86–89].
The advantage of this approach is that a structure can be analyzed
in real-life conditions. On the other hand, the free vibration response
5

does not guarantee the excitation of all eigenmodes, in contrast to
the experimental modal analysis in controlled conditions using the
modal hammer. The number of recorded modes with the free vibration
response analysis depends on the experimental setup, the number and
positions of accelerometers, the load, etc. For the purpose of our
analyses, the lowest bending mode that occurs in the plane of the load
and the beam axis is of the most importance, and we refer to it as the
fundamental mode.

The experimental acceleration time histories and the ASRs are pre-
sented in this subsection, along with the numerical results for the WBSC
model.

2.3.1. Model with bolted beam splice connection
The measured acceleration time history responses and ASRs for

the models with three different bolt tightening forces are displayed in
Figs. 4 and 5. Evidently, the differences in the acceleration amplitudes
across the models are significant and the values approximately follow
the corresponding tightening force. For example, during the initial 0.5 s,
he difference between BBSC100 and BBSC50 is nearly 50%. Next,
he difference in amplitudes between BBSC100 and BBSC50 is more
ronounced than the difference between BBSC50 and BBSC30. This
uggests that the bolts are quite loose for 50%, while for the 30%
f the tightening force the connection has no slipping resistance left.
urthermore, the differences in the periods/frequencies of oscillations
re visible and in line with the expectations.

When the full response of 5 s is observed, the beating effect can be
oticed. We will discuss this phenomenon thoroughly in Section 2.4.2.1.
n important observation is that the first amplitude of acceleration is
ractically invariant to the value of the tightening force. This fact will
e employed to define the load release function of the numerical model
n Section 3.4.1.

Regarding the ASRs, all three models return similar fundamental
igenfrequencies and the differences correspond to the respective bolt
ightening forces. Additionally, the ASRs suggest that the damping
ncreases with the reduction of the bolt tightening force.
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Fig. 4. Bolted beam splice connection. Experimental acceleration time histories and their envelopes for the models with three different bolt tightening forces.
Fig. 5. Bolted beam splice connection. Auto spectrum response.

2.3.2. Model with welded beam splice connection
During the analysis of the WBSC experimental results, a lot of noise

was found for the loading case with respect to the major principal axes
of inertia. The ASR can be extracted, but the acceleration results are
unusable for our analysis and are omitted here. Regarding the loading
with respect to the minor principal axis, the acceleration response is
shown in Fig. 6. Again, the beating effect is present and it will be
discussed later in Section 2.4.2.1. An approximate envelope of ampli-
tudes is plotted on the same graph using the standard exponential law
for the amplitude decay of the linear single degree-of-freedom (SDOF)
system. Evidently, this envelope nicely fits the acceleration amplitudes,
suggesting that the WBSC oscillates in a linear range and that it can
be approximated with an SDOF. This confirms our assumption from
Section 2.2.1: the WBSC is practically monolithic and it can dissipate
energy only via material damping. This linear response of the WBSC
model allows us to estimate the damping ratio that is close to 0.0011,
which is in line with the commonly found values of material damping
for steel [2,3,63].

Although the adopted numerical models are discussed in Section 3,
the validation of the WBSC numerical model is given here for the
sake of coherence. The adopted numerical model was analyzed us-
ing the linear modal dynamic analysis and the obtained acceleration
6

response is given in Fig. 6. The numerical and experimental results
agree reasonably well, which validates the WBSC numerical model.
This fact allowed us to further calibrate the numerical models and to
post-process the experimental results.

The ASR responses for the loading with respect to both principal
axes are shown in Fig. 7. The lowest eigenfrequency for the case of
bending with respect to the major principal axis is smaller than the
one with respect to the minor axis, due to their respective fixed masses
of M1= 25 kg and M1= 0 kg.

2.4. Post-processing of experimental results

The need for the integration of the obtained experimental accel-
erations was discussed in Section 2.1, and the utilized procedure is
presented here. Additionally, we discuss the beating phenomenon and
consider an approach to assess experimental damping.

2.4.1. Numerical integration of experimental accelerations
Through the numerical integration of a discrete signal, we aim to

find the new value 𝑣𝑖+1 based on the known value 𝑣𝑖. This is achieved
by calculating the area under a curve being integrated, between the
points 𝑖 and 𝑖 + 1. In this work, we have calculated the experimental
velocities by approximating the discrete acceleration data with a cubic
polynomial, and then integrating it with Simpson’s 3∕8 rule [90].

First, we have integrated the experimental acceleration response
of the WBSC model. As discussed in Sections 2.2.1 and 2.3.2, this
model has a linear response. This allowed us to verify the numerical
integration procedure by comparing the WBSC experimental velocities
with the velocities obtained using the modal dynamic procedure in
Abaqus. The results agree well and are omitted for the sake of brevity.
By means of this analysis, the accuracy of applied cubic numerical
integration is verified. The procedure is then utilized to find the velocity
time histories of the experimental BBSC models with three levels of bolt
tightening force. The results are shown in the next subsection.

2.4.2. Approximate calculation of damping
As shown in Section 2.3.2, the WBSC model amplitude decay follows

an exponential law, meaning that the energy dissipation of such a
system can be described with one parameter: material damping. On
the other hand, the BBSC model dissipates energy through a nonlin-
ear mechanism due to the frictional slipping between the contacting
surfaces. The energy dissipation and amplitude decay of such a system
cannot, in general, be described with only one parameter.

There is a variety of methods that can be used to identify damping
characteristics of a nonlinear system with multiple DOFs. The peak
amplitude method is applied for the nonlinear response of shear lap
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Fig. 6. Welded beam splice connection. Experimental and numerical acceleration time histories, and the envelope of a linear single-degree-of-freedom system.
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Fig. 7. Welded beam splice connection. Auto spectrum responses for two cases of
loading.

joints in [62]. Damping of structures with bolted connections was
considered by Goyder et al. [63,91,92]. Their algorithm is based on
fitting the decaying amplitudes along short time intervals using the sine
function. Here, we are using an approach similar to the one in [91].

2.4.2.1. Experimental damping of the beam with welded connection. Since
he WBSC model is linear, it is well-suited to verify the algorithm for the
xtraction of damping. Let us assume that the decay rate between two
onsecutive amplitudes with the same sign is small enough to allow an
pproximation using the linear oscillator with viscous damping [91].
his is a reasonable assumption for small time increments between
mplitudes. Therefore, we have calculated a discrete set of logarithmic
ecrements 𝛿𝑖 between all pairs of consecutive positive or negative
elocity amplitudes. The damping ratio is then found by the standard
xpression 𝜉𝑖 = 𝛿𝑖∕

√

4𝜋2 + 𝛿2𝑖 . In this way, we have obtained a set of
approximate discrete damping ratios for a complete system response.

Envelopes of the velocity and the calculated discrete damping ratios
for the WBSC model are shown in Fig. 8. Due to the presence of beating,
the discrete damping ratios oscillate between positive and negative
values. The beating phenomenon occurs when the body oscillates in
 i

7

two different eigenmodes with slightly different frequencies. Manu-
facturing imperfections, the eccentricity of mass, and similar values
of two eigenfrequencies can cause a beam to beat. The beam then
oscillates with respect to both of its principal axes, and thus in more
than one frequency [3]. During such vibrations, the signal appears to
be modulated. This is evident in Fig. 8 where the velocity amplitudes
decrease, but oscillate in regular intervals.

One typical part of the response (AC interval) is observed in the
following. Between points A and B, the nonphysical negative discrete
damping ratio occurs because the amplitudes increase in that time
interval due to beating. Point B is the local maximum of velocity where
the discrete damping ratio is zero. The amplitudes decrease in the
interval BC and the damping is positive. The discrete damping ratio
reaches the maximum just before point C where the beating cycle starts
again.

Therefore, due to the beating effect, the discrete damping ratios do
not correspond to the true values of damping. This problem is solved
by fitting the damping curve through the discrete set of damping data.
Since the WBSC is linear, a simple mean value data fitting is suitable
and the result is displayed in Fig. 8. The realistic value of damping is
obtained, 𝜉 = 0.00106, which agrees with the value calculated using
the decaying envelope for the SDOF system with viscous damping,
𝜉 = 0.0011, cf. Section 2.3.2. This analysis shows that the beating
phenomenon has a negligible influence on the damping ratio.

Due to significant noise, we have omitted the time histories of the
WBSC model loaded with respect to the major axis. Nevertheless, the
described damping-extraction procedure works even for such noisy ex-
perimental data. The obtained damping value is approximately 0.001.
This finding suggests that the influence of geometry on the material
damping is negligible for our WBSC model, cf. Section 2.2.1.

2.4.2.2. Experimental damping of the beam with bolted connection. As
discussed previously, the damping ratio of the BBSC model is not
constant during the free vibration response. A straightforward approach
for the quasi-viscous approximation of damping is illustrated in Fig. 9,
where the velocity amplitude decay for the BBSC100 model is consid-
ered. Two envelopes of the linear viscous SDOF system are utilized
to estimate the damping. The first envelope approximates the energy
dissipation during the short initial part of the response for 𝑡 < 0.4 s

ith an approximate damping ratio of 𝜉 = 0.012. The other envelope
orresponds to the damping ratio of 𝜉 = 0.002 and it fits the response
or 𝑡 > 1.45 s, which is linear. The middle part of the time history can
e considered as a transition interval between the nonlinear and the
inear response. We can improve the accuracy of this approximation by

ncreasing the number of envelopes, and the limit case corresponds to
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Fig. 8. Welded beam splice connection. Velocity amplitudes, discrete damping ratios and linear approximation of damping ratio.
Fig. 9. Bolted beam splice connection with 100% of bolt tightening force. Approximation of damping with two decaying envelopes of the SDOF system.
the method for the calculation of the discrete damping ratios, described
in Section 2.4.2.1.

To approximate the nonlinear damping characteristics of the BBSC,
a function that fits the discrete damping data is required. This function
is found by solving the corresponding optimization problem using
the Matlab Optimization Toolbox [93]. The adopted model function
consists of two decaying exponential functions, 𝑓𝑚 = 𝑏1𝑒𝑎1𝑡 + 𝑏2𝑒𝑎2𝑡.
Coefficients 𝑎𝑖 and 𝑏𝑖 are found in a least-squares sense by minimizing
the square error between the measured input data and the model
function. The lower bound for 𝑎𝑖 coefficients is set to zero. In this
way, the adopted model function can represent both the nonlinear and
constant parts of damping [62]. In order to get the global optimum, the
multistart procedure is applied and the optimization problem is solved
for 100 different initial starting points. More details about the theory
and the application of this algorithm can be found in [94].

In this way, we found the functions that fit the discrete damping
ratios, and the results are displayed in Fig. 10a, b, and c, next to
the velocity envelopes discussed in Section 2.4.1. Additionally, the
damping ratios for all experimental models are compared in Fig. 10d.
The obtained results clearly illustrate the strong influence that the
bolt tightening forces have on structural damping. Furthermore, the
nonlinear change of the damping is clearly pronounced during the
initial part of the time history. As time elapses, all models slowly
approach the constant value of damping. Thus, after enough energy
8

dissipates through the structural damping, the slipping in the BBSC
deactivates, and the beam continues to oscillate with material damping.

3. Numerical analysis

In this section, we give key information on the adopted numer-
ical model and its validation, calibration and verification. The basic
introduction, focused on the time integration schemes, is given in the
next subsection. The validation is delivered in Section 3.2, while the
details of the adopted numerical model are discussed in Section 3.3.
The parameters and procedures that require calibration and verification
are scrutinized in Section 3.4.

3.1. Introduction

A well-known commercial FE software Abaqus is used for the
numerical analysis. There are several different methods available in
Abaqus for performing dynamic simulations. The linear modal dynam-
ics is appropriate for the analysis of the WBSC model. For the nonlinear
dynamic analysis of the BBSC model, two methods are available:
Abaqus/Standard which uses an implicit time integration algorithm,
and Abaqus/Explicit which uses an explicit one. The explicit approach
was utilized here for reasons discussed below.

An implicit dynamic procedure requires an iteration process to find
the equilibrium at an unknown configuration. For complex contact
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Fig. 10. Velocity amplitudes, discrete damping ratios and nonlinear function of damping ratio for: (a) BBSC100, (b) BBSC50, (c) BBSC30. (d) Comparison of damping ratios for
all experimental models.
y
s

problems with many interacting parts, the implicit method is usually
not recommended [8,79,80]. The main issue is the change in contact
status within a time increment, which negatively affects the conver-
gence of the nonlinear solver and yields small-time increments. For an
analysis with many contact conditions, this issue makes the implicit
algorithm computationally expensive. The considered BBSC model falls
into this category due to the contacts between its beam parts, bolts,
nuts, washers, and splice plates.

Unlike the implicit, the explicit dynamic analysis efficiently calcu-
lates large numbers of small-time increments using the central differ-
ence rule. In comparison with the implicit analysis, each increment
is relatively inexpensive because the formation and inversion of the
tangent stiffness matrix are not required. An important feature is that
contact conditions are not of significant concern in an explicit analysis.
The contact surfaces can be left in a non-contact state, rigid body
movements are acceptable, and the algorithm automatically picks up
the stiffness when contact is detected.

The stability limit of a time increment is the main issue of an
explicit solver. The time increment typically adopted is the smallest
time required for the stress wave to travel through the smallest element
dimension in the model. To satisfy this condition for fine meshes and
high-speed wave propagation, the time increment must be very small.
When dealing with the BBSC model, it was important to find a balance
between accuracy and computational time because: (i) the numerical
model is relatively large with a lot of contacting surfaces that require
fine meshes, (ii) the response time is 6.5 s, which is quite long for an
explicit simulation. For this, we had to optimize the FE mesh and find
an appropriate stable time increment.

One standard method for limiting the value of the stable time
increment is mass scaling. When applied properly, the method can
significantly improve efficiency by increasing the time increment. In
order to minimize the error, mass scaling must be applied carefully
to a set of elements that controls the increment size. Failure to do so
can result in large artificial inertial forces that can affect significantly
structural response.

The reliability of explicit nonlinear simulations is commonly as-
sessed via energy outputs. The artificial energy should be small in
comparison to internal energy, while the total energy of the overall
model should be approximately constant [79].

Our numerical model is relatively complex, and it was adopted
through an iterative procedure. The most important parameters that
were calibrated via this process are: the FE mesh, boundary conditions,
load function, contact formulation, mass scaling, reduced integration,
and bulk viscosity. Furthermore, the explicit analysis does not support
the bolt force option, and the bolts had to be tightened in line with
9

the temperature change. The calibration and the adoption of these
parameters are discussed further in Sections 3.3 and 3.4.

Regarding the material model, the bilinear stress–strain relationship
is adopted. The beam and the splice plates have the following material
properties: modulus of elasticity 𝐸 = 200 GPa, Poisson’s ratio 𝜈 = 0.3,
ield stress 𝑓𝑦 = 235 MPa, tensile strength 𝑓𝑢 = 360 MPa, and ultimate
train 𝜖𝑢 = 26%. For the bolts, nuts, and washers, the same values of 𝐸

and 𝜈 are used, while 𝑓𝑦 = 640 MPa, 𝑓𝑢 = 800 MPa, and 𝜖𝑢 = 12% [85].

3.2. Validation of the numerical model

Validation is an essential step which allows us to conclude if the
numerical model accurately describes the experimentally-observed be-
havior. Here, we are presenting the results obtained with the adopted
numerical model and comparing them with the experimental data. The
first step of the validation is the modal analysis, while the velocity time
histories are compared afterwards.

3.2.1. Modal analysis
The experimental ASR results for the BBSC and WBSC models are

given in Sections 2.3.1 and 2.3.2. The adopted numerical BBSC model
has eigenfrequencies of 15.61 Hz, 15.58 Hz, and 15.55 Hz for 100%, 50%,
and 30% of the bolt tightening force, respectively. These values are
in good correspondence with the experimental results given in Fig. 5.
Actually, the differences with respect to the experimental results are
less than 2.5%. It should be emphasized that the modal analysis was
done in Abaqus/Standard after a static step for the tightening of bolts.
However, the influence of the bolt tightening force is small because our
numerical modal analysis did not capture main nonlinear effects from
the deformation and slipping inside the connection.

Regarding the considered eigenfrequencies of the WBSC model,
their experimental values are given in Fig. 7. The numerically obtained
values are 15.7 Hz and 20.5 Hz, and they differ from the experimental
ones by approximately 3% and 6% respectively, which is an acceptable
alignment of results for the free vibration test.

3.2.2. Velocity time histories
The velocity time histories obtained with the adopted numerical

BBSC models are compared with the experimental results in Figs. 11,
12, and 13. The experimental and numerical responses agree reason-
ably well, considering the complexity of the problem. The excellent
correspondence of the first amplitudes is emphasized in the graphs. For
example, the relative difference between the first velocity amplitudes

for the BBSC100 model is around 4%. However, the agreement of
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Fig. 11. Bolted beam splice connection with 100% of the bolt tightening force - BBSC100. Comparison of experimental and numerical velocity time histories.
Fig. 12. Bolted beam splice connection with 50% of the bolt tightening force - BBSC50. Comparison of experimental and numerical velocity time histories.
Fig. 13. Bolted beam splice connection with 30% of the bolt tightening force - BBSC30. Comparison of experimental and numerical velocity time histories.
he results deteriorates with the decrease of the bolt tightening force.
urthermore, it is evident that all experimental models oscillate with
omewhat higher frequencies in comparison with the numerical mod-
ls, which causes a small time shift between the compared responses.
he differences between the eigenfrequencies were already discussed
10
in the previous subsection. The differences in the velocity time his-
tories are more pronounced due to the significant nonlinearity of the
considered responses.

All in all, the observed agreement between the experimental and nu-
merical results validates our adopted numerical model. It can simulate
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Fig. 14. Optimization of the FE mesh and the model reduction.
d.
the realistic behavior of the observed BBSC with reasonable accuracy.
This is particularly true for the BBSC100 model which is the focus of
our research.

3.3. Numerical model

The main components of our adopted numerical model are dis-
cussed here: finite element mesh, contact modeling, and bolt tightening
procedure.

3.3.1. Finite element mesh
To improve the balance between efficiency and accuracy, we con-

sidered the mesh optimization and model reduction. The main steps
in these procedures are displayed in Fig. 14. The reference numerical
model (NUM1) had all parts of the real structure: the beam is connected
to the connecting and carrying plates via rigid angles, while the car-
rying plate is bolted to the 1 × 1 m section of the concrete wall that
is clamped along its edges. This model is meshed with 59000 C3D8R
brick elements. To optimize the mesh, the beam is remeshed with S4R
shell elements, except for the connection itself, which is remeshed
with C3D8R elements. As a result, model NUM2 with 39334 FEs is
obtained. Next, our numerical tests suggest that the concrete wall and
the carrying plate can be removed. However, this requires fixing of
the connection plate along its edges and across 10 mm width, which
corresponds to the weld width, see Fig. 2. The obtained NUM3 model
has 34528 FEs, see Fig. 15. Connections between the shell and solid
elements are modeled as shell-to-solid coupling, while the welds are
modeled as tie constraints. The thickness of the welds is taken into
account, and the WBSC model is also shown in Fig. 15.

Finally, by introducing the symmetry conditions and additional
mesh refinement, the NUM4 model with 18373 FEs is obtained, Fig. 14.
The size of the initial NUM1 mesh is reduced approximately by a factor
11
of 3. The adopted NUM4 model is verified through a comparison of
linear acceleration time histories with the NUM1 model. The agreement
between the obtained results is satisfactory, and the NUM4 model is
adopted for further considerations. The results are omitted for the sake
of brevity.

3.3.2. Contact modeling
The contact modeling is crucial for the analysis of the BBSC model

due to contact interactions between different surfaces and associated
effects of the local stick/slip behavior. A considerable effort is required
for the calibration of interaction properties and master/slave sur-
faces. A common algorithm for contact problem solving is the penalty
method, which is available in both Abaqus/Explicit and Abaqus/Standar
Other approaches, such as the Lagrange multiplier method, or the Per-
turbed and Augmented Lagrangian methods, are available in
Abaqus/Standard only [79,80].

Abaqus/Explicit offers two contact algorithms: general contact (GC)
and contact pair (CP). Both of them have advantages and disadvantages
that depend on the problem size, required level of detail, expected accu-
racy, etc. [24,25,80]. The main difference between these two contact al-
gorithms is contact discretization. The GC method uses node-to-surface,
while the CP algorithm employs surface-to-surface discretization. GC is
a robust, accurate, and efficient algorithm that allows straightforward
modeling of contact interactions between multiple bodies. The node-
to-surface discretization is a method where each contact constraint
involves a slave node and a master face. One issue of this approach
is the penetration of slave surfaces by master nodes, which affects the
solution. A mesh refinement of slave surfaces is a simple way to tackle
this issue.

On the other hand, the CP algorithm is not as simple to use as GC. It
requires an explicit definition of all interacting surface pairs, along with
the properties, constraints, and master/slave surfaces for each contact
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Fig. 15. NUM3 model. Types of elements and their approximate dimensions. Application of shell to solid coupling and tie constrains between parts of the model.
pair. The surface-to-surface formulation detects contact conditions in
regions around the slave nodes, rather than only at the individual slave
nodes. These regions are approximately centered around slave nodes,
so each contact constraint predominantly utilizes one node, but also
considers the adjacent ones. The surface-to-surface algorithms do not
suffer from the penetration issues between nodes and master/slave
contacting surfaces. Unlike the node-to-surface, the surface-to-surface
algorithms are not sensitive to the master/slave roles between con-
tacting surfaces. Furthermore, they can reduce local penetrations and
improve the accuracy of contact stresses even for non-matching meshes.
However, it is recommended that the slave surface has denser mesh
than the master surface, while the stiffer body should be assigned as a
master.

Both the GC and CP algorithms were utilized here for the analysis
of the BBSC model in order to investigate their pros and cons. Contact
interaction was defined between all components of the BBSC: the beam
parts, bolts, washers, and splice plates. To simplify the GC numerical
model, we have defined the individual surface pairs that are expected
to interact. Since GC supports the definition of multiple interacting sur-
faces between different parts, the BBSC was modeled with 24 individual
contact pairs. Regarding the CP approach, each contact interaction pair
needs to be defined. Also, contact interaction can consist of only one
surface from each of the two parts. These requirements resulted in
69 contact surface pairs for the CP model. The balanced master/slave
weighting is applied for both GC and CP, and the weighting factor is
set to 𝑓 = 0.5 for the CP case.

Let us emphasize that we used GC for the major part of our re-
search, due to its simplicity. Therefore, all the presented results, until
Section 3.4.4, are given for the GC contact algorithm.

Contact interaction along the normal direction is defined as normal
hard contact, allowing the separation between the interacting surfaces.
The penalty friction method with finite sliding, based on Coulomb’s
law of friction, is utilized for the tangential contact behavior. The
isotropic Coulomb’s law of friction assumes that there is no relative
tangential motion when the frictional shear stress is less than some
critical stress that is proportional to contact pressure. Even for models
without relative sliding, the numerical implementation of the Coulomb
friction through the penalty method allows some elastic slipping in
12
Fig. 16. Tightening of bolts. (a) Model of a bolt, nut, and washer. The thermal
expansion coefficients for the washer. (b) Distribution of the von Mises stresses for
the bolt force and temperature change methods.

contact interaction due to the finite stiffness of penalty springs. As
mentioned in Section 1, the coefficient of friction has a crucial role
in the analysis of mechanical connections and it can strongly affect
nonlinear structural response. For the friction between steel surfaces,
the friction coefficient varies from 0.1 to 0.8 [15–17,24,39–41,85]. This
broad range of values is caused by a variety of parameters that influ-
ence friction, as discussed in Section 1. We have conducted detailed
numerical analyses to find the most suitable friction coefficient for the
problem at hand, and the value of 𝜇 = 0.155 was adopted. A similar
value for the friction between steel parts can be found in works that
investigate bolted connections [15,39,95–97].

3.3.3. Tightening of bolts
A standard bolt connection consists of a bolt, nut, and washer.

To limit the number of contact surfaces, the bolt and nut are here
modeled as a single body, Fig. 16a. Abaqus supports two methods for
the bolt tightening: applying a bolt force and adjusting the length of
the bolt shank. However, neither of these options are supported by
Abaqus/Explicit.
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There are several alternative approaches in the literature for the
tightening of bolts in Abaqus/Explicit. One method is based on detailed
modeling of threads on the shank and inside the nut, and it is called
turn-of-nut [98]. The bolt pretension is then introduced by rotating the
nut. Another approach is to apply a temperature change to either the
bolt shank [8] or to the washer [99,100]. The latter approach was
employed in our numerical model by applying a temperature change
to the washer.

The washer was made from an orthotropic material with a non-zero
thermal expansion coefficient along the bolt direction, Fig. 16a. Prior to
the application of mass M2, the washer was subjected to the positive
temperature change, causing volume expansion along the 𝑧 direction
and producing tension in the bolt shank. With proper calibration of
the temperature load, the required tightening force was obtained. For
verification purposes, a numerical model that utilizes static bolt force
was made in Abaqus/Standard. The von Mises stress distributions in the
bolt at the final step of loading are displayed in Fig. 16b. The stresses
are practically the same for both the temperature method and the bolt
force procedure.

3.4. Calibration and verification of the numerical model

The calibration and verification are closely related to the validation.
The numerical model has to be adopted through a series of iterations
until the results are consistent and aligned with the experiment. The
adopted numerical model is validated in Section 3.2, while the cali-
bration and verification of the main parameters are discussed in this
subsection. Some of the intermediate numerical results are compared
with the experimental results to emphasize the iterative nature of the
calibration process and its relation to the validation. First, we are
calibrating the load function that is separated into two parts: load
application and load release functions. This is followed by a discussion
and verification of proper mass scaling. Then, the influences of bulk
viscosity, order of numerical integration, and contact formulation on
structural response are considered. Finally, the quality of the numerical
solution is assessed through the analysis of the model’s energies.

3.4.1. Load release function
Let us consider the load release function that describes the removal

of additional mass M2. Since the load release time 𝛥𝑡𝐿𝑅 is relatively
short, the linear function is adopted. The experimental results in Fig. 4
suggest that the bolt tightening force does not significantly affect the
first amplitude of acceleration. Due to this fact, the load release time
was calibrated with respect to the first acceleration amplitude. Five
different load release time intervals are tested via the modal dynamic
analysis using 𝜉 = 0.012, see Fig. 9. The envelopes of numerically-
obtained accelerations and the experimental acceleration time history
are shown in Fig. 17a. The obtained envelopes reveal that the first
amplitude converges with respect to the load release time. Therefore,
the value 𝛥𝑡𝐿𝑅 = 0.015 s was adopted in our numerical model.

The first 0.4 s of the acceleration and velocity time histories are
calculated with the modal analysis and compared with the experimental
results in Fig. 17b and c. By using the adopted load release time 𝛥𝑡𝐿𝑅 =
0.015 s, the numerical and experimental results agree reasonably well.
Additionally, the adopted load release time is validated by comparing
the first velocity amplitudes in Section 3.2.2.

3.4.2. Load application function
The load application function is adopted by balancing efficiency

and accuracy. It must be short enough to allow reasonable calculation
time, but long enough to simulate static loading that does not affect
the free vibration response. After several tests, the circular function
and the load application time 𝛥𝑡𝐿𝐴 = 3.5 s are adopted, see Fig. 18.
The load function is defined in the time interval 𝑡 ∈ [−3.515, 0], while
the pretension of bolts takes place for 𝑡 ∈ [−3.715,−3.515]. After the
load release, the free vibration response occurs during the interval
13
𝑡 ∈ [0, 2.8]. The displacement time history in Fig. 18 clearly indicates
a significant sudden movement after approximately 0.5 s of the load
pplication. This large displacement is caused by the macro slip in the
olted connection; the dependent part of the beam suddenly rotates
ith respect to the clamped part and the splice plates bend. This initial
acro slip was also designed and observed in the experiment, see

he illustrations of numerical and experimental BBSCs in Fig. 18 and
iscussion in Section 2.2.3. As a result, a complex stress state arises in
he connection and it is further discussed in Section 3.4.4. After the
nitial macro slip and the load release, the beam oscillates with respect
o a newly-found static equilibrium position.

In order to scrutinize the influence of load application time, the
elocity time histories for three values of 𝛥𝑡𝐿𝐴 are shown in Fig. 19.
egardless of the load application time, the macro slip occurs. The main
ifference between obtained responses is that, for 𝛥𝑡𝐿𝐴 = 5.5 s, the
elocity amplitudes damp almost completely before the load release,
n contrast to the other two models. The full damping of the structure
efore the load release would be an ideal case, but also non-efficient
ue to the long load application time. The obtained results suggest that
he velocity responses of models with 𝛥𝑡𝐿𝐴 = 3.5 s and 𝛥𝑡𝐿𝐴 = 5.5 s, for
> 0, are practically indistinguishable, while the model with 𝛥𝑡𝐿𝐴 =
.5 s gives similar amplitudes but is slightly shifted in time. These
bservations provide an argument to adopt the value 𝛥𝑡𝐿𝐴 = 3.5 s.

Regarding the displacement time histories, it is evident that the
odel with the slowest application of load, 𝛥𝑡𝐿𝐴 = 5.5 s, has the

mallest displacement. Also, the slipping of this model occurs in two
nstances, and its value is lower than that of the other two models. If
e focus on the instances when the slipping occurs, it is evident that the
elocity peak increases with the decrease in the 𝛥𝑡𝐿𝐴. This can cause
ignificant disturbance of the free vibration response, especially if the
oad application time drops below 1.5 s.

.4.3. Mass scaling
As already discussed, the crucial parameter of explicit time inte-

ration is the stable time increment. Its correct value is vital for the
ccuracy of numerical results, and it strongly affects computational
ime. This increment is equal to the time required for a wave to propa-
ate through the smallest element dimension, and we can increase it by
eliberately increasing the mass density of critical FEs. The application
f mass scaling requires special attention in dynamic analysis because
t introduces fictitious inertial forces. The task is to carefully select FEs
or mass scaling by balancing the computational time and accuracy.

For the adopted numerical model, the selected FEs are shown in
ig. 20. These are the smallest FEs in the model and they belong to
he splice plates, bolts, washers, and parts of the beam around the
olt holes. To investigate the influence that mass scaling has on the
tructural response, three values of the stable time increment have been
ested: 𝛥𝑡 = 9.83 × 10−8 s, 𝛥𝑡 = 2.00 × 10−7 s, and 𝛥𝑡 = 3.40 × 10−7 s.
he reference model is the one without mass scaling, with the time

ncrement 𝛥𝑡 = 9.83 × 10−8 s.
The velocity time histories for these three values of 𝛥𝑡 are shown

n Fig. 21. These results imply that the model with the stable time
ncrement of 𝛥𝑡 = 2.00×10−7 s returns the same results as the reference
odel without mass scaling. On the contrary, the model with 𝛥𝑡 = 3.40×
0−7 s gives significantly different results. Following these observations,
he mass scaling that returns the stable time increment of 2.00×10−7 has
een adopted in our numerical model. As a result, the initial stable time
ncrement has been increased by a factor of 2.03 without significantly
nfluencing the structural response.

Additionally, the mass increase for the whole model and selected
lements is depicted in Fig. 21. The mass increase of the adopted model
s 1.73% for the complete structure and 145% for the selected elements.
lthough the mass increase of selected elements is substantial, the mass

ncrease of the whole model is negligible and the influence of fictitious
nertial forces is insignificant. For the model with 𝛥𝑡 = 3.40 × 10−7 s,
he whole mass increases by a factor of 3.3, while the mass of selected
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(

Fig. 17. Calibration of the load release time with respect to the first experimental amplitude. (a) Envelopes of acceleration for different values of the load release time 𝛥𝑡𝐿𝑅.
b) Acceleration time history with 𝛥𝑡𝐿𝑅 = 0.015. (c) Velocity time history with 𝛥𝑡𝐿𝑅 = 0.015.
Fig. 18. Adopted load function. The velocity and displacement time histories for the adopted load function. The physical and numerical model of the BBSC before and after the
macro slip.
elements rises by a factor of 160. This large increase of mass causes
evident errors in the numerical response.

The reference numerical model, without mass scaling, requires 110 h
of computational time for 6.5 s of simulation. By applying the adopted
mass scaling, the computational time reduces to approximately 53 h,
which is a valuable improvement. Let us note in passing that computa-
tional time depends on several other parameters besides mass scaling,
with the order of numerical integration being the most important. In
comparison with the reduced spatial integration, the full integration
increases computational time of our model, on average, by more than
200%.

3.4.4. Bulk viscosity and order of integration
There are two sources of energy dissipation in our BBSC numerical

model: nonlinear damping due to the friction in the bolted connection
14
and numerical damping. Let us focus on numerical damping. The
two main sources of numerical damping in Abaqus/Explicit are bulk
viscosity and the order of integration. Bulk viscosity represents artificial
damping proportional to volumetric straining. The addition of such a
viscous pressure term to the equation of motion helps to solve high-
speed dynamic events. The method is also known as the von Neuman–
Richtmeyer viscosity [101,102]. Bulk viscosity in Abaqus/Explicit con-
sists of linear and quadratic terms, and the default values were used for
our numerical model.

Linear fully-integrated C3D8 elements were initially used for the
splice plates, parts of the beam, washers, etc. Such a modeling approach
causes issues with bending deformations. Concretely, a strong shear
locking effect occurs, which artificially increases the stiffness of the
structure. This issue is alleviated by implementing the C3D8R elements
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Fig. 19. Calibration of the load application time for BBSC100. Velocity and displacement time histories for: 𝛥𝑡𝐿𝐴 = 2.5 s, 𝛥𝑡𝐿𝐴 = 3.5 s, 𝛥𝑡𝐿𝐴 = 5.5 s.
Fig. 20. Selected set of finite elements for the application of mass scaling.

with reduced integration. However, an unwanted side effect of the
reduced integration is hourglassing, the distortion of elements that
occurs during the bending. This phenomenon affects accuracy when the
mesh across the thickness dimension is sparse [79,103,104].

Bearing this in mind, we have analyzed the numerical damping
that exists in our explicit simulations. In order to exclude structural
damping, the WBSC model has been considered. The adopted numer-
ical model utilizes both the bulk viscosity and C3D8R elements. The
obtained results are omitted for the sake of brevity and the resulting
numerical damping is close to 0.001. This value is in excellent agree-
ment with the material damping discussed in Section 2.3.2. Therefore,
the numerical damping of the adopted numerical model corresponds
to the estimated material damping of the real structure. Due to this
fact, there is no need to explicitly define damping in our numerical
model. Moreover, these values of the material and numerical damping
are not crucial for the observed response, which is dominated by the
structural damping due to friction, see Fig. 10. The main source of
numerical damping in our case is reduced integration, and its effect
can be alleviated by increasing the mesh density along the thickness
direction.

Let us consider the influences that bulk viscosity and the order of
integration have on the BBSC100 model response. Both the GC and CP
15
contact formulations are utilized, and the velocity time histories are
given in Figs. 22 and 23. Furthermore, the distributions of Mises stress
in the flange splice plate at the upper part of the section, before the
load release, are shown. Different models are marked as RxBx, where
x takes the value of 0 or 1, while R and B represent abbreviations for
Reduced integration and Bulk viscosity, respectively. x = 1 indicates
that a parameter is included, while x = 0 designates that a parameter
is excluded.

All the results presented until this point are obtained with the GC
R1B1 model. The most important observation that follows from the
results in Figs. 22 and 23 is that R1B1 models are invariant with respect
to the contact formulation. For the C3D8R elements, bulk viscosity does
not influence velocities but it does affect stress distributions, especially
when the GC formulation is employed.

Regarding the fully integrated C3D8 elements, they return erro-
neous results. The dominant eigenfrequency of C3D8 models is invari-
ant with respect to the contact formulation and bulk viscosity, and its
value is a bit higher than that of C3D8R models. This effect is probably
caused by shear locking. Regarding the velocity amplitudes, they are
higher for C3D8 elements, with the exception of the GC-R0B0 model.
The full integration strongly affects stress state and results with the
plastification of the splice plate. Finally, stress distributions obtained
with the CP formulation are much smoother than those from the GC
approach. In general, results from the CP formulation are more reliable
and independent from other parameters. This is mostly due to the issues
inherent in the GC point-to-surface modeling, such as penetration and
snugging of master nodes.

3.4.5. Energy considerations
The energies of a numerical model are important parameters that

can quantify the quality of the numerical solution. For this, four en-
ergies are observed: total energy 𝐸𝑇𝑂𝑇 , internal energy 𝐸𝐼 , artificial
strain energy 𝐸𝐴, and work done by contact penalties 𝐸𝑃𝑊 . Some
general guidelines are that 𝐸𝑇𝑂𝑇 should be constant, while the ratio
of 𝐸𝐴 and 𝐸𝐼 should be less than approximately 2–10%, depending on
the model [79,105,106].

Both contact formulations are considered, and the energy time his-
tories are shown in Figs. 24 and 25. Let us first discuss the total energy.
For both contact formulations, 𝐸𝑇𝑂𝑇 increases by a similar value during
the bolt tightening in the time interval AB. This occurs because the
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Fig. 21. Verification of mass scaling on BBSC100. Velocity time histories and mass increases for three models with different values of stable time increment 𝛥𝑡.
Fig. 22. Influence of bulk viscosity (B) and the order of integration (R) using the General contact (GC) formulation. Velocity time histories. Stress distributions in the flange splice
late at the upper part of the section, before the load release.
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nternal energy increases as a result of the temperature expansion of
he washer, but there is no external work. Afterward, the total energy
s constant for the GC formulation in the interval BF. However, for the
P formulation, the situation is different. Due to the significant work
one by penalties, 𝐸𝑃𝑊 significantly increases in the interval CD, where
he macro slipping occurs. The penalty energy is practically constant in
he remaining interval DF, with the exception of small increase at the
oint of the load release. This increase in 𝐸𝑃𝑊 is followed by a decrease
n 𝐸 . If we consider 𝐸 without 𝐸 , the resulting energy is
𝑇𝑂𝑇 𝑇𝑂𝑇 𝑃𝑊 t

16
ractically constant. This inconsistency is specific to the adopted model
ith the CP formulation. This problem of non-constant total energy is
ften present in contact and impact problems [107,108]. If there is a
ignificant change in 𝐸𝑇𝑂𝑇 , it is important to double-check the results.
n our case, the free vibration velocity time history in the time interval
F is not affected by this phenomenon.

Regarding the ratio between the artificial and internal energy, 𝐸𝐴∕
𝐼 , it is 8.5% for the CP, and 35% for the GC formulation. As such,

his ratio is within the acceptable limits for the CP, and outside of the
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Fig. 23. Influence of bulk viscosity (B) and the order of integration (R) using the Contact pair (CP) formulation. Velocity time histories. Stress distributions in the flange splice
late at the upper part of the section, before the load release.
Fig. 24. Energy time histories of the GC model. Experimental and numerical velocity time histories.
imits for the GC formulation. This observation proves that surface-to-
urface contact discretization helps reduce the hourglassing effect. The
ncrease of the artificial energy predominantly occurs during the bolt
17
tightening (time interval AB) and the macro-slipping (time interval CD).
The relative increases of 𝐸𝐴 that occur during these two intervals are
similar for both contact formulations, but the absolute values are higher
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Fig. 25. Energy time histories of the CP model. Experimental and numerical velocity time histories.
Fig. 26. Comparison of experimental and numerical time histories for both contact formulations.
for the GC formulation by a factor of 5. Since the internal energies are
similar in both contact formulations, this directly affects the observed
ratios 𝐸𝐴∕𝐸𝐼 . The most significant fact is that the relative increase
in the artificial energy is negligible during the free vibration response
(time interval EF).

To scrutinize these observations, the velocity and displacement time
histories for the adopted numerical model and both contact formu-
lations are compared in Fig. 26. First, the free vibration response is
18
not affected by the discussed energy inconsistencies in either contact
formulations. The CP formulation fully dampens the vibrations due
to the load application, while the remaining vibrations for the GC
formulation do not affect the free vibration response, as discussed in
Section 3.4.2. Importantly, the CP formulation returns better contact
stress distributions, as shown in Section 3.4.4. Therefore, the CP for-
mulation is preferable for our numerical model, and it is exclusively
used for the discussion in Section 4.
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Fig. 27. Bolted beam splice connection and 100% of tightening force. Velocity time histories for different values of the friction coefficient. Deformed configurations and stress
istributions in the upper flange are shown for 𝜇 = 0.155 and 𝜇 = 0.500, at the instance before the load release.
i
a
m
f
e
𝜇

A
f
t
s
t
r
s
p
b
i
t
i
a
e
s
t
e
s

b
c
p
a
m
s
s
t
d
m

i
t
o

4. Discussion

In this section, we summarized and discuss the main results, and we
scrutinize the nonlinear energy dissipation mechanism of the numerical
model.

To properly describe experimental tests, the numerical model must
be deliberately calibrated and verified, see Section 3.4. In a search
for an optimal numerical model with respect to the efficiency and
accuracy, mass scaling is one of the crucial parameters that requires cal-
ibration. An increase in the mass of a system can significantly improve
the efficiency of explicit integration, but one must be careful about its
effects on the accuracy. A careful verification presented in Section 3.4.3
shows that the adopted mass scaling approach does not induce large
fictitious inertial forces but does manage to significantly increase the
time step. Another important parameter of the numerical model is
the order of numerical integration. The reduced integration of the
C3D8R elements introduces the numerical damping that is practically
equal to the material damping of our model. Regarding the contact
formulations, both of them return the same velocity time histories but
different stress distributions.

Besides the verification, the validation is another crucial step that
tells us if the numerical model is aligned with the physics of a problem.
The adopted numerical model is validated through the comparison of
the experimental and numerical velocity time histories in Section 3.2.2.
The experimental and numerical results for the BBSC100 model are in
agreement, which is one of remarkable achievements of our study. Also,
the correspondence of the results from the BBSC50 and BBSC30 models
is satisfactory, considering the complexity of these models and their
responses. In the rest of this section, we will focus on the BBSC100
model, since it is the one that is readily found in engineering structures.

The most important result of this research is the successful nu-
merical modeling of structural damping due to friction in the BBSC
model. Friction is a complicated phenomenon that depends on various
parameters, as discussed in Section 1. In the adopted numerical model,
friction is introduced via the classic Coulomb’s law. This simplified
approach is not an accurate representation of friction, but it returns
an acceptable approximation. In order to scrutinize the influence of
friction on the response of the BBSC100 model, we considered five
simulations with different values of the friction coefficient, and the
velocity envelopes are shown in Fig. 27. The model with 𝜇 = 0.155
agrees with the experiment, as has already been discussed. Moreover,
the experimental results are reasonably well aligned with the numerical
model that has 𝜇 = 0.2, which is actually the value that Eurocode
ecommends for non-treated steel surfaces [85]. A possible explanation
or the lower value of friction that is found in our model is high air
19
humidity, see Sections 1 and 2.2.1. Next, the structural response for
𝜇 = 0.25 significantly differs, and the nonlinear damping effect almost
vanishes. For the friction coefficients 𝜇 = 0.3 and 𝜇 = 0.5, the results
are similar and the response is practically linear. Furthermore, our
simulations show that the response of the BBSC model with 𝜇 > 0.3
s practically identical to that of the WBSC model, which confirms our
ssumption, cf. Section 2.2.1. In contrast to the adopted numerical
odel with 𝜇 = 0.155, the initial macro slip and the bending of the

lange splice plate do not occur if the friction is considerable. This is
vident from the stress distributions in the upper flange splice plate for
= 0.155 and 𝜇 = 0.500, Fig. 27.

The friction coefficient strongly influences the local contact state.
ctually, the nonlinear dynamic response is mainly caused by the

riction between interacting contact surfaces. In general, we can dis-
inguish between three types of relative motion between contacting
urfaces: macro slip, stick, and micro slip. The macro slip occurs when
he slip zone extends across the whole contact interaction and the
elative displacement between all of the contact point pairs becomes
imilar. The stick state is characterized with near-zero relative dis-
lacement. The micro slip can be considered as a transitional state
etween the macro slip and stick states. This transition does not occur
nstantaneously, causing the stick and slip areas to exist at the same
ime. The micro-slipping ends after the whole contact interface turns
nto stick or macro slip. As discussed in Sections 1 and 2.2.3, the
ctivation of micro- and macro-slipping depends on bolt forces and
xternal excitation. With the reduction of the bolt tightening force, the
lip region expands until it is active across the whole interface, defining
he macro slip state. A case with a strong tightening force and a low
xcitation force will not result in slipping, as discussed in [2]. Such a
ituation corresponds to our previously analyzed case of 𝜇 > 0.3.

To get further insight into the contact interaction of the considered
eam, let us observe the upper part of the splice connection and three
haracteristic contact interfaces: the bolt head/washer, washer/splice
late, and splice plate/flange. The normal contact stress distributions
t these interfaces, before the load release, are given in Fig. 28. The
aximum contact stresses arise in the middle of the washer due to the

tress concentration caused by the bolt head edge. Also, large contact
tresses develop around the edges of the bolt holes and bolt heads, and
hey are concentrated towards the middle of the splice plate. Such a
istribution is caused by the bending of the splice plate due to the initial
acro-slipping.

The deformed configuration in Fig. 28 clearly illustrates that the
nitial macro slip occurred at the splice plate/flange interface. In order
o scrutinize further this slip mechanism after the load release, let us
bserve the time history of slipping at the selected points. The points
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Fig. 28. Deformed configuration of the upper part of the splice connection before the load release. The normal contact stress distributions at the contact interfaces: bolt head/washer,
asher/splice plate, and splice plate/flange. Six characteristic interacting contact point pairs are designated with N1-N6.
1-N4 are selected near the areas with maximum contact stress where
he stick state is expected. The points N5 and N6 are defined in the
egions with reduced contact stress, symmetrical to the bolt hole, where
he slip state is anticipated, Fig. 28. The slipping between the surfaces
t a point is defined as the relative displacement between the two
nteracting points.

The time history of the relative displacement at point N5 is shown
n the lower part of Fig. 29. Additionally, we calculated and plotted the
ifferences between two consecutive amplitudes of opposite signs for all
elected points. These graphs represent the envelopes of the estimated
lip amplitudes. The relative displacement at the point N5 oscillates
round approximately 1.05 mm, which is the value of relative static
isplacement due to the initial macro slip. The first slip amplitude at
his point is 43 μm, and it sharply reduces to 11.6 μm during the next
ycle. After a few more oscillations, the decay rate of slip amplitudes
eaches a constant value. It is evident that similar behavior occurs at
oint N6.

After the first two slip amplitudes, the behavior at points N1-N4 is
uite similar, although the values at points N1 and N2 are significantly
ower. This sharp difference exists due to the maximum contact stresses
n the vicinity of points N1 and N2. Nevertheless, the calculated slip
mplitudes at points N1-N4 are less than 0.5 μm, which suggests that
ll of these points are practically in the stick state.

The slip at point N4 is the most intriguing. This point belongs to the
ame splice plate/flange contact interface as points N5 and N6. All three
oints have similar first amplitude of slip, which suggests the initial
niform displacement between the splice plate and the flange. This
ehavior corresponds to the macro slip state. Between the first and the
hird amplitude, the slip at point N4 reduces approximately by a factor
f 60 and practically vanishes afterward. On the other hand, the slip
mplitudes at points N5 and N6 decay at a lower rate. Therefore, the
lips at points N5 and N6 monotonically decay, while the slip abruptly
oes to the stick at point N4. This simultaneous presence of the stick
nd slip zones at the same contact interface is a clear indicator of the
icro slip state.

To summarize, we can distinguish between three phases of slipping
n our numerical simulations of the BBSC. The first phase consists of the
lipping along the splice plate/flange interface during the application
20
of mass M2. This is the initial macro slip and has an approximate
amplitude of 1 mm. The second phase occurs immediately after the
load release. Again, it consists of the macro-slipping at the splice
plate/flange interface but its amplitude is significantly lower than
the initial macro slip, approximately 40 μm. Finally, during the third
phase, the stick zone forms at the splice plate/flange interface near the
bolt shank, while the slipping is still present farther away from this
region. This micro-slipping mechanism is the main cause of nonlinear
energy dissipation in mechanical connections. As the energy dissipates
from the system, the stick region grows steadily until the whole BBSC
becomes practically monolithic.

5. Conclusions

We deliberately conducted in-depth experimental and numerical
analyses of one bolted beam splice connection (BBSC). The carefully-
designed experimental setup has shown a highly nonlinear dynamic
response due to structural damping. The Abaqus/Explicit numerical
model of the BBSC was verified and adopted through an iterative pro-
cess, while the monolithic beam with welded connection was utilized
for the initial calibration. We considered the influences of various
parameters, such as time and spatial integration, bolt load applica-
tion, load function, element type, contact formulation, bulk viscosity,
and mass scaling. After the verification, the numerical model was
successfully validated by the comparison with experimental data.

The main conclusions of the presented research are:

• Structural damping is a nonlinear phenomenon that is caused by
the complex micro slip state at the contact interfaces of vari-
ous joints, such as the commonly used bolted beam splice con-
nections. The modeling of structural damping requires a well-
designed experimental setup and precise post-processing of the
measured data. These must be followed by a careful calibration,
verification, and validation of the numerical model.

• When properly utilized, Abaqus/Explicit is a powerful tool for
nonlinear dynamic simulations of structures with bolted con-
nections. The non-physical parameters that require calibration
and verification are the FE mesh, mass scaling, spatial and time
integration schemes, and contact discretization.
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• Proper calibration of the numerical model with respect to non-
physical parameters allows us to assess the influence of main
physical quantities. When the bolt tightening forces are given, one
just has to adopt the loading function and the friction coefficient.

• For the adopted numerical model, the friction coefficient is near
𝜇 = 0.155, which matches the values reported in the literature.
The numerical and experimental results are in excellent corre-
spondence for the case with 100% of the bolt tightening force,
while the agreement of the results slightly deteriorates with a
reduction of the bolt force. Nevertheless, the adopted numerical
model predicts nonlinear structural damping with reasonably
high accuracy.

• Engineering joints are complex, and their proper detailed numer-
ical modeling is still inefficient for real-life calculations. This fact
is the driving force for the development of accurate and efficient
models that can provide approximate relations between essential
engineering parameters, such as contact stresses, friction, and
damping.

Finally, let us summarize some recommendations for the mod-
ling of bolted connections in Abaqus/Explicit: (i) the contact pair
ormulation is the preferred option for the contact discretization, cf.
ection 3.3.2, (ii) the additional mass should be applied by a smoothly
ncreasing function, cf. Section 3.4.2, (iii) mass scaling is a crucial
tep that must be implemented with particular care, cf. Section 3.4.3,
iv) a numerical damping generated by the model should be estimated,
f. Section 3.4.4, (v) the quality of results must be verified by consid-
ring the model’s energies, cf. Section 3.4.5, (vi) an influence of bulk
iscosity on both stress and kinematic fields should be assessed, cf.
ection 3.4.4.

The main limit of our research is its focus on one specific struc-
ural connection. As a recommendation for future work, it would be
aluable to conduct a similar experiment and to test the mentioned
 i

21
observations regarding the calibration of the numerical model through
a detailed parametric analysis. The geometry, position, and number of
connections, and boundary conditions are parameters that should be
taken into further consideration. The experiment should include a slip-
resistant connection with various compositions of high-strength bolts,
where influences of the roughness, oxidation, and lubrication would be
scrutinized. Moreover, it is desirable to improve the quality of obtained
data by using strain gauges and more accelerometers. These results
will prove essential for modeling the energy dissipation in overall
structures.
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