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1. Introduction

For a given n x nreal symmetric matrix A = (a;;), we define the graph of A, which we write as G(A), as the (simple) graph
whose vertex setis {1, ..., n} and edge set is {ij | i # j and a;; # 0}. We confine our attention to the set

8(G) = {A € R™" | Ais symmetric and G(A) = G},

i.e., the set of all symmetric matrices sharing a common graph G on n vertices. If G is a tree, then A € §(G) is an irreducible
acyclic matrix.

Let us denote the (algebraic) multiplicity of the eigenvalue 6 of a symmetric matrix A by m,4(6). By A(i) we mean the
(n — 1) x (n — 1) principal submatrix formed by the deletion of the row and column indexed with i. More generally, if S is
a subset of the vertex set of G, then A(S) is the principal submatrix obtained from A by striking out rows and columns S. By
A[S] we mean the principal submatrix of A whose rows and columns are indexed with S. The reader is referred to [8-10] for
a full account regarding the terminology used throughout.

Probably the main consequence of Cauchy’s Interlacing Theorem for the eigenvalues of symmetric matrices is the set of
inequalities

ma(0) — 1 < My (0) < ma@) + 1.

In the case of mu;) () = ma(6) + 1, the vertex i is known as a Parter-vertex of A for 6 [8-10] or as a 6-positive vertex of G
[3,5,6]. When 8 = 0, a Parter-vertex is simply called a P-vertex of A [9], and P, (A) denotes the number of P-vertices of A.

In 2004, Johnson and Sutton [7] showed that each singular acyclic matrix of order n has at most n — 2 P-vertices. Later,
Kim and Shader proved in [8] that this does not hold for nonsingular acyclic matrices by constructing some examples for
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Fig. 1. The double star S34.

paths and stars. Furthermore, these authors proved that P,(A) < n — 1, for any nonsingular matrix A in 4(T), when n is odd.
Clearly, when n is even, we have P, (A) < n. More recently, Andeli¢ et al. [2,1] considered other general cases and discussed
some “continuity” properties of P, (A), when A runs over all tridiagonal matrices, for example.

One of the questions left open by Kim and Shader [8, Question (g), p. 407] concerned the existence of a tree T, of order
n, such that for each nonsingular matrix A € §(T), P,(A) < n — 2. In this brief note, we provide a positive answer to this
question. More precisely, using an elementary approach, we show that a double star of order > 6 satisfies such an inequality.

2. Double stars

Let us recall that a double star is the tree obtained from two vertex disjoint stars by connecting their centers by a path.
Double stars emerge often in the literature and constitute an important family of acyclic graphs [4,10]. Here we will consider
two stars whose central vertices are joined by an edge. In order to be more precise, we write Sy, k,, with k1+k, = n, specifying
the sizes of the two “disjoint” stars (see Fig. 1). In particular, a star on n vertices is a double star of the form S,_1 1.

Let us consider now for n > 4 the matrix

1 1
1 1
Av=11 ... 1 n=511 ,
1 0 1 1
1 1 O
1 0 O

where the upper left block is of order n — 3.
We first observe that det A, = 1. On the other hand,

det A,(¢) =0, forle{l,....,n}—{n—3,n—1}
and

det Au(n — 1) = —det A,(n—3) =1,

P,(Ap) =n—2.
We point out that the graph of A, is the double star S;,_3 3.

3. The main result

We start this main section by observing that, for any n = 2, 3, 4, 5, it is possible to construct a nonsingular acyclic matrix
whose graph is a path or a star of order n, withn — 1 orn P-vertices (see [1]). Moreover, for n = 5, the nonsingular matrix

01 0 0 O

1 01 0 O
A=]0 1 1 1 1
0 01 10
0 01 0O

has four P-vertices. In this case, the graph of A is the double star S,3. Therefore, for n < 5, the answer to Question (g) posed
by Kim and Shader [8] is “no”. But, for n > 6, our result provides a positive answer to that question.

Theorem 3.1. For any nonsingular matrix A € 8(S,—3.3), withn > 6,

P,(A) <n—2.
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Proof. We begin by noting that, for any nonsingular matrix A = (a;) € $(Sp—3,3), P,(A) < n — 1[1, Theorem 7.1]. Further-
more, at least one of the verticesn — 2, n — 1, nis not a P-vertex. In fact, let us assume that those vertices are all P-vertices.
Consequently

det A= —a’, ,an_14—1det An—2,n—1,n) #0, (3.1)

det A= —a},_ja,,det A(n—2,n—1,n) #0, (3.2)
and

det A(n —2) = ap_1p—1anpndet Am—2,n—1,n) = 0.

So, if ay, # 0, we get a contradiction with (3.1); otherwise, a,, = 0 will contradict (3.2).
Now, let us suppose that P,(A) = n — 1. Since the vertex n — 3 is one of the centers of the double star, we have

0=det A(n—3) = a0y - ay_4p-adet A[n —2,n—1,n]
and, on the other hand,
0#detA= —af‘n%azz -+ lp_gn-adet A[n —2,n—1,n],
because det A(1) = 0. Therefore
a;; = 0.
But, since det A(2) = 0, we also have
det A= —ag‘n73a11a33 ce-Op_gp_gdetAln—2,n—1,n] =0,

which contradicts the nonsingularity of A. Taking into account the discussion in the previous section, the result follows. O
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