Linear and Multilinear Algebra

Nonsingular acyclic matrices with full number of P-vertices

Milica Andelic, Aleksandra Erić \& C.M. da Fonseca

To cite this article: Milica Andelic, Aleksandra Erić \& C.M. da Fonseca (2013) Nonsingular acyclic matrices with full number of P-vertices, Linear and Multilinear Algebra, 61:8, 1159-1160, DOI: 10.1080/03081087.2013.794619

To link to this article: https://doi.org/10.1080/03081087.2013.794619

Published online: 29 Apr 2013.

Submit your article to this journal

Article views: 417

View related articles

ERRATUM

Nonsingular acyclic matrices with full number of P-vertices

Milica Andelic, Aleksandra Erić and C.M. da Fonseca

The graphs were erroneously missing in Section 4 of this paper, published online on 29 November 2012 in Linear and Multilinear Algebra, Vol. 61, No, 1, pp. 49-54. The section should display as follows:

4. Examples

In this section, we provide three illustrative examples of the previous algorithm.

A resulting graph can be the path P_{3} :

$$
T_{1}^{\prime}:
$$

For T_{1}, there is no nonsingular matrix with 11 P -vertices. Actually, since the order is odd, we may conclude the same statement immediately.

The resulting graph is the generalized double star:

For T_{2}, we get the same conclusion as in the previous case.

A resulting graph can be the path P_{6} :

If we take A as the adjacency matrix of T_{3}, then $P_{v}(A)=10$. Observe that A is nonsingular.

Taylor \& Francis would like to apologise for these errors and for any inconvenience caused.

