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Abstract

A data-driven investigation of the flow around a high-rise building is per-
formed by combining heterogeneous experimental samples and numerical
models based on the Reynolds-Averaged Navier–Stokes (RANS) equations.
The experimental data, which include velocity and pressure measurements
obtained by local and sparse sensors, replicate realistic conditions of future
automated urban settings. The coupling between experiments and the nu-
merical model is performed using techniques based on the Ensemble Kalman
Filter (EnKF), including advanced manipulations such as localization and
inflation. The augmented state estimation obtained via EnKF has also been
employed to improve the predictive features of the RANS model via opti-
mization of the free global model constants of two turbulence models used to
close the equations, namely the K−ε and the K−ω SST turbulence models.
The optimized inferred values are far from the classical values prescribed as
general recommendations and implemented in codes, but also different from
other data-driven analyses reported in the literature. The results obtained
with this new optimized parametric description show a global improvement
for both the velocity and pressure fields. In addition, some topological im-
provements for the flow organization are observed downstream, far from the
location of the sensors.
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1. Introduction

Among the open challenges in the field of fluid mechanics, the accurate
prediction and control of the turbulent flows around bluff bodies is a timely
subject in the current development of automated, data-informed urban ar-
eas. Bluff bodies are characterized by massive separation of the flow at high
Reynolds numbers, which is responsible for the emergence of large, energetic
wakes [1]. The global aerodynamic interactions are, in this case, character-
ized by complex concurring phenomena such as shear layers, flow separation,
and reattachment and recirculation regions. Predicting such features is a
complex task, owing to the extensive range of active dynamic scales that
can be observed in fully developed turbulence. Computational resources
required to completely represent turbulent flows via direct numerical simula-
tion are prohibitive for Reynolds numbers observed in realistic applications
dealing with urban settings. Reduced-order Computational Fluid Dynam-
ics (CFD) such as models based on the Reynolds-Averaged Navier–Stokes
(RANS) equations [2, 3] can provide a statistical description of complete
urban areas with affordable resources, but the accuracy of such prediction
is strongly affected by the features of the turbulence model needed to close
such dynamic equations. The models, which are driven by a number of coeffi-
cients classically determined via empiric approaches, usually fail to represent
interactions of different physical phenomena triggered by turbulence, such as
the ones previously listed, which are observed in urban settings. Experimen-
tal approaches, which rely on measurement that can be obtained by various
techniques, such as pressure sensors and hot wires, can provide a virtually
exact characterization of the flow features in the form of pressure and veloc-
ity measurements. However, experimental data may be local in space and
time, and a full-volume representation of flows is prohibitively expensive.

Studies in the last decades have tried to create a solid network between
numerical simulation and experiments in order to exploit the intrinsic advan-
tages of both methods. A rigorous mathematical background is provided by
tools from Estimation Theory [4], which is a branch of statistics. Among the
numerous methods available in the literature, Data Assimilation (DA) [5] is
a vast family of tools tailored to combine experimental and numerical data
to obtain a more accurate prediction of the flow. Sequential DA uses tools
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certainty (state estimation), once different sources of information and their
related level of confidence are provided. Among these methods, one can in-
clude the Kalman Filter (KF) [6] and its ensemble version, the Ensemble
Kalman Filter (EnKF) [7, 8], which is arguably among the most powerful
tools available in the literature for DA.

Tools from Estimation Theory can also exploit available information and
state estimation to train or optimize an underlying model with the aim of
better performing in operative conditions where reference data is unavailable.
This task has been extensively performed in the literature to improve the pre-
dictive capabilities of reduced order models for CFD, particularly RANS [9].
Examples dealing with Uncertainty Propagation [10, 11], Data Assimilation
[12, 13] and also Machine Learning [14, 15, 16, 17] are available in the lit-
erature. These works show that improved prediction accuracy using RANS
modeling can be obtained. However, two main difficulties are observed for
these applications. First, the optimization and training of the models usu-
ally demand an extensive spatially well-distributed set of data. Second, the
models may underperform when used for extrapolation i.e. predict flow fea-
tures that are different from those observed in the available data used for
optimization/training. This last point is crucial for accurately predicting the
statistical moments of turbulent flows, and it is an open challenge.

As previously mentioned, realistic configurations in urban settings exhibit
non-linear interaction of several complex phenomena that cannot be isolated
[18]. Among these, the well-known test case of the high-rise building [19]
shows such features despite its simple geometry. The complex flow topology
produced by the concurring effects of separation of boundary layers, insta-
bilities triggered by shear effects, turbulent wakes, and recirculation regions
is challenging to capture accurately even by advanced data-driven strategies.
Among the work reported in the literature for this test case, Ben-Ali et al.
[20] and Zhao et al. [21] propose an improvement for classical RANS models
using experimental data for the data-driven procedures. This kind of appli-
cation is still rare in the literature for fluid mechanics as most of the analyses
in the literature rely on the usage of models of different resolution. Classi-
cal applications usually optimize reduced-order models such as RANS using
high-fidelity data from direct numerical simulation. The main advantage of
using numerical data relies on the complete control of boundary and initial
conditions, which allows for excluding bias in fundamental parameters such
as the mass flow rate. However, model optimization for realistic operating
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step to be unlocked towards fully automated digital twin applications [22].
Ben-Ali et al. [20] inferred the behavior of turbulence modeling in the open-
source platform OpenFOAM using experimental pressure measurements on
the surface of the building. They developed an adjoint method to perform
such optimization. Their results showed that the accuracy of the RANS
model could be improved. However, this improvement was associated with
the development of advanced numerical techniques, including modification
of the dynamic equations for the turbulence physical quantities (turbulent
kinetic energy K, and energy dissipation rate ε or specific energy dissipation
rate ω). Optimizing global model constants, which are accessible to a stan-
dard user of the code, would not produce significant improvements in this
case. On the other hand, Zhao et al. [21] used an EnKF code to infer the
behavior of such model constants, always using the software OpenFOAM.
In order to perform the optimization, they employed time-averaged velocity
measurements available on 230 sensors sparsely distributed in the flow vol-
ume around the building. In this case, they obtained an efficient calibration
of the model constants. However, such a global distribution of data is diffi-
cult to obtain in realistic conditions, where sensors are mostly clustered in
local regions where measurements can be efficiently performed.

Another important aspect to consider is the influence of sensor placement
on the performance of the data assimilation algorithm. In the context of vari-
ational data assimilation applied to the unsteady flows past a rotationally
oscillating cylinder, Mons et al. [23] addressed this challenge known as sensor
placement problem. They proposed a first-order adjoint-based procedure to
maximize the sensitivity of the observations with respect to changes in ini-
tial and boundary conditions. A more comprehensive framework is presented
in a separate work [24] where besides linear sensor placement approaches,
second-order adjoint-based methodologies are explored. Very few velocity
measurements at optimized locations were able to successfully reconstruct
the field. Another advantage of this approach is its capability to estimate
the minimum number of sensors required to attain a desired level of recon-
struction accuracy. However, it is essential to note that the research relies
on the laminar RANS equations and low Reynolds number, and the consid-
eration of an actual turbulence model is identified as a prospective avenue
for future investigation. Furthermore, the challenges related to resolving the
sensor placement problem stem from limitations in the measurement pro-
cess itself. For instance, obtaining dense measurements of the entire mean
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available. In the case of hot-wire anemometry, due to interference of the
equipment only a limited number of hot-wires can be used to perform mea-
surements simultaneously. Additionally, certain sensor placement locations
of significance may be excluded due to equipment limitations. For example,
in the case of hot-wire sensors, high-turbulent and reverse flows within the
domain can hinder accurate measurements [25] Similarly, placing pressure
sensors near the edges of a model may also be restricted due to practical
limitations. These considerations highlight the multifaceted nature of the
sensor placement problem, where both algorithmic and measurement-related
aspects must be carefully addressed.

In this article, RANS simulation for the flow around a high-rise building is
augmented via integrating heterogeneous experimental data using tools based
on the EnKF. The observation is provided in the form of time-averaged data
from several pressure taps on the surface of the building and a limited amount
of velocity measurements obtained via hot wires. One additional difficulty
of this work is that data is obtained with different tools, and therefore the
acquisition systems exhibit different features and challenges. This hetero-
geneous observation, which shares features with the data employed in the
two studies previously discussed, gives the opportunity to perform a RANS
model optimization using realistic data available in an urban setting. The
DA augmentation is performed by optimizing several global free constants
that determine the behavior of time-averaged closure. To this purpose, a
dedicated C++ library is developed, which performs an on-the-fly coupling
of the CFD runs with the data-driven algorithms, dramatically reducing the
computational costs. It will be shown that approaches based on the EnKF,
owing to the smoothing characteristics of the filter, are suitable for robust
integration of experimental data within the reduced-order CFD formalism.

The article is organized as follows. In Sec. 2, the numerical strategies and
the algorithms used in this work are presented. This includes a description
of the numerical solver used as well as a presentation of the data-driven
strategies, which are integrated into a specific C++ library. In Sec. 3, the
setup of the DA analysis is presented. The different techniques are outlined
and compared, selecting the best-performing technique. This section is also
supported by the Appendix A. In Sec. 4, the results obtained are compared
with data from a high-fidelity simulation and experiments. At last, in Sec.
5, the final remarks are drawn, and future perspectives are discussed.
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2.1. Numerical code: OpenFOAM

Numerical simulations in this work are performed using a C++ open-
source library known as OpenFOAM [26]. This library includes a number of
solvers based on Finite Volumes (FV) discretization [27], as well as a number
of utilities for preprocessing, postprocessing, and data manipulation. Owing
to the free license and the very large number of modules available, allowing
for extended multi-physics analyses, this code has been extensively used in
the literature for research work in fluid mechanics [28, 29, 20].

For this work, the FV numerical discretization is performed for the RANS
Navier-Stokes equations for stationary, incompressible flows and Newtonian
fluids [1]:

uj
∂ui

∂xj

= − ∂p

∂xi

+
∂τ ij
∂xj

− ∂τTij
∂xj

i = 1, 2, 3 (1)

∇2p = −∂uj

∂xi

∂uj

∂xi

− ∂

∂xi

(
∂τTij
∂xj

)
(2)

where Eq. 1 is the momentum equation and Eq. 2 is the Poisson equa-
tion. The variables used are the velocity u = [u1, u2, u3] = [ux, uy, uz], the
normalized pressure p, the viscous stress tensor τij (which is modeled using
the Newtonian fluid hypothesis) and the Reynolds stress tensor τTij . The
overbar indicates the average operation performed to obtain Eqs. 1 - 2. The
axes are oriented so that x is the streamwise direction, y is the spanwise
direction and z is the vertical direction. Within the RANS framework, a
turbulence closure must be used for τTij . The K − ε model [30, 2] uses the
eddy viscosity hypothesis to create a link between τTij and the gradient of the
averaged velocity u:

−τTij = 2νTSij −
2

3
Kδij (3)

where νT is the turbulent viscosity, K is the turbulent kinetic energy and Sij

is the mean strain rate:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(4)
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energy dissipation rate ε:

νT = Cµ
K2

ε
(5)

where Cµ is a model constant to be calibrated. To close the problem, two
model equations for K and ε must be included:

∂K
∂t

+ uj
∂K
∂xj

=
∂

∂xj

[(
ν +

νT
σK

)
∂K
∂xj

]
+ P − ε (6)

∂ε

∂t
+ uj

∂ε

∂xj

=
∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
+ Cε1

ε

KP − Cε2
ε2

K (7)

where the production term P = νTS
2
, S =

√
2SijSij. The model is

complete once the five constants Cµ, Cε1, Cε2, σK and σε are determined.
Launder and Sharma [30] provided values that were calibrated via the anal-
ysis of academic test cases, such as the free decay of homogeneous isotropic
turbulence or the turbulent plane channel.

A second popular turbulence model implemented in numerous CFD solvers
is the K−ω SST model [2]. Its formulation relies on blending functions which
are governed by a number of parameters, including the distance to the nearest
wall δ. The blending functions provide a hybrid modeling combining features
of the two classical models K − ε and K − ω [2]. More precisely, the K − ω
SST model behaves like the K−ω model close to the surface of the immersed
bodies, and it transitions to a K−ε behavior with increasing distance. Open-
FOAM’s formulation of this model is based on Ref. [31], where two model
equations for K and ω must be included. A limiter for the production term
in the turbulent kinetic energy equation is introduced to exclude very large
turbulence levels in regions with high normal strain. Hence, the production
term is P̃ = min(P , 10 β⋆Kω). The turbulence dissipation rate ε = β⋆Kω is
defined with the restrictive parameter β⋆ for the same reason.
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∂t
+ uj

∂K
∂xj

=
∂

∂xj

[
(ν + σKνT )

∂K
∂xj

]
+ P̃ − β⋆Kω (8)

∂ω

∂t
+ uj

∂ω

∂xj

=
∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+ αS

2 − βω2 + 2(1− F1)σω2
1

ω

∂K
∂xi

∂ω

∂xi

(9)

F1 is a blending function characterized by:

F1 = tanh



{
min

[
max

( √
K

β⋆ωδ
,
500ν

δ2ω

)
,
4σω2K
CDKωδ2

]}4

 (10)

with CDKω = max

(
2σω2

1

ω

∂K
∂xi

∂ω

∂xi

, 10−10

)
. F1 controls the blending be-

tween the K − ε and K − ω models. More precisely, F1 ≈ 0 corresponds to
a K− ε model far from the immersed body surface, and F1 ≈ 1 corresponds
to the K − ω model in the proximity of the body. To close the problem, the
turbulent viscosity νT is defined as:

νT =
a1K

max(a1ω, SF2)
(11)

where a1 is a constant (a1 = 0.31) and F2 is another blending function:

F2 = tanh



[
max

(
2
√
K

β⋆ωδ
,
500ν

δ2ω

)]2
 (12)

The nine global constants that determine the model are σK1, σK2, σω1,
σω2, α1, α2, β1, β2 and β⋆. With the exception of the latter, one can see
that every other coefficient is actually defined by two subscripts 1, 2. The
coefficients included in Eqs. 8 - 9 are determined via a linear interpolation
between the two values provided, which is driven by the function F1. For
example, α = α1F1+α2(1−F1). From this last relation, one can deduce that
the subscript 1 provides a value classical for the K − ω model and, on the
other hand, the subscript 2 gives back values for the K − ε model. Menter
determined values for the nine parameters [32]. In practice, similarly to the
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the local dynamics of the flow and their interaction with global features (see
discussion in Refs. [33, 9, 14]).

2.2. Wind tunnel experiments and the high-rise building model

The experiments were conducted in the atmospheric boundary-layer wind
tunnel of the Ruhr-University Bochum, Germany. The wind tunnel has a
cross-section of 1.6 × 1.8 m and a test section length of 9.4 m. The model
has a square cross-section with edges B = 0.133 m, and the height of the
building H = 0.4 m, representing a 120 m tall building in the full-scale. The
building has a flat roof, and 0° wind direction is investigated so that the
asymptotic velocity is aligned with the streamwise direction x. Fig. 1 a)
shows the wooden building model mounted on a rotating table in the wind
tunnel.

The mean incident wind profile, measured in the empty wind tunnel at
the center of the turntable, matches that of a power law with the exponent
of 0.2, as shown in Fig. 1 b). The mean velocity at the referenced model
height is uref = 16 m/s, while the streamwise turbulence intensity is Iu =
13%. This is representative of the terrain category II [34] simulating realistic
conditions of the flow around isolated high-rise buildings, which can be used
to approximate the flow pattern in urban areas with a dominant high-rise
building surrounded by sparse low-rise buildings. Such an arrangement is
common on the outskirts of large cities.

The wind tunnel measurements also included pressure measurements us-
ing 64 pressure taps on the roof and 26 taps on the facades, as well as velocity
measurements at 28 locations above the roof, as shown in Fig. 2.

2.3. RANS simulation

The considered high-rise building case is a numerical representation of the
wind tunnel tests. The dimensions of the computational domain are chosen
by adopting the best practice guidelines given by Tominaga et al. [18]. The
upstream domain length is 5H. The resulting dimensions of the domain are
length (x) × width (y) × height (z) 15.5H × 4.5H × 4H = 6.2 m × 1.8 m
× 1.6 m. For the z direction, the height has been chosen to match the height
of the wind tunnel.

A structured grid is used near the high-rise building surfaces, as shown
in Fig. 3. The distance from the center point of the wall adjacent cell to the
building leads to an average y+ = 141 and minimum y+ = 40, which ensures
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Figure 1: Wind tunnel test section used to produce experimental data. (a) Visualization
of the high-rise building model and its installation in the wind tunnel and (b) shape of
the average velocity and turbulence intensity profile in the streamwise direction x.

that the centers of the near-wall grid elements are located in the logarithmic
layer. The total number of grid elements used to discretize the domain is
equal to 513 266 cells.

A grid dependency study is performed comparing the numerical results
against those obtained using a finer grid. This more refined grid is composed
of 4.3× 106 cells and characterized by a spatial resolution that is two times
higher near the building model than the coarse case. The mean pressure
predicted by the coarse and fine grid simulations is compared at the locations
of the pressure taps in Fig. 2. The comparison showed that 86% of the points
on the building surface have a relative difference below 10%.

Two turbulence models are chosen: K − ε and K − ω SST. The inlet
boundary conditions for the velocity field as well as for the statistical features
of turbulence are set using these equations:

10
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ux(z) = uref

(
z

zref

)0.2

(13)

uy(z) = uz(z) = 0 (14)

K(z) = a(Iu(z)u(z))
2 (15)

ε(z) =
u∗3
ABL

κ(z + z0)
(16)

ω(z) =
ϵ(z)

β′K(z)
(17)

For the K− ε model, the inlet boundary condition for the mean velocity
u, turbulent kinetic energy K and turbulence dissipation rate ε are deter-
mined from the incident vertical wind tunnel profiles. The turbulent kinetic
energy K is calculated using Eq. 15 from the measured u and the measured

streamwise turbulence intensity Iu

(
Iu(z) =

σu(z)
u(z)

)
, where σu(z) is standard

deviation of streamwise velocity component. a is a parameter in the range
between 0.5 and 1.5 [35, 36, 18], and in this study, a = 1 is chosen, as rec-
ommended by [18]. Eq. 16 and Eq. 17 are using the von Karman constant
κ = 0.42 and β′ = 0.09, respectively. The aerodynamic roughness length

is defined as z0 = 0.002 m, and the friction velocity u∗
ABL = κ

uref

ln
(

H+z0
z0

).

Similarly, in the case of K− ω SST turbulence model, the specific turbulent
dissipation rate ω is calculated based on the turbulence dissipation rate from
Eq. 16 and turbulence kinetic energy from Eq. 15. The inlet boundary con-
ditions are assigned using the groovyBC library in OpenFOAM. The outlet
is considered to be a pressure outlet with a constant relative pressure equal
to zero and a zero-gradient boundary condition for the velocity.

The SIMPLE algorithm [27] was used for pressure-velocity coupling. Clas-
sical choices have been performed for the numerical schemes. First-order up-
wind schemes have been used for the convection terms, while second-order
centered schemes have been used for viscous terms. Pressure interpolation
from the cell center to the face center has been obtained via second-order
linear schemes native to the OpenFOAM solver.

11
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The sampled data is heterogeneous as different sensors are used to capture
features of the velocity field on the roof and pressure measurements on the
surface of the building. The velocities above the roof are mainly measured
at two different heights (z/H = 1.1, 1.15) at locations marked with black
circles in Fig. 2 d). In addition, above two locations at the roof, including
the center of the roof, Fig. 2 d), nine heights are considered with the spacing
of (z − H)/H = 0.025. The measurements are performed using a hot-wire
anemometer, which consists of two cross wires allowing for measurement of
both stream-wise and vertical velocity components. All velocity data are
sampled with the frequency of 2000 Hz.

Figure 2: Geometry of the high-rise building with (a) main dimensions and coordinate
system; (b) top view with pressure tap locations; (c) facades with pressure tap locations
(d) velocity observations measured over the rooftop.

In addition to the velocity measurements, the surface pressure is also
sampled at different locations, as shown in Fig. 2 b) and c) marked with
light gray circles. Surface pressures are acquired with a sampling frequency
of 1000 Hz using a multi-channel simultaneous scanning measurement system.
The tubing effects are numerically compensated [37]. More details about the
wind tunnel experimentation and the analysis of the flow around high-rise
buildings, with a special focus on above the roof, are presented in [19]. In
this analysis, experimental data is used to improve the predictive capabilities
of two stationary RANS models (standard K− ε and K−ω SST). Therefore,
the time series available for the velocity components and the pressure have
been averaged in time.

12



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 3: View of the grid used for the RANS calculations. The left shows the central
vertical plane and a horizontal plane at H/2. The right shows the central vertical plane.
The direction of the asymptotic flow is indicated by the white arrow.

2.5. Data Assimilation: Ensemble Kalman Filter

Data Assimilation (DA) [5, 8] is a family of tools allowing to combine
several sources of information to obtain an augmented prediction exhibiting
increased accuracy. Classical applications usually rely on:

• a model, which provides a (quasi) continuous representation of the
physical phenomenon investigated. Physics-based models such as CFD
solvers are an example of model for fluid mechanics applications.

• some observation, which is usually more accurate than the model, but
it is local in space and time. In fluid mechanics, this data may come
from high-fidelity numerical simulations or from experiments.

The augmented prediction obtained via manipulation of the sources of infor-
mation can also be actively used to infer an optimized parametric descrip-
tion of the model, with the aim to obtain a predictive tool that can provide
accurate predictions without having to rely on observation. DA has been
traditionally used in environmental and weather sciences, but applications in
fluid mechanics have seen a rapid rise in recent times [38, 39, 12, 40, 41, 42,
43, 13, 24, 44].

A great variety of methods exists, but two groups can be identified [8, 45]:
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function applied for the case studied. This minimum, which is usually
reached via parametric optimization of the model, provides an accurate
flow state.

Statistical methods: methods that aim to obtain an accurate state estima-
tion of the physical phenomena investigated minimizing the variance of
the final solution (i.e., increasing the confidence in the prediction). Sta-
tistical methods are mostly sequential [8], even though non-sequential
approaches have been developed, such as the Kalman Smoother [46].

Variational methods such as the 4DVar have been extensively used for
application in fluid mechanics [47, 38, 23, 43] in particular with steady-state
simulations, due to their non-sequential behavior. While statistical sequential
tools are supposedly more appropriate for the prediction of non-stationary
phenomena, applications to steady flows are reported in the literature [40,
13, 48]. In the present work, we will focus on tools derived from the Kalman
Filter, a well-known sequential method.

2.5.1. The Kalman Filter

The Kalman Filter (KF) [6] is a sequential DA method based on the
Bayes theorem. It provides a solution to the linear filtering of time-dependent
discrete data. The classical formulation for the analysis of a physical quantity
x relies on the combination of results produced via a discrete modelM, which
is linear in the original KF, and some observation y. Within the framework of
KF, both the model and the observation are affected by errors/uncertainties,
which are here referred to as v and w, respectively. One of the central
hypotheses of the Kalman Filter is that these uncertainties can be accurately
described by an unbiased Gaussian distribution i.e. v = N (0,Q) and w =
N (0,R). Q and R, which also are a function of time, represent the variance
of the model and of the observation, respectively. Considering that these
errors can be described by a Gaussian distribution, the solution is completely
determined by the first two moments of the state i.e. the physical quantity
x and the error covariance matrix P = E((x− E(x))(x− E(x))T ).

The main drawbacks of the algorithm for complex applications in fluid
mechanics are that i) it is designed for linear models M and ii) the size of
P is directly linked with the number of degrees of freedom of the problem
investigated. While the first issue can be bypassed with ad-hoc improvements
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KF [8, 45], the second one is more serious. In fact, P must be advanced
in time like the physical variables. In addition, extended manipulation of
P is required, including a matrix inversion. For the number of degrees of
freedom used in CFD, which are usually in the range 106 − 108, this leads to
prohibitive requirements in terms of RAM and computational resources.

2.5.2. The (stochastic) Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) [49, 8] is a popular data-driven
strategy based on the KF and Monte Carlo approach which provides an
efficient solution to the issues previously discussed. The idea is that the error
covariance matrix P is not advanced in time anymore, but it is approximated
via an ensemble of model runs. This strategy allows us to fully account for
the non-linearity of the model and it virtually eliminates the computational
burdens associated with the manipulation of P. The complete structure of
the EnKF, which is summarized in the Alg. 1, is now discussed.

Let us consider the time advancement of the physical system between the
instant k and k + 1. For the latter, observation yk+1 is available. In this
case, the data assimilation procedure consists of two phases :

A forecast step (superscript f), where the physical state and the error
covariance matrix at the time k are advanced in time using the (non-linear)
model M:

xf
i,k+1 = Mxa

i,k (18)

The EnKF relies on Ne realizations of the model, which is the model
ensemble. The realizations can be assembled in a state matrix XS of size
[N,Ne], where N is the number of degrees of freedom of the physical prob-
lem investigated. Therefore, each column of XS corresponds to the state
xf
i,k+1 of the ith member, where i ∈ [1, Ne]. An approximation of the er-

ror covariance matrix Pe can be obtained by exploiting the hypothesis of
statistical independence of the ensemble members:

Pf
e = Xf (Xf )T (19)

where Xf is the anomaly matrix which represents the deviation of all the
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Xk+1 =
xi,k+1 − xk+1√

Ne − 1
, xk+1 =

1

Ne

Ne∑

i=1

xi,k+1 (20)

The sampled observation, which consists of No elements, is also expanded
to obtainNe sets of values. To do so, a Gaussian noise based on the covariance
matrix of the measurement error Rk+1 is added to the observation vector:

yi,k+1 = yk+1 + ei,k+1, with ei,k+1 ∼ N (0,Rk+1) (21)

The model realizations are projected to the observation space Ne times:

si,k+1 = H(xf
i,k+1) (22)

where H(xf
i,k+1) is a non-linear operator mapping the model results to

the observation space.
The second step is the analysis phase (superscript a), where observation

and forecast are combined to obtain the augmented prediction. One of the
main goals here consists of the determination of the Kalman gain Kk+1.
This matrix takes into account the correlations between the values of the
state vector and the values of the observations, and it is the central element
providing the final state estimation of the physical system.

Sk+1 =
si,k+1 − sk+1√

Ne − 1
, sk+1 =

1

Ne

Ne∑

i=1

si,k+1 (23)

Ek+1 =
ei,k+1 − ek+1√

Ne − 1
, ek+1 =

1

Ne

Ne∑

i=1

ei,k+1 (24)

Kk+1 = Xf
k+1(Sk+1)

T
[
Sk+1(Sk+1)

T + Ek+1(Ek+1)
T
]−1

(25)

In an infinite ensemble size Ek+1(Ek+1)
T tends to the matrix Rk+1 of the

Kalman filter. In practice the size is limited, thus the product of the per-
turbations is simplified by the diagonal matrix Rk+1 gaining simplification
and computational cost [45, 50]. In addition, Pe can be directly estimated
from the ensemble members for each analysis phase, and there is no need for
memory storage/time advancement.
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xa
i,k+1 = xf

i,k+1 +Kk+1(yi,k+1 − si,k+1) (26)

The EnKF can also be used to optimize the parametric description of the
model. The underlying idea is that the parameters are updated at the end of
the analysis phase so that the model can provide a more accurate prediction
of the physical phenomenon investigated, reducing the difference between the
model-predicted state and the final state estimation. Several strategies are
proposed in the literature [8] and, among those, one showing efficiency for a
relatively small set of parameters (referred to as θ) and easy to implement
is the so-called extended state. In this strategy, the steps of the EnKF are
performed for a state x⋆ which is defined as:

x⋆ =

[
x
θ

]
(27)

That is, the state used for the EnKF includes both the physical state
and the parametric description of the model. For this very simple algorithm,
the size of the global state is now equal to N⋆ = N + Nθ, where Nθ is the
number of parameters to be optimized. This modification brings a negligible
increase in computational costs if Nθ << N and it simultaneously provides
an updated state estimation and optimized parametric description for the
model at the end of the analysis phase.
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Input: M, H, Rk+1, and some priors for the state system xa
i,0,

where usually xa
i,0 ∼ N (µN , σ

2
N)

for k = 0 to K − 1 do
for i = 1 to Ne do

1 Advancement in time of the state vectors:

xf
i,k+1 = Mxa

i,k

2 Creation of an observation matrix from the observation data
by introducing errors:

yi,k+1 = yk+1 + ei,k+1, with ei,k+1 ∼ N (0,Rk+1)
3 Calculation of the predicted observation:

si,k+1 = H(xf
i,k+1)

4 Calculation of the ensemble means:

xf
k+1 =

1
Ne

∑Ne

i=1 x
f
i,k+1, sk+1 =

1
Ne

∑Ne

i=1 si,k+1,

ek+1 =
1
Ne

∑Ne

i=1 ei,k+1

5 Calculation of the anomaly matrices:

Xk+1 =
xi,k+1−xk+1√

Ne−1
, Sk+1 =

si,k+1−sk+1√
Ne−1

,

Ek+1 =
ei,k+1−ek+1√

Ne−1

6 Calculation of the Kalman gain:

Kk+1 = Xf
k+1(Sk+1)

T
[
Sk+1(Sk+1)

T +Rk+1

]−1

7 Update of the state matrix:

xa
i,k+1 = xf

i,k+1 +Kk+1(yi,k+1 − si,k+1)

2.5.3. Inflation

The classical EnKF exhibits a number of shortcomings such as sampling
errors due to the limited amount of members available in the ensemble. This
is especially true for applications in fluid mechanics and in particular with
CFD, where every simulation may need important computational resources
and storage space. Therefore, the number of total ensemble members realisti-
cally acceptable for three-dimensional runs is around Ne ∈ [40, 100]. As this
error is carried over the assimilation steps, one way of reducing this problem
is to inflate the error covariance matrix Pk+1 by a factor λ2 [8].

This coefficient λ > 1 drives the so-called multiplicative inflation, which
can be applied to the analyzed state matrix. It is responsible for an increased
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xa
i −→ xa + λ(xa

i − xa) (28)

Clearly, for λ = 1 the results from the classical EnKF are obtained.
Similarly, the optimization via EnKF of the set of inferred parameters θ

can collapse very rapidly towards a local optimum, providing a sub-optimal
result. Inflation can be used to mitigate an overly fast collapse of the para-
metric description of the model, artificially increasing the variability of the
parameters and allowing it to target a global optimum solution.

2.5.4. Localization

The classical EnKF establishes a correlation between observation and the
degrees of freedom of the model, but this correlation is not affected by the
distance between them. In a limited ensemble size like the ones used in CFD,
this can lead to spurious effects on the update of the state matrix for large
domains. In practice, errors due to the finite ensemble approximations can be
significantly larger than the real physical correlation, which naturally decays
with distance in continuous systems. Due to the computational limitations to
using more members in the ensemble, one way to avoid these spurious effects
is to use a corrective multiplicative term to the values of the covariance ma-
trix Pf

k+1 that takes into account the physical distance between observation
sensors and mesh elements of the state. This strategy is known as covariance
localization. Just as the inflation, the localization is effective in improving
the accuracy of the calculation and reducing the probability of divergence
of the EnKF. The principle of covariance localization uses a coefficient-wise
multiplication of the covariance matrix Pf

k+1 and a corrective matrix that is
here called L. This type of operation is known as a Schur product, thus it
is also called Schur localization. This leads to the expression of the localized
Kalman gain Eq. 29.

[Pf
k+1]i,j[L]i,j −→ Kloc

k+1 = [L]i,j[X
f
k+1(Sk+1)

T ]i,j
(
[L]i,j[Sk+1(Sk+1)

T ]i,j +Rk+1

)−1

(29)
As the matrixRk+1 has a limited impact on the operation, this expression

is simplified for convenience in the algorithm. The localized Kalman gain
becomes:

[Pf
k+1]i,j[L]i,j −→ Kloc

k+1 = [L]i,j[Kk+1]i,j (30)
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represent the real physical correlation. In continuous systems, the correlation
between physical variables decreases fast in space. Therefore, a generally used
structure for the localization matrix is an exponential decay form:

L(i, j) = e−∆2
i,j/η (31)

where ∆i,j is the distance between the given observation sensor and the point
of evaluation of the model (center of the mesh element in CFD). η is a decay
coefficient that can be tuned accordingly to the characteristics of the test
case.

2.6. CONES: Coupling OpenFOAM with Numerical EnvironmentS

CONES (Coupling OpenFOAM with Numerical EnvironmentS) is a C++
library designed to couple the CFD software OpenFOAM with any other kind
of open-source code. It is currently employed to carry out sequential DA
techniques and, more specifically, advanced data-driven methods based on
the EnKF. The communications between the EnKF-based code and Open-
FOAM are performed by CWIPI (Coupling With Interpolation Parallel In-
terface) [51], which is an open-source code coupler for massively parallel
multi-physics/multi-components applications and dynamic algorithms.

The main favorable features of CONES in performing DA with Open-
FOAM are the following:

• It is not needed to modify the installation of OpenFOAM but only
compile user-made functions.

• The coupling between the CFD code, the observation, and the DA
algorithm is performed preserving the original structure of the existing
CFD solvers. Every CONES-related function is contained in a Pstream
(Part of OpenFOAM) modified library, hence, data exchange is done
at the end of the solver loop by calling specific functions, and the
calculation loop remains unmodified.

• Simulations and DA are run simultaneously online. The coupling is
intrusive from the solver’s point of view. It is done in such a way
that the analysis phases can be performed on the fly by pausing the
CFD calculation. Therefore, there is no need to stop and restart CFD
calculations, which can require an important amount of computational
resources.
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and the mesh (arrays of millions of elements can be sent and received
simultaneously and rapidly).

• Direct HPC communications are established between multiple proces-
sors, which handle partitions of the numerical simulations and the DA
processes.

The coupler CWIPI developed by ONERA and CERFACS has been cho-
sen due to its powerful management of fully parallel data exchanges based
on distributed mesh definition and its ability to interpolate between non-
coincident meshes (very useful for some advanced tools based on the EnKF,
like the MGEnKF [44]). Most of its uses are related to gas turbine designs
[52, 53], but it has also recently been employed in the field of aeroacoustics
with OpenFOAM [54].

CWIPI communication protocol is based on the MPI library. Thus, MPI
and CWIPI environments must be initialized within the codes. This will
allow the use of CWIPI primitives to exchange information between two
codes. In Fig. 4 direct communications between two codes through CWIPI
and some of the main primitives are illustrated.

(a) CWIPI between two codes

MPI_Init(&argc, &argv);
cwipi_init('CodeB', localcomm);

cwipi_create_coupling('cplAB',...);

cwipi_define_mesh('cplAB',...);

for (i=0; i<nit;++i){
cwipi_exchange('cplAB', ex i,...);

}

cwipi_delete_coupling('cplAB',...);

cwipi_finalize;
MPI_Finalize;

MPI_Init(&argc, &argv);
cwipi_init('CodeA', localcomm);

cwipi_create_coupling('cplAB',...);

cwipi_define_mesh('cplAB',...);

for (i=0; i<nit;++i){
cwipi_exchange('cplAB', ex i,...);

}

cwipi_delete_coupling('cplAB',...);

cwipi_finalize;
MPI_Finalize;

CODE A CODE B

(b) Main primitives in CWIPI

Figure 4: Functioning of CWIPI.

In this work, CONES couples the solver SimpleFOAM, which is designed
to simulate flows using RANS, with a sequential DA library developed by
the team. The structure of a single run is exemplified in Fig. 5. The MPI
communications and the coupler CWIPI are initialized in both codes (in
OpenFOAM and in the DA library).
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Figure 5: Scheme of CONES for steady simulations.

Despite the fact that applications of EnKF-based tools are tied with
the time advancement of the solution, the application to stationary flows
is straightforward. An analysis virtual time window is fixed in terms of the
number of iterative steps of the code. Once that number of time steps is
performed simultaneously by the Ne ensemble members (CFD runs), they
send their information to the EnKF code and wait online for the updated
flow field / parametric description. Currently, the information exchanged is
the velocity field uf/a and the parameters of the model θf/a. Hence, the state
matrix, composed of as many state vectors as members (CFD simulations) in
the ensemble, is the one expressed in Eq. 32 for the DA cycle at time k + 1.

x
f/a
i,k+1 =

[
u
f/a
i,k+1

θ
f/a
i,k+1

]
(32)

A piece of additional information provided by the simulations is the set of
values si,k+1, i.e., the projection of the model solution on the coordinates of
the sensors for each ensemble member. Considering that the sensor placement
does not necessarily comply with the center of a mesh element, interpolation
of the flow field has to be performed. OpenFOAM possesses several functions
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these interpolation methods [55] has been taken into account.
The nature of the observations y is analyzed in more detail in Sec. 3,

but CONES can work with sensors measuring both the pressure p and the
velocity field u. In this specific case dealing with stationary simulations, the
observation is constant, and it is loaded once, but it could be integrated at
each analysis phase in case of analysis of an nonstationary flow. Thus, the
DA code receives information from the model and the sensors, producing
an updated set of states and parameters (ua, θa), which are sent back to
the OpenFOAM simulations. The pressure p is updated for each ensemble
member via a Poisson equation, and this complete set of data is used to start
a new set of iterative steps. Once the convergence of the model parameters
complies with a threshold set by the user, the coupling is deleted, and both
MPI and CWIPI environments are finalized.

3. DA experiments

CONES is here used to study the high-rise building flow configuration us-
ing the numerical test case presented in Sec. 2.2. In particular, the DA tools
are used to optimize the value of some global constants which determine the
performance of the turbulence model. These coefficients can be manually set
by a user without any structural change of the solver. The present results
aim to provide new general recommendations for the usage of turbulence
modeling in particular for industrial applications, considering that the phys-
ical features of the test case investigated are observed for most flows around
three-dimensional bluff bodies. Two main DA investigations are performed.
In the first one, the five global coefficients driving the K − ε model [30] are
optimized with the aim of minimizing the discrepancy between the RANS
results and the high-fidelity experimental observation provided. The second
analysis shares the same objective, but the model used is K − ω SST [2],
and in this case, the DA optimization targets the nine models coefficients
introduced in Sec. 2.1.

The first key aspect to take into account for the model representation is
determining a suitable prior state for the velocity and pressure field, as well
as for the parametric description. For the latter, for both the K−εmodel and
the K−ω SST model, values found by Margheri et al. [11] using uncertainty
propagation of epistemic uncertainties are preferred to the classical values
obtained by Launder and Sharma [30]. These baseline values, which are
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value of the parameters for each CFD run is initially determined using a
bounded Gaussian distribution N (µN , σ

2
N), where µN is the parameter mean

value and σN is chosen to provide a sufficiently large initial variability of the
parametric space based on the work by Margheri et al. [11]. This ensures
a sufficiently large initial distribution of the parameters so that the EnKF
can successfully target an optimized configuration. Details about the choice
for σN for each model constant are provided in Appendix A. The number of
ensemble membersNe = 40 is chosen considering other works in the literature
relying on CFD for the model part of the EnKF [56, 57, 44].

K − ε
Parameters

default
values

Prior of the EnKF Optimized
valuesµN σN

Cµ [-] 0.09 0.1 0.01 0.032
Cε1 [-] 1.44 1.575 0.1 0.165
Cε2 [-] 1.92 1.9 0.1 4.080
σK [-] 1.0 1.0 0.1 0.476
σε [-] 1.3 1.6 0.1 0.1

K − ω SST
Parameters

default
values

Prior of the EnKF Optimized
valuesµN σN

σK1 [-] 0.85 0.7 0.05 0.134
σK2 [-] 1.0 1.0 0.05 0.004
σω1 [-] 0.5 0.625 0.05 0.812
σω2 [-] 0.856 0.856 0.05 0.103
α1 [-] 0.5556 0.575 0.05 0.013
α2 [-] 0.44 0.44 0.05 0.069
β1 [-] 0.075 0.09 0.005 0.45
β2 [-] 0.0828 0.0828 0.005 0.008
β⋆ [-] 0.09 0.09 0.005 0.191

Table 1: Global coefficients of RANS turbulence models to be optimized via DA. From
left to right column: classical values in the literature, features of the truncated Gaussian
distribution used to generate the prior, optimized values.

The observation is obtained from time-averaged data from a total of 118
sensors. Among these, 90 sensors are pressure taps, and 28 sensors are hot
wires measuring two components of the velocity field, the streamwise velocity
ux and vertical velocity uz. This adds up to 146 time-averaged observation
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the following format: y =
[
ux1 . . . ux28 uz1 . . . uz28 p29 . . . p118

]T
.

As it does not change throughout the calculation, it is stored in RAM and
directly used at each analysis phase. One of the main features of the KF-
based approaches is that a suitable confidence level in the accuracy of the
observation must be provided. The accuracy of present experimental data is
estimated to be around 5% for both pressure tap and hot wire measurements.
It is also assumed that uncertainty in the experimental measurements is
uncorrelated. Therefore, the covariance matrix for the observation Rk+1 is
considered to be constant and expressed asR = σmI, where σm is the variance
describing the uncertainty in the measurements.

At last, the DA runs are performed using stationary CFD solvers. This
implies that a true time evolution is not performed here. Initially, model
runs are performed using the different setup descriptions produced by the
Gaussian-shaped prior. Then, the DA procedure performs an optimization
during the analysis phase. The state augmentation obtained via the analysis,
used as initial condition for the forecast, is able to speed up the convergence
towards the next analysis phase and stabilize the calculation with a little
increase in computational resources. The simulations are then run again for
a sufficiently large number of iterative steps so that the solver can efficiently
propagate the effects of the new turbulence model and obtain a converged
stationary solution. At this point, a DA analysis is performed and the cycle
continues until the parametric optimization has reached a suitable degree of
convergence. Initial tests indicated that, once the parametric description is
changed during the analysis phase, 150 iterations are sufficient to obtain a
converged flow field using the updated model.

Tests about the performance of the DA algorithms are reported in Ap-
pendix A. In particular, three different implementations of the EnKF have
been tested: classical EnKF, EnKF with covariance localization, and EnKF
with covariance localization and inflation. Discussions about localization and
inflation hyperparameters are provided. The physical fields predicted by the
three approaches are almost identical, but the EnKF with localization and
without inflation demands lower computational resources. Therefore, the re-
sults presented in the following section are obtained with such DA strategy.
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The analysis is initially focused on the accuracy of the prediction of the ve-
locity field. This prediction is essential for environmental applications. Thus,
it is useful for the evaluation of relevant urban indicators such as pedestrian-
level wind environment, near-field pollutant dispersion, natural ventilation,
urban ventilation and urban wind energy. In this case, despite the shortcom-
ings described in the introduction, RANS is considered a useful analysis tool
[58]. The second part of the section is devoted to the analysis of the pressure
field. For this physical quantity, which is relevant for structural wind engi-
neering applications focusing on wind loads over the buildings, high-fidelity
Large Eddy Simulation is considered to be more appropriate. Nonetheless, it
will be shown that data-driven RANS can reach a good level of accuracy for
this quantity, depending on the availability and positioning of high-fidelity
data used as observation.

Results obtained by the DA runs are compared with available data. The
comparisons will include results obtained from the prior simulations (classical
RANS K − ε and K − ω SST models), time-averaged experimental results,
a validated reference LES simulation [59], RANS runs using the optimized
models obtained by Ben-Ali et al. [20] and Zhao et al. [21]. Ben-Ali et
al. actually developed a number of DA strategies of different complexity
that encompass the optimization of global constants to the development of
correction terms for the dynamic equations of turbulence. In this work, we
decided to employ the simplest and least accurate of their models, namely the
one targeting the optimization of model constants. This decision has been
taken to provide a consistent base of assessment with present results and the
findings of Zhao et al. The results obtained using the model by Ben-Ali et
al. are almost identical to the prior K− ε simulation, therefore we just show
the latter in the analysis for the sake of conciseness.

4.1. Velocity field

The analysis of the velocity field is performed first. Velocity is an explicit
variable in segregated solvers for incompressible flows. Therefore, the perfor-
mance of the DA strategies can be assessed by the qualitative improvement
obtained for the prediction of this quantity.

Fig. 6 shows the comparison of the streamwise velocity profile ux and ver-
tical velocity profile uz for several locations corresponding to the positions of
the hot wire, for the DA analyses using the K−ε and K−ω SST models. The
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as well as experimental results used as observation. For both models, one can
see that the accuracy of the predicted ux field via DA is sensibly improved for
each location. Very minor differences when compared with experiments can
be observed, which comply with the level of confidence that was prescribed
in the observation. On the other hand, the prediction of the normal velocity
uz is very similar to the prior. This is not surprising, considering that for this
variable prior results and experimental data compare well, with differences
that are of the same order of magnitude of the confidence in the observation
or even less. An interesting result can be observed for Point 20, where the
maximum difference between the prior and the experimental data is observed
for uz. In this case, one can see that the DA prediction is getting closer to
the experiments, confirming that the EnKF is able to provide a statistically
more accurate prediction of the flow, within the confidence limit indicated for
the different sources of information. Improvement in the prediction is even
more clear for the case of DA optimized K−ω SST model. In particular, this
is visible in the zone near the roof when considering the flow above Point 20
and Point 36. Also, the accuracy of the prediction of the DA normal velocity
uz is significant. For example, the prior K−ω SST model profile above Point
36 shows a strong normal velocity component, whereas DA optimized model
and experiments show a flow prediction quasi-parallel to the roof.

The features of the velocity field are further assessed in Fig. 7, where
streamlines on a vertical plane x − z at the center of the high-rise building
are shown. Here, the prior and the DA runs are compared with a validated
LES study, as well as results obtained from the optimized K − ε model
obtained by Zhao et al. [21]. First of all, one can see a qualitative increase in
velocity just above the roof separation for the DA runs when compared with
the prior RANS simulations. This result, which is closer to the flow predicted
by the reference LES, is associated with the improved prediction of the flow
that was seen in Fig. 6. The behavior of the recirculation bubble behind
the building is now investigated. In this region, present DA runs are only
considering pressure observations placed in two rings, positioned in the upper
half of the building, as shown in Fig. 2 c). However, the size of this region is
also strongly affected by the features of the flow at the top of the building.
A significant reduction of the recirculation bubble behind the building is
observed, which is obtained thanks to the combined effect of the velocity /
pressure information available at the sensors. One can see that prior RANS
simulations overpredict the size of the recirculation bubble, in particular for

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 6: Vertical and streamwise velocity profiles above the marked red locations on
the roof (Points: 20, 22, 36, 38, 54): a) comparison between wind tunnel data (WT),
K − ε model and DA augmented K − ε model, b) comparison between wind tunnel data
(WT), K − ω model and DA augmented K − ω model. Here uref represents the velocity
obtained 1 m upstream of the building at height H in every test case (uref ≈ 13 m/s in
the simulations and uref ≈ 16 m/s in the wind tunnel).

the results obtained with the K−ω SST model, where no re-attachment of the
flow on the roof is observed. The data-driven simulations using heterogeneous
observations and the K − ε model (present DA run and Zhao et al. model)
exhibit in this case a significant reduction, even when compared with the
LES. Arguably, the best global representation of the recirculation region is
provided by the DA augmented K−ω SST model, which exhibits convincing
accuracy in particular close to the top of the building. However, its behavior
towards the mid-height of the building is not in good agreement with the
reference LES. In order to further improve the accuracy of the prediction,
one could consider to blend different turbulence models in space, which can
be specifically locally tuned. Works in this direction have been recently
proposed by Cherroud et al. ([60]) in the framework of machine-learning
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into the EnKF in a straightforward manner, even if it obviously requires
increased computational resources.

A zoom of the roof area, which is shown in Fig. 8, provides additional
information about the prediction of the recirculation region on the roof of the
building. One can see that the re-attachment point of the classical RANS
K − ε model, which is shown by a red arrow, is significantly more upstream
than the predicted value by the LES, which is represented by the green
arrow. On the other hand, the classical K − ω SST model does not provide
any reattachment of the boundary layer, which is responsible for the big
recirculation bubble, spreading behind the building. The present DA runs
significantly improve the prediction of the length of the roof recirculation
bubble. On the other hand, the data-driven model by Zhao et al. seems to
obtain an almost instantaneous re-attachment of the boundary layer on the
roof.

At last, the turbulent kinetic energy field, normalized over the square of
the characteristic velocity fluctuation u′

ref , is shown in Fig. 9. One can see
that both RANS models used for the prior fail to provide the right amount of
K in the big recirculation region behind the building. The K− ε model also
tends to over-predict the turbulent kinetic energy in front of the building.
The present DA-augmented versions of the models provide a significantly
better prediction of K. The data-driven model by Zhao et al. also generally
improved the prediction for this quantity, but high values for K are observed
in front of the building. This over-prediction is among the factors responsible
for the instantaneous reattachment of the recirculation bubble observed on
the roof.

In summary, data-driven augmented RANS modeling based on heteroge-
neous observations proved to provide a significantly better prediction. Al-
though minor differences in results have been observed between the present
DA version of the K− ε and Zhao et al models, the latter involved a signifi-
cantly larger number of sensors, which were more homogeneously distributed
in the physical domain. Therefore, the present findings highlight the impor-
tance of the quality of the information in terms of the location of sensors,
and that the quantity of observation may be a secondary factor if sensor
placement is efficient.
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Figure 7: Streamlines colored by the time-averaged velocity field obtained on a x−z plane
at the center of the building. Comparisons are performed between a validated Large Eddy
Simulation (validated LES) [61], prior and DA augmented K − ω SST model, optimized
K − ε from Zhao et al. [21], prior and DA augmented K − ε. Here uref represents the
velocity obtained 1 m upstream of the building at height H from the wind tunnel.

4.2. Pressure field

The behavior of the pressure field is now investigated. This physical
quantity is significantly more difficult to predict for incompressible numerical
simulation because the Poisson equation resolved in the CFD solver uses the
pressure as a Lagrangian multiplier. Therefore, the analysis of this quantity
is crucial to assess the stability and the precision of the algorithms. The

mean pressure coefficient is defined as Cp

(
Cp =

p̄−pref
0.5ρu2

ref

)
, where pref , ρ and

uref are the free-stream pressure, the air density, and the reference velocity
(calculated 1 m upstream of the building at height H in each simulation),
respectively. In Fig. 10 the mean pressure coefficient is shown in terms
of performance metrics comparison with experimental data. This way, the
local difference between each numerical simulation and the experiments is
clustered in groups that do not exceed a prescribed error threshold (10%,
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Figure 8: Zoom of the flow streamlines above the rooftop. The red arrow indicates the
reattachment position of the recirculation bubble for the classical K − ε model, and the
green arrow provides the same information for the validated LES simulation. The blue
line indicates the reattachment position for the simulation shown in each image. Here uref

represents the velocity obtained 1 m upstream of the building at height H from the wind
tunnel.

20%, and 30% in this case). The analysis of this criterion for the error
threshold 10% may erroneously lead to the conclusion that prior simulations
(for example, 23% of the occurrences for K − ω SST model) behave better
than the DA runs (16% of the occurrences). This information is misleading,
though, as a large number of occurrences for the DA runs are just outside
this interval. In fact, as large margins of error are considered, one can see
that the DA runs outperform the prior RANS. For a 20% error threshold,
an improvement up to 17% occurrences is observed with the use of DA. The
improvement increases to around 10%− 30% when a 30% error threshold is
considered. For the latter threshold, the DA augmented K − ω SST model
reaches more than 70% limit which certifies the global high accuracy of the
method. The present results are also plotted in the form of a histogram in
Fig. 11. This representation confirms that results obtained by present DA
runs tend to cluster towards lower error regions when compared with classical
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Figure 9: Turbulent kinetic energy K obtained on a x−z plane at the center of the building.
Comparisons are performed between a validated Large Eddy Simulation (validated LES)
[61], prior and DA augmented K − ω SST model, optimized K − ε from Zhao et al. [21],
prior and DA augmented K − ε. Here u′

ref = Iuuref is obtained from the streamwise
turbulent intensity Iu = 13% and uref measured 1 m upstream of the building at height
H.

RANS. However, this aspect deserves significantly more investigation because
results obtained with the data-driven models obtained by Ben-Ali et al. and
Zhao et al., which are not presented here, show a degraded accuracy for the
predicted pressure field. This could potentially imply that heterogeneous
observation may be useful to improve the global prediction of the numerical
solver, probably because of the correlation between physical variables which
is driven by non-linear dynamics.

Finally, the comparison of the mean pressure coefficient Cp calculated at
pressure taps on the roof in experiments and RANS calculations is shown
in Fig. 12. Results for the K − ω SST model indicate again a significant
improvement of the prediction. The RANS version used as a prior exhibits
a quasi-constant value of Cp for the whole length x/B, as the boundary
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Figure 10: Scatter plot of mean pressure coefficient Cp for numerical simulations with
performance metrics-comparison with experimental data. Top row: K − ε model, bottom
row: K − ω SST. Left column: prior RANS model, right column: DA augmented RANS.

layer does not reattach to the roof. On the other hand, the DA augmented
K−ω SST model exhibits a significantly improved prediction, following much
more closely the experimental data. Namely, both of these Cp distributions
exhibit a “hump” shape, typical for a flow with a separated region followed
by a reattachment [62]. This observation is in line with the flow pattern
observed over the rooftop in Fig. 8. For the DA run using the K− ε model,
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Figure 11: Histograms representing the error in the prediction of the pressure coefficient
Cp when compared with experiments. Numerical results are sampled in the locations of
the pressure taps. Top row: K − ε model, bottom row: K − ω SST. Left column: prior
RANS model, right column: DA augmented RANS.

improvements are also observed, but they appear to be a minor shift from
the prior RANS model. Therefore, the magnitude of such improvements is
not as important as for the DA calculation based on the K − ω SST model.

5. Conclusions

The newly developed platform CONES has been used to perform a data-
driven investigation of the flow around a high-rise building. More precisely,
heterogeneous experimental samples, in the form of data from pressure taps
and hot wires, have been integrated with RANS CFD runs, performed us-
ing the open-source code OpenFOAM. The coupling has been performed
using techniques based on the Ensemble Kalman Filter (EnKF), including
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Figure 12: Mean pressure coefficient at pressure tap locations along red lines marked at the
roof: a) comparison between wind tunnel data (WT), K−εmodel and DA augmented K−ε
model; b) comparison between wind tunnel data (WT), K − ω SST and DA augmented
K − ω SST.

advanced manipulations such as localization and inflation. The augmented
state estimation obtained via EnKF has also been employed to improve the
predictive features of the model by optimization of the five/nine free global
model constant of the K−ε/K−ω SST turbulence models, respectively, used
to close the equations.

The results have shown that a global improvement has been observed
for the physical quantities of investigation, and the results obtained with
the different DA strategies are equivalent. For this last point, physical and
covariance localization, which have been compared for the K − ε model,
appear to be effective for the study of complex flows. The reduction of degrees
of freedom of the DA problem has not affected the quality of the results,
while globally reducing the time needed for the data-driven procedures. On
the other hand, the usage of inflation has not produced better results, in
particular, due to the increase of computational resources required.
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reducing the error in the streamwise and vertical direction, according to the
confidence provided for the observation. The effects of the parametric infer-
ence are observed also in the recirculation region behind the building. In this
case, the accuracy of the results is affected by the RANS model chosen for
the optimization. The physical topology of the flow becomes more similar
to the reference LES validated with experimental data, even if the recircu-
lation bubble is overly reduced in size. For the pressure field, improvements
are observed as the error in the prediction of the mean pressure coefficient
globally reduces. In the roof area, the improvement of the statistical be-
havior of pressure is tied to the increased accuracy in the estimation of the
reattachment of the recirculation bubble on top. The present results have
been obtained using tools available for every user of a CFD code, which is
a segregated structure and a global description of the coefficients control-
ling turbulence modeling. Potentially, more sophisticated coupled solvers
could provide improved results when used in DA tools using pressure data
as observation.

Future investigations include more complex parametric descriptions of
the turbulence modeling employed, including coupling between DA tools and
machine learning applications. Additionally, in the subsequent stages of this
research, the sensor placement problem will be given due consideration. This
encourages the vision of developing a highly efficient DA on-the-fly designed
tool where fields will be continuously updated as new information becomes
available from sensing devices, fostering a more adaptive and responsive ap-
proach.
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ofAppendix A. DA experiments - formulation of the EnKF

In this appendix, several variations of the implementation of the EnKF
are tested. The objective is to assess the robustness of the DA model, as well
as to select the best strategy in terms of the ratio between accuracy and costs
to be employed in the two DA analyses. This preliminary investigation has
been performed for the K−εmodel only. Three independent DA experiments
are performed. The variations do not deal with details of the model or the
observation, but they consider different features of the DA procedure. More
precisely, the cases analyzed are:

• Case A: classical EnKF.

• Case B: EnKF with covariance localization.

• Case C: EnKF with covariance localization and inflation.

Parameter
K − ε model

default
values

Prior of the EnKF

µN
σN

for cases A,B
σN

for case C

Cµ [-] 0.09 0.1 0.01 0.005
Cε1 [-] 1.44 1.575 0.1 0.05
Cε2 [-] 1.92 1.9 0.1 0.05
σK [-] 1.0 1.0 0.1 0.05
σε [-] 1.3 1.6 0.1 0.05

Table A.2: Comparison between conventional constants from RANS K− ε model and the
initial parameters employed for the EnKF (Ne = 40).

Preliminary analyses have been performed to identify a suitable initial
configuration for the hyperparameters driving the performance of the DA
algorithm. The initial normal distributions reported in Tab. A.2 are bounded
between σN and 7σN , the limit has been empirically set depending on the
sensitivity of the coefficients. For example, Cε1 is bounded by 1.25σN but σε

is bounded by 7σN . The initial physical state for each ensemble is obtained
from a single run using the values of the model constants in Ref. [11].

For case studies A and B, 150 iterative steps are performed between
successive analysis phases. For study C the number of iterative steps has been
lowered to 100 considering additional analysis phases needed due to inflation.
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analyses, which pointed out how at least 50 iterations were needed to obtain a
complete signature of the new parametric setting over the physical quantities
and thus reach convergence.

For localization in cases B and C, the domain is also clipped in a vol-
ume sufficiently large around the observations, according to the proposals
by Moldovan et al. [63] for the BARC geometry. When the number of
sensors/observations available is limited, the bottleneck in terms of compu-
tational costs for the EnKF is represented by the products involving the
anomaly matrix. Considering that the size of the state matrix is tied to the
number of degrees of freedom simulated by the model, a physical localization
(clipping) can reduce the global computational costs and ensure the stability
of the algorithm. The state estimation is applied only in the control volume
shown in Fig. A.13, containing 179568 mesh elements, which means 35% of
the total number of cells. Also, the coefficients η of the covariance localiza-
tion (see Eq. 31) are specifically selected for each space direction so that the
discontinuity of the velocity field at the boundary of the clipping region is
equal or lower to 0.3%, ensuring continuity of the physical solutions. Taking
this criterion into account, ηx = ηz = 0.0195 and ηy = 0.0438.

The history of the optimization of the model coefficients for the three DA
runs is now commented. It is important to stress that, despite some impor-
tant differences observed in the optimized sets of model constants obtained
with the three strategies, the prediction of the flow is very similar. This im-
plies that the differences observed are in a region where the sensitivity of the
solution to the parameters is low i.e. relatively large parametric variations
correspond to small physical changes.

Appendix A.1. Case A: classical EnKF

In this first case, the classical EnKF is used. The run is ended when a
suitable convergence of the parameters is reached, which is in this case after
100 analysis phases (i.e. a total of 15000 CFD iterations). The evolution
of the mean value of the five parameters of the K − ε model is shown in
Fig. A.14. One can see that the final results obtained by the EnKF are
significantly different than the baseline values and that the speed at which
the parameters converge is significantly different. In particular, the evolution
of σε deserves some comments. This coefficient controls the magnitude of
the turbulent diffusion term in the equation for ε, Dε = νt/σε + ν, which is
associated with non-homogeneous conditions (see Sec. 2). The optimization
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Figure A.13: Clipping box used for localization: pressure sensors are represented in red
and velocity sensors are displayed in green.

performed by the EnKF targets very low values for σε during the calculation,
increasing the relevance of Dε in the equation. However, noise propagated
by the Kalman gain can turn the value for some ensemble members to be
negative, resulting in a divergence of the calculation. Therefore, a constraint
has been imposed so that values cannot be lower than a small but positive
value prescribed. For the other parameters, one can see that Cµ and Cε1

converge to a value close to 1/3 of the initial estimate, σK does not exhibit
large variations and Cε2 is significantly larger. Also, this last parameter
does not seem fully converged. Comparisons between results obtained with
the three runs, which are shown in Tab. A.3, indicate a large variability of
this coefficient. The analysis of the physical results seems to indicate that,
for Cε2 > 4, the solution exhibits very low sensitivity to variations of this
parameter.
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Figure A.14: Evolution of the K−ε model coefficients. The DA strategy used is the EnKF
without inflation and localization.

Appendix A.2. Case B: EnKF with covariance localization

In this case, the calculation is performed with covariance localization.
The evolution of the five coefficients is shown in Fig. A.15. The trend and
in particular the evolution of σε are similar to the ones observed for Case
A. Remarks provided for case A, in particular for the evolution of σε, are
valid as well for this run. One should take into account that covariance
and physical localization reduce the computational requirements of the DA
analysis, therefore this case is computationally more efficient and it suggests
that these techniques may be very efficient for CFD calculations with a very
large number of degrees of freedom.

Appendix A.3. Case C: EnKF with both inflation and localization

The DA calculation is performed here relying on deterministic inflation
for the model’s parameters and covariance localization. This is the most
advanced run in terms of the complexity of the DA algorithm. The evolution
of the five parameters is shown in Fig. A.16. To ensure the robustness of the
simulation during the first time steps, the inflation quantifier λ is gradually
increased from 1.05 to 1.3 and, later, removed to obtain the convergence
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Figure A.15: Evolution of the K−ε model coefficients. The DA strategy used is the EnKF
without inflation but with localization.

(λ = 1.05 for k ∈ [1, 40], λ = 1.1 for k ∈ [41, 120], λ = 1.2 for k ∈ [121, 160],
λ = 1.3 for k ∈ [161, 200], and λ = 1 for k > 200). Some coefficients such as
Cµ and σK show a higher sensitivity to changes in the value of λ, highlighting
the importance of inflation in identifying a suitable large parametric space for
the optimization. For this reason, convergence is reached significantly later in
this case. Also, the threshold value for σε is increased here, in order to avoid
stability problems that could be easily triggered by the higher variability
associated with the parametric inflation.

The impact of the physical prediction of the three different parametric
descriptions, which are reported in Tab. A.3, are investigated in Sec. 4.

Some remarks should be made about the performance of the three DA
runs. Despite the differences in the techniques used and the apparently
different results obtained for the parameter optimization, the prediction of
the physical variables is pretty similar. The values of the model parameters
have probably converged towards a robust optimum, where the sensitivity of
the solution to further parametric variation is very low. This aspect, which
needs further investigation, may indicate that robust optimization can be
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Figure A.16: Evolution of the K−ε model coefficients. The DA strategy used is the EnKF
with inflation and localization.

Parameter
Optimized values

Case A Case B Case C

Cµ [-] 0.021 0.032 0.015
Cε1 [-] 0.091 0.165 0.152
Cε2 [-] 5.278 4.080 8.574
σK [-] 0.729 0.476 0.477
σε [-] 0.1 0.1 0.1

Table A.3: Optimized K− ε model coefficients obtained with different strategies based on
the EnKF.

obtained by setting a suitable confidence interval for the observation. In this
scenario, the application of localization has proven effective. The reduction
of degrees of freedom in the DA process, which significantly decreases the
computational resources required for each analysis phase, is not responsible
for the degradation of the results. On the other hand, probably because of
the features of the parametric optimum region found, the inflation techniques
have not improved the results.
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Augmented state estimation of urban settings using on-the-fly sequential Data 
Assimilation

Highlights:

 Sequential data assimilation is used to infer optimized parametric description of the
K−ε and K−ωSST  turbulence closure when applied to the analysis of a flow 
configuration related to urban wind engineering. 

 Heterogeneous experimental data is used for this model calibration, including pressure 
and velocity measurements.

 A data assimilation library, CONES, is developed to perform online EnKF, significantly 
reducing the computational costs required.

 Advanced data-driven closures improve the flow prediction, in particular in the case of
K−ωSST  turbulence model.
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