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Abstract

A data-driven investigation of the flow around a high-rise building is per-
formed combining heterogeneous experimental samples and RANS CFD. The
coupling is performed using techniques based on the Ensemble Kalman Filter
(EnKF), including advanced manipulations such as localization and inflation.
The augmented state estimation obtained via EnKF has also been employed
to improve the predictive features of the model via an optimization of the
five free global model constant of the K − ε turbulence model used to close
the equations. The optimized values are very far from the classical values
prescribed as general recommendations and implemented in codes, but also
different from other data-driven analyses reported in the literature. The re-
sults obtained with this new optimized parametric description show a global
improvement for both the velocity field and the pressure field. In addition,
some topological improvement for the flow organization are observed down-
stream, far from the location of the sensors.
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1. Introduction

Among the open challenges in the field of fluid mechanics, the accurate
prediction and control of the turbulent flows around bluff bodies is a timely
subject in the current development of automated, data-informed urban ar-
eas. A bluff body is an immersed solid (such as a vehicle, or a building) for
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which the interaction of the surrounding flow and its shape is responsible
for the emergence of large, energetic wakes. When high Reynolds num-
bers are considered, the global aerodynamic interactions are characterized
by complex concurring phenomena such as shear layers, flow separation, and
reattachment and recirculation regions. The predictions of such features is
a complex task, owing to the large range of active dynamic scales that can
be observed in fully developed turbulence. Computational resources required
to completely represent turbulent flows via direct numerical simulations are
prohibitive for Reynolds numbers observed in realistic applications dealing
with urban settings. Reduced-order Computational Fluid Dynamics (CFD)
such as RANS [1, 2] can provide a description of complete urban areas with
affordable resources, but the accuracy of such prediction is strongly affected
by the features of the turbulence model needed to close the dynamic equa-
tions. Such models, which are driven by a number of coefficients classically
determined via empiric approaches, usually fail in representing interactions
of different physical phenomena triggered by turbulence.

Experimental approaches, which rely on measurement that can be ob-
tained by various techniques, such as pressure sensors and hot wires, can
provide a virtually exact characterization of the flow features, in the form
of pressure and velocity measurements. However, experimental data may be
local in space and time, and a full volume representation of flows is pro-
hibitively expensive. In addition, experiments may be affected by difficulties
in sensor positioning, which can preclude sampling in sensitive regions of the
flow.

Studies in the last two decades have tried to create a solid network be-
tween numerical simulation and experiments, in order to exploit the intrinsic
advantages of both methods. Among the several proposals in the literature,
Data Assimilation [3] is naturally fit to combine experimental and numerical
data, in order to obtain a more accurate prediction of the flow. Sequential
DA uses tools from probability and statistics to target physical states with
minimal uncertainty (state estimation), once different sources of information
and their related level of confidence are provided. Among these methods, one
can include the Kalman Filter (KF) [4] and its ensemble version, the Ensem-
ble Kalman Filter (EnKF) [5, 6] which is de facto among the most powerful
tools available for DA. The EnKF can obtain a precise state estimation but
also use this physical state to train an underlying model, such as CFD, to
better perform in operative conditions.

In this article, RANS simulation is augmented via the integration of ex-
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perimental data, for the flow around a rectangular building. The augmen-
tation is performed by optimizing a number of global free constants that
determine the behaviour of the turbulence closure. Both time-averaged pres-
sure and time-averaged velocity, which are sampled at a limited number of
sensors, are used for this purpose. Despite the fact that a number of data-
driven analyses to optimize RANS modelling are reported in the literature,
using DA [7, 8] or tools based on machine learning [9, 10], most of those ap-
proaches employ high-fidelity numerical data as reference. The reason why is
that numerous additional difficulties are expected when using experimental
results, which include overfitting which can lead to the model divergence. It
will be shown that approaches based on the EnKF, owing to the smoothing
characteristics of the filter, are suitable for robust integration of experimental
data within the reduced-order CFD formalism.

In section 2, the numerical strategies and the algorithms used in this work
are presented. This includes a description of the numerical solver used as well
as a presentation of the data-driven strategies, which are integrated into a
specific C++ library. In section 3, the setup of the DA analysis is presented.
The different techniques which will be compared are detailed. In section 4
the results obtained are compared with data from a high-fidelity simulation.
At last, in section 5 the final remarks are drawn, and future perspectives are
discussed.

2. Numerical Ingredients

2.1. Numerical code: OpenFOAM

Numerical simulations in this work are performed using a C++ open-
source library known as OpenFOAM. This library includes a number of
solvers based on Finite Volume (FV) discretization [11], as well as a number
of utilities for preprocessing, postprocessing, and data manipulation. Owing
to the free license and the very large number of modules available, allowing
for extended multi-physics analyses, this code has been extensively used in
the literature for research work in fluid mechanics [12, 13].

For this work, the FV numerical discretization is performed for the RANS
Navier-Stokes equations for incompressible flows and Newtonian fluids [1]:
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∂xi

∂uj
∂xi
− ∂

∂xi

(
∂τTij
∂xj

)
(2)

where eq. 1 is the momentum equation and eq. 2 is the Poisson equation.
The variables used are the velocity u = [u1, u2, u3], the normalized pressure
p, the viscous stress tensor τij (which is modelled using the Newtonian fluid
hypothesis) and the Reynolds stress tensor τTij . The overbar indicates the
average operation performed to obtain eqs. 1 - 2. Within the RANS frame-
work, a turbulence closure must be used for τTij . The K−ε model [14, 2] uses
the eddy viscosity hypothesis to create a link between τTij and the gradient
of the averaged velocity u:

−τTij = 2νTSij −
2

3
Kδij (3)

where νT is the turbulent viscosity, K is the turbulent kinetic energy and Sij
is the mean strain rate:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

In the K− ε model, νT is expressed as an algebraic function of K and the
energy dissipation rate ε:

νT = Cµ
K2

ε
(5)

where Cµ is a model constant to be calibrated. To close the problem, two
model equations for K and ε must be included:

∂K
∂t

+ uj
∂K
∂xj

=
∂

∂xj

(
(ν +

νT
σK

)
∂K
∂xj

)
+ P − ε (6)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

(
(ν +

νT
σε

)
∂ε

∂xj

)
+ Cε1

ε

K
P − Cε2

ε2

K
(7)

where the production term P = νTS
2
, S =

√
2SijSij. The model is complete
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once the five constants Cµ, Cε1, Cε2, σK and σε are determined. Launder and
Sharma [14] provided values which were determined via the analysis of aca-
demic test cases, such as the free decay of homogeneous isotropic turbulence
of the turbulent plane channel. However, these coefficients are not constants,
but they are a function of the local dynamics of the flow and their interaction
with global features of the flow (see discussion in Refs. [15, 16, 9]).

2.2. Observation: experimental data obtained in wind tunnels

The experiments are conducted in the atmospheric boundary-layer wind
tunnel of the Ruhr-University Bochum, Germany. The wind tunnel has a
cross-section of 1.6×1.8m and a test section length of 9.4 m. Fig. 1 a) shows
the wooden building model mounted on a rotating table in the wind tunnel.

The boundary layer flow is generated in the wind tunnel using both spires
at the tunnel inlet and roughness elements. The mean wind profile matches
that of a power law with the exponent of 0.2 as shown in Fig.1 b). This is
representative of the terrain category II [17] simulating realistic conditions
of the flow around isolated high-rise buildings.

Figure 1: Wind tunnel test section used to produce experimental data

The sampled data is heterogeneous as different sensors are used to capture
features of the velocity field on the roof and pressure measurements on the
surface of the building. The velocities above the roof are mainly measured at
three different heights (z/D = 0.075, 0.3, and 0.45) above the points marked
in red in Fig. 2 a). In addition, above the centre of the roof, marked P36
in Fig. 2, ten heights are considered with the spacing of z/D = 0.075. The
measurements are performed using a hot-wire anemometer, which consists of
two cross wires allowing to measure both stream-wise and vertical velocity
components. All velocity data are sampled with the frequency of 2000 Hz.
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Figure 2: Geometry of the high-rise building with (a) main dimensions and coordinate
system; (b) top view with pressure tap locations; (c) facades with pressure tap locations
(d) velocity observations measured over the rooftop.

In addition to the velocity measurements, the surface pressure is also
sampled at different locations. The surface pressure on the roofs of the
model are measured using 64 pressure taps, distributed as shown in 2 b)
and c) marked with light gray circles. Surface pressures are acquired with a
sampling frequency of 1000 Hz using a multi-channel simultaneous scanning
measurement system. The tubing effects are numerically compensated [18].
More details about the wind tunnel experimentation and the analysis of the
flow abound high-rise building, with the special focus on above the roof are
presented in [19]. In this analysis, experimental data is used to improve the
predictive capabilities of stationary RANS models. Therefore, time series
available for the velocity components and the pressure have been averaged
in time.

2.3. Test case

The considered high-rise building case is a numerical representation of
the wind tunnel tests [19]. The model has a square cross-section with edges
B = 133.33mm, and the height of the buildingH = 400mm, which represents
a 120 m tall building in the full-scale. The building has a flat roof, and 0°
wind direction is investigated so that the asymtpotic velocity is alligned with
the streamwise direction x. The lateral direction is y and the normal direction
is z.

The dimensions of the computational domain are chosen adopting the
best practice guidelines given by [20]. The upstream domain length is 5H.
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Figure 3: View of the grid used for the RANS calculations. The central vertical plane and
an horizontal plane are shown.

The resulting dimensions of the domain are length (x) × width (y) × height
(z) 15.5H × 4.5H × 4H = 6.2× 1.8× 1.6m3. For the z direction, the height
has been chosen to match to the height of the wind tunnel.

A structured grid is used near the high-rise building surfaces, as shown
in Fig. 3. The distance from the center point of the wall adjacent cell to the
building leads to an average y+ = 141 and minimum y+ = 40 which ensures
that such point is placed in the logarithmic layer. The total number of mesh
elements used to discretize the domain is equal to 513 266 cells.

A grid dependency study was performed by comparing the results against
a finer grid. The finer grid is composed of 4.3 million cells, characterized
by a spatial resolution that is 2 times higher near the building model than
the coarse case. The mean pressure predicted by the coarse and fine grid
simulations is compared at the locations of the pressure taps on the roof.
The comparison showed that 86% of the points on the building surface have
a relative difference below 10%.

In the simulations the inlet boundary conditions, i.e. mean velocity u, the
turbulent kinetic energy K and the turbulence dissipation rate ε, are based
on the incident vertical profiles of the mean wind speed U and longitudinal
turbulence intensity Iu The turbulent kinetic energy K is calculated from U
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and Iu:

K(z) = a(Iu(z)u(z))2 (8)

ε(z) =
u∗3ABL

κ(z + z0)
(9)

where a ∈ [0.5, 1.5] [21]. In this study, a = 1 is chosen, as recommended
by [20]. The turbulence dissipation rate ε is given by Eq.9, with the von
Karman constant κ = 0.42. The SIMPLE algorithm was used for pressure-
velocity coupling. Classical choices have been performed for the numerical
schemes. First-order upwind schemes have been used the convection terms,
while second order centered shcemes have been used for viscous terms. Pres-
sure interpolation from cell center to face center has been obtained via second
order linear schemes native of the OpenFOAM solver.

2.4. Data Assimilation: Ensemble Kalman Filter

Data assimilation (DA) [3, 6] is a family of tools allowing to combine
several sources of information to obtain an augmented prediction exhibiting
increased accuracy. Classical applications usually rely on:

• a model, which provides a (quasi) continuous representation of the
physical phenomenon investigated. Physics-based models such as CFD
solvers are an example of model for fluid mechanics applications

• some observation, which is usually more accurate of the model, but it
is local in space and time. In fluid mechanics, this data may come from
high-fidelity numerical simulations or from experiments

The augmented prediction obtained via manipulation of the sources of infor-
mation can also be actively used to infer an optimized parametric descrip-
tion of the model, with the aim to obtain a predictive tool that can provide
accurate predictions without having to rely on observation. DA has been
traditionally used in environmental and weather sciences, but applications
in fluid mechanics have seen a rapid rise in recent times [22, 23, 7, 24, 25,
26, 27, 8, 28, 29]. A great variety of methods exists, but two groups can be
identified [6, 30]:

Variational methods: Methods for which the goal is to minimize a cost
function applied for the case studied. This minimum, which is usually
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reached via parametric optimization of the model, corresponds to an
accurate flow state.

Statistical (sequential) methods: Methods for which the goal is to min-
imize the variance of the solution (i.e. increase the confidence in the
prediction).

Variational methods such as the 4DVar have been extensively used for
application in fluid mechanics [31, 22, 32, 27] in particular with steady state
simulations. While sequential tools are supposedly more appropriate for
the prediction of nonstationary phenomena, applications to steady flows are
reported in the literature [24, 8, 33]. In the present work, we will focus on
tools derived from the Kalman Filter, a well known sequential method.

2.4.1. The Kalman Filter

The Kalman filter (KF) [4] is a sequential DA method based on the Bayes
theorem. It provides a solution to the linear filtering of time-dependent
discrete data. The classical formulation for the analysis of a physical quantity
x relies on the combination of results produced via a discrete model M, which
is linear in the original KF, and some observation y. Within the framework of
KF, both the model and the observation are affected by errors/uncertainties,
which are here referred to as v and w, respectively. One of the central
hypotheses of the Kalman Filter is that these uncertainties can be accurately
described by a Gaussian distribution i.e. v = N (0,Q) and w = N (0,R). Q
and R, which also are a function of time, represent the variance of the model
and of the observation, respectively. Considering that these errors can be
described by a Gaussian distribution, the solution is completely determined
by the first two moments of the state i.e. the physical quantity x and the
error covariance matrix P = E((x− E(x))(x− E(x))T ). Let us consider the
time advancement of the physical system between the instant k and k+1. For
the latter, observation yk+1 is available. In this case, the data assimilation
procedure consists of two phases (See Algorithm 1):

1. A forecast step (superscript f), where the physical state and the error
covariance matrix at the time k are advanced in time using the model:
xfk+1 = Mxk

Pf
k+1 = MPkM

T + Qk+1
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2. An analysis step, where observation and forecast are combined to ob-
tain the augmented prediction:

Kk+1 = Pf
k+1H

T
(
HPf

k+1H
T + Rk+1

)−1

xak+1 = xfk+1 + Kk+1(yk+1 −Hxk+1)

Pa
k+1 = (I−Kk+1H)Pf

k+1

where H is a linear operator mapping the model results to the observa-
tion space and K is the Kalman gain. This matrix takes into account the
correlations between the values of the state vector and the values of the ob-
servations, and it is the central element providing the final state estimation
of the physical system.

The main drawbacks of this algorithm for complex applications in fluid
mechanics are that i) it is designed for linear models M and ii) the size of
P is directly linked with the number of degrees of freedom of the problem
investigated. While the first issue can be bypassed with ad-hoc improvements
of the data-driven strategy, which are included for example in the extended
KF [6, 30], the second one is more serious. In fact, P must be advanced
in time like the physical variables. In addition, during the analysis phase,
extended manipulation of P is required, including a matrix inversion. For
the number of degrees of freedom used in CFD, which are usually in the
range 106− 108, this leads to prohibitive requirements in terms of RAM and
computational resources.

Algorithm 1: Algorithm for The Kalman Filter

Forecast steps

1 xfk+1 = Mxak
2 Pf

k+1 = MPa
kM

T + Qk+1

Analysis steps

3 Kk+1 = Pf
k+1H

T
(
HPf

k+1H
T + Rk+1

)−1

4 xak+1 = xfk+1 + Kk+1(yk+1 − sfk+1)

5 Pa
k+1 = (I−Kk+1H)Pf

k+1
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2.4.2. The (stochastic) Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) [34, 6] is a popular data-driven strat-
egy based on the KF which provides an efficient solution to the issues pre-
viously discussed. The idea is that the error covariance matrix P is not
advanced in time anymore, but it is approximated via an ensemble of model
runs. This strategy allows to fully account for non linearity of the model and
it virtually eliminates the computational burdens associated with the manip-
ulation of P. The complete structure of the EnKF, which is summarized in
the Algorithm 2, is now discussed.

The EnKF relies on Ne realizations of the model, which is the model
ensemble. At a given instant k, the realizations can be assembled in a state
matrix XS of size [N,Ne], where N is the number of degrees of freedom
of the physical problem investigated. Therefore, keeping the usage of the
superscripts f and a introduced for the KF, each column of XS corresponds
to the state xfi,k+1 of the ith member, where i ∈ [1, Ne]. An approximation of
the error covariance matrix Pe can be obtained exploiting the hypothesis of
statistically independence of the ensemble members:

Pf
e = Xf (Xf )T (10)

where Xf is the anomaly matrix which represents the deviation of all the
values of the state vectors from their ensemble mean:

Xk+1 =
xi,k+1 − xk+1√

Ne − 1
, xk+1 =

1

Ne

Ne∑
i=1

xi,k+1 (11)

The sampled observation, which consist of No elements, is also expanded
to obtainNe sets of values. To do so, a Gaussian noise based on the covariance
matrix of the measurement error Rk+1 is added to the observation vector:

yi,k+1 = yk+1 + ei,k+1, with ei,k+1 ∼ N (0,Rk+1) (12)

Finally, the model realizations are projected to the observation space Ne

times, similarly to the classical KF:

si,k+1 = Hxi,k+1 (13)

All of these elements together allow for the determination of the Kalman
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gain:

Sk+1 =
si,k+1 − sk+1√

Ne − 1
, sk+1 =

1

Ne

Ne∑
i=1

si,k+1 (14)

Ek+1 =
ei,k+1 − ek+1√

Ne − 1
, ek+1 =

1

Ne

Ne∑
i=1

ei,k+1 (15)

Kk+1 = Xf
k+1(Sfk+1)T

[
Sfk+1(Sfk+1)T + Ek+1(Ek+1)T

]−1

(16)

In an infinite ensemble size Ek+1(Ek+1)T tends to the matrix R of the Kalman
filter. In practice the size is limited, thus the product of the perturbations
is simplified by the diagonal matrix Rk+1 gaining simplification and compu-
tational cost [30, 35]. In addition, Pe can be directly estimated from the
ensemble members for each analysis phase, and there is no need for memory
storage/time advancement.

Finally, the update of the state vectors is then performed in the same
way as in the classical KF, the only difference being that Ne updates have
to be performed:

xai,k+1 = xfi,k+1 + Kk+1(yi,k+1 − sfi,k+1) (17)

The EnKF can also be used to optimize the parametric description of the
model. The underlying idea is that the parameters are updated at the end of
the analysis phase so that the model can provide a more accurate prediction
of the physical phenomenon investigated, reducing the difference between the
model predicted state and the final state estimation. Several strategies are
proposed in the literature [6] and, among those, one showing efficiency for a
relatively small set of parameters (referred to as θ) and easy to implement
is the so-called extended state. In this strategy, the steps of the EnKF are
performed for a state x? which is defined as:

x? =

[
x
θ

]
(18)

That is, the state used for the EnKF includes both the physical state and
the parametric description of the model. For this very simple algorithm, the
size of the global state is now equal to N? = N+Nθ, where Nθ is the number
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of parameters to be optimized. This modification brings a negligible increase
in computational costs if Nθ << N , and it allows us to obtain simultaneously
an updated state estimation and optimized parametric description for the
model at the end of the analysis phase.

Algorithm 2: Algorithm for the Ensemble Kalman Filter

For Ne the number of member in the ensemble, i = 1, ..., Ne:
1 Advancement in time of the state vectors:

xfi,k+1 =Mxai,k
2 Creation of an observation matrix from the observation data by

introducing errors:
yi,k+1 = yk+1 + ei, with ei ∼ N (0,R)

3 Calculation of the predicted observation:

sfi,k+1 = Hxfi,k+1

4 Calculation of the ensemble means:

xfk+1 = 1
Ne

∑Ne

i=1 x
f
i,k+1, sfk+1 = 1

Ne

∑Ne

i=1 s
f
i,k+1,

ek+1 = 1
Ne

∑Ne

i=1 ei,k+1

5 Calculation of the anomaly matrices:

Xk+1 =
xi,k+1−xk+1√

m−1
, Sk+1 =

si,k+1−sk+1√
m−1

, Ek+1 =
ei,k+1−ek+1√

m−1

6 Calculation of the Kalman gain:

Kk+1 = Xf
k+1(Sf

k+1)T
[
Sf
k+1(Sf

k+1)T + Rk+1

]−1

7 Update of the state matrix:

xai,k+1 = xfi,k+1 + Kk+1(yi,k+1 − sfi,k+1)

2.4.3. Inflation

The classical EnKF exhibits a number of shortcomings such as sampling
errors due to the limited amount of members available in the ensemble. This
is especially true for applications in fluid mechanics and in particular with
CFD, where every simulation may need important computational resources
and storage space. Therefore, the number of total ensemble members realisti-
cally acceptable for three-dimensional runs is around Ne ∈ [40, 100]. As this
error is carried over the assimilation steps, one way of reducing this problem
is to inflate the error covariance matrix Pk+1 by a factor λ2 [6].

This coefficient λ > 1 drives the so called multiplicative inflation, which
can be applied to the analyzed state matrix. It is responsible for an increased
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variability of the state estimation:

xai −→ xa + λ(xai − xa) (19)

Clearly, for λ = 1 the results from the classical EnKF are obtained.
Similarly, the optimization via EnKF of the set of inferred parameters θ

can collapse very rapidly towards a local optimum, providing a sub-optimal
result. Inflation can be used to mitigate an overly fast collapse of the para-
metric description of the model, artificially increasing the variability of the
parameters and allowing it to target a global optimum solution.

2.4.4. Localization

The classical EnKF establishes a correlation between observation and the
degrees of freedom of the model, but this correlation is not affected by the
distance between them. In a limited ensemble size like the ones used in CFD,
this can lead to spurious effects on the update of the state matrix for large
domains. In practice, errors due to the finite ensemble approximations can be
significantly larger than the real physical correlation, which naturally decays
with distance in continuous systems. Due to the computational limitations to
using more members in the ensemble, one way to avoid these spurious effects
is to use a corrective multiplicative term to the values of the covariance ma-
trix Pk+1 that takes into account the physical distance between observation
sensors and mesh elements of the state. This strategy is known as covari-
ance localization. Just as the inflation, the localization is effective to improve
the accuracy of the calculation and to reduce the probability of divergence
of the EnKF. The principle of covariance localization uses a coefficient-wise
multiplication of the covariance matrix Pk+1 and a corrective matrix that is
here called L. This type of operation is known as a Schur product, thus it
is also called Schur localization. This leads to the expression of the localized
Kalman gain Equation 20.

[Pk+1]i,j[L]i,j −→ Kloc
k+1 = [L]i,j[X

f
k+1(Sfk+1)T ]i,j

(
[L]i,j[S

f
k+1(Sfk+1)T ]i,j + Rk+1

)−1

(20)
As the matrix Rk+1 has a limited impact on the operation, this expression

is simplified for convenience in the algorithm. The localized Kalman gain
becomes:

[Pk+1]i,j[L]i,j −→ Kloc
k+1 = [L]i,j[Kk+1]i,j (21)
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The structure of the matrix L must be set by the user, and it should
represent the real physical correlation. In continuous systems, the correlation
between physical variables decreases fast in space. Therefore, a generally used
structure for the localization matrix is an exponential decay form:

L(i, j) = e−∆2
i,j/µ (22)

where ∆i,j is the distance between the given observation sensor and the point
of evaluation of the model (center of the mesh element in CFD). µ is a decay
coefficient that can be tuned accordingly to the characteristics of the test
case.

2.5. CONES: Coupling OpenFOAM with Numerical EnvironmentS

CONES (Coupling OpenFOAM with Numerical EnvironmentS) is a C++
library designed to couple the CFD software OpenFOAM with any other kind
of open-source code. It is currently employed to carry out sequential DA
techniques and, more specifically, advanced data-driven methods based on
the EnKF. The communications between the EnKF-based code and Open-
FOAM are performed by CWIPI (Coupling With Interpolation Parallel In-
terface) [36], which is an open-source code coupler for massively parallel
multi-physics/multi-components applications and dynamic algorithms.

The main favorable features of CONES in performing DA with Open-
FOAM are the following:

• It is not needed to modify the installation of OpenFOAM but only
compile user-made functions.

• The intrusive coupling between the different codes is performed preserv-
ing the original structure of the existing CFD solvers. Every CONES
related function is contained in a Pstream (Part of OpenFOAM) mod-
ified library, hence, data exchange is done at the end of the solver loop
by calling specific functions, and the calculation loop remains unmod-
ified.

• It is very efficient to exchange information about the physical state
and the mesh (arrays of millions of elements can be sent and received
simultaneously and rapidly).

• Direct HPC communications between multiple processors, which han-
dle partitions of the numerical simulations and the DA processes.
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• Simulations and DA are run simultaneously online i.e. there is no need
to stop the simulations at each analysis phase. This last point allows
for enormous gains in terms of computational resources required.

The coupler CWIPI developed by ONERA and CERFACS has been cho-
sen due to its powerful management of fully parallel data exchanges based
on distributed mesh definition and its ability to interpolate between non-
coincident meshes (very useful for some advanced tools based on the EnKF,
like the MGEnKF [29]). Most of its uses are related to gas turbine designs
[37, 38], but it has also recently been employed in the field of aeroacoustics
with OpenFOAM [39].

CWIPI communication protocol is based on the MPI library. Thus, MPI
and CWIPI environments must be initialized within the codes. This will
allow using the primitives of CWIPI to exchange information between two
codes. In Figure 4 direct communications between two codes through CWIPI
and some of the main primitives are illustrated.

CODE A

CWIPI

CODE B

(a) CWIPI between two codes

MPI_Init(&argc, &argv); 
cwipi_init('CodeB', localcomm); 

cwipi_create_coupling('cplAB',...); 

cwipi_define_mesh('cplAB',...); 

for (i=0; i<nit;++i){ 
 cwipi_exchange('cplAB', ex i,...); 
}

cwipi_delete_coupling('cplAB',...);

cwipi_finalize; 
MPI_Finalize; 

MPI_Init(&argc, &argv); 
cwipi_init('CodeA', localcomm); 

cwipi_create_coupling('cplAB',...); 

cwipi_define_mesh('cplAB',...); 

for (i=0; i<nit;++i){ 
 cwipi_exchange('cplAB', ex i,...); 
}

cwipi_delete_coupling('cplAB',...);

cwipi_finalize; 
MPI_Finalize; 

CODE A CODE B

(b) Main primitives in CWIPI

Figure 4: Functioning of CWIPI

In this work, CONES couples the solver SimpleFOAM, which is designed
to simulate flows using RANS, with a sequential DA library developed by
the team. The structure of a single run is exemplified in Fig. 5. The MPI
communications and the coupler CWIPI are initialized in both codes (in
OpenFOAM and in the DA library).

Despite the fact that applications of EnKF-based tools are tied with
the time advancement of the solution, the application to stationary flows
is straightforward. An analysis virtual time window is fixed in terms of the
number of iterative steps of the code. Once that number of time steps is
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MPI and CWIPI initialization with
coupling and mesh definition

SIMPLE algorithm

Create sampled data 

Send forecast velocity field   
and parameters 

Receive updated velocity field   
and parameters 

Coupling deletion with MPI and
CWIPI finalization

MPI and CWIPI initialization with
coupling and mesh definition

Coupling deletion with MPI and
CWIPI finalization

Receive forecast velocity field   
and parameters 

Read sampled   
and observation  data

EnKF algorithm

Send back updated velocity field 
  

and parameters 

Create observation
data 

DA algorithm
at time 

Simulations with OpenFOAM EnKF

CWIPI

Figure 5: Scheme of CONES for steady simulations

performed simultaneously by the Ne ensemble members (CFD runs), they
send their information to the EnKF code and wait online for the updated
flow field / parametric description. Currently, the information exchanged is
the velocity field uf and the parameters of the model θf . Hence, the state
matrix, composed of as many state vectors as members (CFD simulations)
in the ensemble, is the one expressed in eq. 23 for the DA cycle at time k+1.

xi,k+1 =

[
ui,k+1

θi,k+1

]
(23)

A piece of additional information provided by the simulations is the set of
values si,k+1, i.e. the projection of the model solution on the coordinates of
the sensors for each ensemble member. Considering that the sensor placement
does not necessarily comply with the center of a mesh element, interpolation
of the flow field has to be performed. OpenFOAM possesses several functions
to transform cell-center quantities into particular points. The accuracy of
these interpolation methods [40] has been taken into account.

The nature of the observations y is analyzed in more detail in Section 3,
but CONES can work with sensors measuring both the pressure p and the
velocity field u. In this specific case dealing with stationary simulations, the
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observation is constant, and it is loaded once, but it could be integrated at
each analysis phase in case of analysis of an unstationary flow. Thus, the DA
code receives information from the model and the sensors, and it produces
an updated set of states and parameters (ua, θa), which are sent back to
the OpenFOAM simulations. The pressure p is updated for each ensemble
member via a Poisson equation and this complete set of data is used to start
a new set of iterative steps. Once the convergence of the model parameters
complies with a threshold set by the user from the model is achieved, the
coupling is deleted, and both MPI and CWIPI environments are finalized.

3. DA experiments

CONES is here used to study the flow around a building using the nu-
merical test case presented in Sec. 2.3. In particular, the DA tools are used
to optimize the value of the five global constants driving the K − ε model,
with the aim to minimize the discrepancy between the RANS results and the
high-fidelity observation provided. A similar analysis was recently performed
by Zhao et al. [41], but they used numerical results from a high-fidelity sim-
ulation. Here, the observation is taken from time-averaged measures from
experiments.

The first key aspect to take into account is determining a suitable prior
state for the velocity and pressure field, as well as for the parametric descrip-
tion. For the latter, values found by Margheri et al. [42] using uncertainty
propagation of epistemic uncertainties are preferred to the classical values ob-
tained by Launder and Sharma [14]. These baseline values, which are shown
in Tab. 1, are the initial mean of the Ne ensemble simulations. Each value
of the parameters for each CFD run is initially determined using a bounded
Gaussian distributionN (µN , σN), where µN is the parameter mean value and
σN is chosen to provide a sufficiently large initial variability of the paramet-
ric space based on Margheri et al. work [42]. The normal distributions are
bounded between σN and 7σN , the limit has been empirically set depending
on the sensitivity of the coefficients. For example, Cε1 is bounded by 1.25σN
but σε is bounded by 7σN . The initial physical state for each ensemble is
obtained from a single run using the values of the model constants in Ref.
[42].

The number of ensemble members Ne = 40 is chosen considering other
works in the literature relying on CFD for the model part of the EnKF
[43, 44, 29].
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The observation is obtained from time-averaged data from a total of 120
sensors. Among these, 90 sensors are pressure taps, and 30 sensors are hot
wires measuring two components of the velocity field, the streamwise velocity
ux and spanwise velocity uz. This adds up to 150 time-averaged observation
values. The data is loaded at the beginning of the analysis phase in the

following format: y =
[
ux1 . . . ux30 uz . . . uz30 p31 . . . p120

]T
, and

does not change throughout the calculation. Similarly the covariance matrix
Rk+1 is taken constant leading to R = σmI with σm the confidence given to
the measurement.

Three independent DA experiments are performed. The variations do not
deal with details of the model or the observation, but they consider different
features of the DA procedure. More precisely, the cases analyzed are:

• Case A: classical EnKF.

• Case B: EnKF with covariance localization.

• Case C: EnKF with covariance localization and inflation.

Parameter
K-ε model
default
values

Prior of the EnKF

µN
σN

for cases A,B
σN

for case C

Cµ [-] 0.09 0.1 0.01 0.005
Cε1 [-] 1.44 1.575 0.1 0.05
Cε2 [-] 1.92 1.9 0.1 0.05
σK [-] 1.0 1.0 0.1 0.05
σε [-] 1.3 1.6 0.1 0.05

Table 1: Comparison between conventional constants from RANS K − ε model and the
initial parameters employed for the EnKF (Ne = 40)

For case study A and B, the width of the virtual assimilation window
has been fixed to 150 iterations. For C it has been fixed to 100 considering
additional evolution of the parameters caused by the inflation. Those values
have been chosen observing results from preliminary analyses, which pointed
out how at least 50 iterations were needed to obtain a clear signature of the
new parametric setting over the physical quantities.

For localization in cases B and C, the domain is also clipped in a volume
sufficiently large around the observations, similar to the way Moldovan et
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al. [45] did it for the BARC geometry. Similarly to the physical clipping,
that reduces the number of degress of freedom in the EnKF and thus the
computational cost, the goal of the localization clipping is also to ensure
eliminating regions which are far from the sensors and that would only be
marginally updated by the DA procedure. Fig. 6 shows the cutting region
defined for the physical localization. The coefficient µ of the localization
matrix L is set so that the values of the matrix are close to 0 at the border
of the clipping. This avoids discontinuity problems in the physical field. The
parameters of the model θ are not affected by localization.

Figure 6: Clipping box used for localization: pressure sensors are represented in red and
velocity sensors are displayed in green (data in mm)

3.1. Case A: classical EnKF

In this first case, the classical Ensemble Kalman Filter is used. The run
ends when convergence of the parameters is reached, which is in this case
after 60 analysis phases (i.e. a total of 6000 CFD iterations). The evolution
of the mean value of the five parameters of the K− ε model is shown in Fig.
7. One can see that the final results obtained by the EnKF are significantly
different than the baseline values, and that the speed at which the parameter
converge is significantly different. In particular, the evolution of σε deserves
some comments. This coefficient controls the magnitude of the turbulent
diffusion term in the equation for ε, Dε = νt/σε +ν, which is associated with
non-homogeneous conditions (see Sec. 2). The optimization performed by
the EnKF targets very low values for σε during the calculation, increasing the
relevance of Dε in the equation. However, noise propagated by the Kalman
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gain can turn the value for some ensemble members to be negative, resulting
in a divergence of the calculation. Therefore, we have imposed a constraint
for this parameter so that values cannot be lower than a small but positive
value prescribed. For the other parameters, one can see that Cµ and Cε1
converge to a value close to 1/3 of the initial estimate, σK does not exhibit
large variations and Cε2 is three times larger.

0 15 30 45 60
0.00

0.04

0.08

0.12

C

0 15 30 45 60
0.0

0.9

1.8

2.7

C
1

0 15 30 45 60
1.0

2.5

4.0

5.5

C
2

0 15 30 45 60
0.0

0.7

1.4

2.1

0 15 30 45 60
Number of analyses

0.0

0.6

1.2

1.8

Figure 7: K − ε coefficients convergence without inflation and localization

3.2. Case B: EnKF with covariance localization

In this case, the calculation is performed with covariance localization.
The evolution of the five coefficients is shown in Figure 8. The trend and in
particular the evolution of σε are similar to the ones observed for Case A.
given remarks for σε in case A stay the same here. However, larger fluctua-
tions can be observed before convergence. Also, a significantly larger number
of iterations (100 analysis phases) is required to get a good convergence of
the parameters.

3.3. Case C: EnKF with both inflation and localization

The DA calculation is here performed relying on deterministic inflation
for the model’s parameters and covariance localization. This is the most
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Figure 8: K − ε coefficients convergence without inflation but with localization

advanced run in terms of complexity of the DA algorithm. The evolution of
the five parameters is shown in Figure 9. To ensure the robustness of the
simulation during the first time steps, the inflation quantifier λ is gradually
increased from 1.05 to 1.3 and, later, removed to obtain the convergence
(λ = 1.05 for k ∈ [1, 40], λ = 1.1 for k ∈ [41, 120], λ = 1.2 for k ∈ [121, 160],
λ = 1.3 for k ∈ [161, 200], and λ = 1 for k > 200). Some coefficients such as
Cµ and σK show a higher sensitivity to changes of the value of λ, highlighting
the importance of inflation in identifying a suitable large parametric space for
the optimization. For this reason, convergence is reached significantly later in
this case. Also, the threshold value for σε is increased here, in order to avoid
stability problems that could be easily triggered by the higher variability
associated with the parametric inflation.

The impact of the physical prediction of the three different parametric
descriptions, which are reported in Table 2, are investigated in Section 4.

4. Results

Results obtained by the three DA runs are now compared with the prior
(classical RANS using K − ε model) and the time-averaged experimental
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Figure 9: K − ε coefficients convergence with inflation and localization

Parameter
Optimized values

Case A Case B Case C

Cµ [-] 0.021 0.032 0.020
Cε1 [-] 0.418 0.165 0.162
Cε2 [-] 4.629 4.080 7.978
σK [-] 0.837 0.476 0.355
σε [-] 0.1 0.1 0.1

Table 2: K − ε model coefficients final values obtained with the EnKF

results.

4.1. Velocity field

The analysis of the velocity field is performed first. Velocity is an explicit
variable in segregated solvers for incompressible flows. Therefore, the perfor-
mance of the DA strategies can be assessed by the qualitative improvement
obtained for the prediction of this quantity.

Figure 10 shows the streamwise velocity profiles ux and the normal veloc-
ity profiles uz for several locations corresponding to the positions of the hot
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wire. For ux, one can see that the accuracy of the predicted field via DA is
sensibly improved for each location. Very minor differences can be observed
when comparing the three different DA strategies. On the other hand, the
prediction of the normal velocity uz is very similar to the prior. This is not
surprising, considering that the match between prior and experimental data
is good. An interesting result can be observed for Point 20, where the max-
imum difference between the prior and the experimental data is observed
for uz. In this case, one can see that the DA prediction is getting closer to
the experiments, confirming that the EnKF is able to provide a statistically
more accurate prediction of the flow, down to the confidence indicated for
the different sources of information

The features of the velocity field are further assessed in figure 11, where
streamlines on a vertical plane at the center of the high-rise building are
shown. Here, the prior and the DA runs are compared with a validated LES
study. One can see that the RANS parametric variation obtained integrating
local experimental information in the room region is responsible for a signifi-
cant reduction of the recirculation region behind the building. While the size
of this region is now smaller than the reference LES, similar topological orga-
nization can be observed at mid-height, which is not captured by the RANS
prior. A zoom of the roof area, which is shown in figure 12, shows how the
assimilation of the velocity field is beneficial in improving the prediction of
the recirculation region, which is sensibly improved.

4.2. Pressure field

The behaviour of the pressure field is now investigated. This physical
quantity is significantly more difficult to be predicted, because the Poisson
equation resolved in the numerical solver uses the pressure as a Lagrangian
marker. Therefore, the pressure field is simultaneously used as a physical
variable and a Lagrangian constraint to grant incompressibility of the flow.
Therefore, the analysis of this quantity is crucial to assess the stability and
the precision of the algorithms. In figure 13 the mean pressure coefficient is
shown in terms of performance metrics comparison with experimental data.
If one just has a look at the best performance region for the error > 10%, one
could be erroneously lead to this that the prior (12% of the occurrences for
less than 10% error) behaves better than the DA runs (between 6% and 10%
of the occurrences for less than 10% error). This information is misleading,
though, as a large number of occurrences for the DA runs are just outside
this interval. In fact, as large margins of error are considered, one can see
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that the DA runs outperform the prior RANS. For a 20% error threshold,
an improvement of around 5% occurrences (22.5 − 24.5% against 18.4%) is
observed with the use of DA. The gap rises to around 15% when a 30% error
threshold is considered. This trend is confirmed analyzing the mean pressure
coefficients calculated at pressure taps on the roof, shown in figure 14. One
can see that the DA prediction almost always performs better than the prior,
even if gains for the pressure field are less important than what observed for
the velocity field.

Some remarks should be spent about the performance of the three DA
runs. Despite the differences in the techniques used and the apparently
different results obtained for the parameter optimization, the prediction of
the physical variables is pretty similar. The values of the model parameters
have probably converged towards a robust optimum, where the sensitivity of
the solution to further parametric variation is very low. This aspect, which
needs further investigation, may indicate that robust optimization can be
obtained setting a suitable confidence interval for the observation. In this
scenario, the application of localization has proven effective. The reduction
of degrees of freedom in the DA process, which significantly decreases the
computational resources required for each analysis phase, is not responsible
for the degradation of the results. On the other hand, probably because of
the features of the parametric optimum region found, the inflation techniques
have not improved the results.

5. Conclusions

The newly developed platform CONES has been used to perform a data-
driven investigation of the flow around a high-rise building. More precisely
heterogeneous experimental samples, in the form of data from pressure taps
and hot wires, have been integrated with RANS CFD runs, performed us-
ing the open-source code OpenFOAM. The coupling has been performed
using techniques based on the Ensemble Kalman Filter (EnKF), including
advanced manipulations such as localization and inflation. The augmented
state estimation obtained via EnKF has also been employed to improve the
predictive features of the model via an optimization of the five free global
model constant of the K − ε turbulence model used to close the equations.
Therefore, a relatively small uncertainty space has been chosen, the same
employed by Ben Ali et al. [47] using variational data assimilation.
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The results have shown that a global improvement has been observed
for the physical quantities of investigation, and that results obtained with
the different DA strategies are equivalent. For this last point, physical and
covariance localization appear to be effective for the study of complex flows.
The reduction of degrees of freedom of the DA problem has not affected
the quality of the results, while globally reducing the time needed for the
data-driven procedures. On the other hand, the usage of inflation has not
produced better results, in particular due to the increase of computational
resources required.

The analysis of the velocity field shows that the EnKF allows to signifi-
cantly reduce the error in the streamwise and normal direction of more than
50%. The effects of the parametric inference are observed also on the recir-
culation region behind the building. In this case, the physical topology of
the flow becomes more similar to the reference LES validated with experi-
mental data, even if the recirculation bubble is overly reduced in size. For
the pressure field, improvements are observed even if they are not quantita-
tively important as for the velocity field. This may be due to the segregated
structure of the CFD solver, which employs the pressure as a Lagrangian
multiplier to impose the incompressibility constraint. Potentially, more so-
phisticated coupled solvers could provide improved results when used in DA
tools using pressure data as observation.

Future investigations include more sophisticated parametric descriptions
of the turbulence modelling employed, including coupling between DA tools
and machine learning applications.

This work was granted access to the HPC resources of GENCI in the
framework of the resources requested in A12 for project A0122A01741 on
the IRENE supercomputer (TGCC). Florent Duchaine and Miguel Ángel
Moratilla-Vega are warmly acknowledged for the help provided during the
early stages of development of CONES.
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Figure 10: Vertical and streamwise velocity profiles above the marked red locations on
the roof (Points: 18, 20, 22, 36, 38, 50, 54); comparison between wind tunnel data (WT),
k-epsilon model (k-eps), and three ensembles Kalman filter cases.
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Figure 11: Flow structures at the middle plane; comparison between validated Large Eddy
Simulation (validated LES) published in [46] and k-epsilon model (k-eps) on the left side
of the Figure, and three ensembles Kalman filter cases ot the right side of the Figure.
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Figure 12: Close view of the flow structures above the roof top, red arrow - indicates the
reattachment position of the separation bubble of the simulation with k-epsilon model,
green arrow - indicates the reattachment position of the separation bubble of the validated
LES simulation
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Figure 13: Scatter plot of mean pressure coefficient for all numerical cases with perfor-
mance metrics-comparison with experimental data.
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Figure 14: Mean pressure coefficient at pressure tap locations along red lines marked at
the roof; comparison between wind tunnel data (WT), k-epsilon model (k-eps), and three
ensembles Kalman filter cases
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