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A B S T R A C T

Computational fluid dynamics (CFD) represents an attractive tool for estimating wind pressures and wind loads
on high-rise buildings. The CFD analyses can be conducted either by low-fidelity simulations (RANS) or by
high-fidelity ones (LES). The low-fidelity model can efficiently estimate wind pressures over a large range of
wind directions, but it generally lacks accuracy. On the other hand, the high-fidelity model generally exhibits
satisfactory accuracy, yet, the high computational cost can limit the number of approaching wind angles that
can be considered. In order to take advantage of the main benefits of these two CFD approaches, a multi-fidelity
machine learning framework is investigated that aims to ensure the simulation accuracy while maintaining
the computational efficiency. The study shows that the accurate prediction of distributions of mean and rms
pressure over a high-rise building for the entire wind rose can be obtained by utilizing only 3 LES-related
wind directions. The artificial neural network is shown to perform best among considered machine learning
models. Moreover, hyperparameter optimization significantly improves the model predictions, increasing the
𝑅2 value in the case of rms pressure by 60%. Dominant and ineffective features are determined that provide
a route to solve a similar application more effectively.
1. Introduction

The accurate evaluation of wind pressures and wind loads on high-
rise buildings represents a key point in their design process [1–4]. With
the development of construction technology and engineering materials,
the new generation of high-rise buildings is tending towards taller and
more slender structures. This becomes a challenge as these structures
are super-flexible, light-weight, have low damping ratios and low fun-
damental frequencies, making them very prone to wind loads [5–9].
Due to this, it is necessary to understand the detailed characteristics of
wind effects on such structures.

The traditional approach for the assessment of wind loads on high-
rise buildings strongly relies on atmospheric boundary layer wind
tunnel practice [2,10]. However, in the last decades, there has been
a burgeoning growth in the use of Computational Fluid Dynamics
(CFD). This is due to the significant growth of available computational
power and the fact that numerical methods have several advantages
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compared to wind tunnel tests. Important advantages include no dy-
namic similarity constraints and the provision of whole-flow field data,
i.e. data in every point of the computational domain, as opposed to the
limited number of sensor points in the wind tunnel (e.g., [10–13]). In
addition, the costs of these CFD analyses are generally lower compared
to experiments. However, routine use of CFD for design purposes still
requires significant progress to capture the right balance between the
accuracy of the results and the efficiency (e.g., [14,15]).

The major challenge in CFD comes from the difficulty of capturing
the complex separated flows around structures that are composed of
multi-scale fluctuations in the inflow turbulence and their nonlin-
ear interactions [16]. Currently, the use of CFD for the wind flow
around structures at high Reynolds numbers entails the decision of
whether to apply low-fidelity simulations, such as Reynolds-averaged
Navier–Stokes (RANS), or high-fidelity simulations such as Large Eddy
Simulation (LES). RANS, considered as the workhorse of CFD (e.g., [12,
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16]), requires lower computational costs. However, the RANS-based
simulation of wind loads is generally considered to be insufficiently
accurate [10,14,15,17], because the turbulence is not resolved but
modeled and as a result, flow separation, reattachment and vortex
shedding in the wake of the building are often poorly reproduced, or
not reproduced at all. To overcome this challenge, in LES, the Navier–
Stokes equations are resolved over large turbulence scales only, while
the effects of the smaller scales are modeled. This provides the ability
to more accurately predict flow separation, reattachment and vortex
shedding in the wake of the building, as well as the resulting mean
pressures and pressure fluctuations [1,11,15,18–20]. However, this
comes with a significant increase in computational cost. Thus, recently,
multi-fidelity approaches have gotten more attention in trying to bridge
this gap and establish synergies between the low-fidelity (RANS) and
high-fidelity (LES) approaches.

Multi-fidelity models based on surrogate modeling, a subgroup of
machine learning, have been successfully applied in several studies.
Some examples are the optimization of a transonic aircraft wing with
two levels of CFD fidelity [21]. Surrogate modeling was also applied
in [22] for the rotor blade design, where the simplified code related to
aerodynamics was coupled with high-fidelity numerical simulations. In
the case of building-geometry optimization, Ding and Kareem [23] built
the co-kriging model [21] using correlated CFD inputs with two model
fidelities (RANS and LES) to minimize the competing aerodynamic
objectives represented by the mean drag force coefficient and the
standard deviation of the lift force coefficient.

Also, recently, other machine learning techniques have gotten more
attention. In the light of specific machine learning applications in
predicting pressure coefficients, the vast majority of work is related
to the prediction of the pressures based on wind tunnel test data. The
main motivation is grounded in the occasionally limited amount of
data that can be gathered from wind tunnel tests. The main identified
causes are the limited number of wind tunnel tests as being high
in cost, executed with a limited number of sensors, inaccessibility of
certain areas to install sensors, etc. Thus, machine learning applications
were set to complement those wind tunnel tests by extending the
resolution of the pressure measurement points over the facades of the
buildings (e.g., [6,24]), extending the measurement set by including
additional external conditions, such as different wind directions and
terrain (e.g., [25–27]) or different interference scenarios [28], etc. The
main quantities of interest were the mean pressure coefficient, the root
mean square pressure coefficient (e.g., [6,24–26,28,29]) and the peak
pressure coefficient [26] as well as the pressure time history (e.g.,
[6,24,27]). It is noticed that machine learning is gradually becoming
more widely used in wind engineering interpolation problems, yet, the
extrapolation difficulties are also highlighted [6].

However, the number of pressure related machine learning appli-
cations based on numerical datasets is still very limited. In particular,
multi-fidelity machine learning approaches are of interest as they can
leverage between RANS and LES to predict wind pressures. Only re-
cently, a study was published by Lamberti and Gorle [15] explored the
use of a machine learning (ML) framework to relate a large number of
low-fidelity RANS to a small number of high-fidelity LES simulations
to improve the prediction of the root mean square (rms) pressure
coefficient (𝐶 ′

𝑝) over a high-rise building. The main focus was to
etermine the best performing training set for a specific wind direction
rom the wind rose range. For most wind directions, the choice of two
eighboring wind directions as training data gave the best results.

The study in present paper further explores a similar idea of a
ulti-fidelity machine learning framework, but shifts the focus from

ne specific angle to the whole wind rose. Thus, the main aim is
o determine the optimal/minimal training set that provides the best
ind pressure prediction for the whole wind rose. Moreover, besides
lready considered rms values of pressure coefficient, mean pressure
oefficients are also taken into account. Usually, improvement of the
2

prediction of wind pressures is done by testing different machine learn-
ing methods as in (e.g., [15,24,28]). Yet, besides different methods,
the present study sets out to explore new machine learning techniques
that might improve model’s performance, such as hyperparameter opti-
mization and feature selection. Namely, feature selection techniques are
applied over the large feature set assembled based on similar studies.
Feature selection can detect the set of dominant as well as ineffective
features. As a result, the most optimal features can be determined for
improving the prediction of the mean and rms pressure coefficients
that should be used when dealing with similar problems. Thus, the
open question ‘What data should be used?’ raised in [30] is tackled
in this study. Lastly, an attempt is made to improve the prediction
related to the deficiency of machine learning methods with regard
to extrapolation problems. Possible improvements in this regard are
demonstrated using the transfer learning technique.

This paper is organized into 6 sections. Section 2 is dedicated to
the introduction of the high-rise building geometry and the numerical
RANS and LES set-up. It also includes the validation of the LES results
with wind tunnel measurements. Section 3 covers a brief explanation
of the used machine learning, hyperparameter optimization and feature
selection algorithms. It concludes with the proposition of the adaptive
training strategy used to determine the optimal training set for the
whole wind rose. Section 4 provides the results by determining the best
performing machine learning model and optimal training data set with
optimal input features. Finally, the paper closes with the limitations of
the study, presented in Section 5, that can be used as possible areas of
future research and a summary of the conclusions in Section 6.

2. Computational fluid dynamics models

In this section, first, the high-rise building case and inflow condi-
tions are introduced, followed by the setup of the RANS simulations
and LES simulations, and finally, the validation of the LES simulations
with the wind tunnel experiments.

2.1. High-rise building model and inflow conditions

The considered high-rise building case is a numerical representation
of the wind tunnel tests [31,32]. The model has a square cross-section
with edges 𝐵 = 133.33mm, and the height of the building is 𝐻 =
400mm, which represents a 120m tall building in full-scale. The build-
ing has a flat roof. Fig. 1 shows the building with the Cartesian
coordinate system and the wind direction convention used in this study.

The mean incident wind profile, i.e. that measured in the empty
wind tunnel at the center of the turntable [33], matches that of a power
law with exponent of 0.2, as shown in Fig. 2(a). This is representative
of the terrain category II [34] that can represent the approach flow in
urban areas with a dominant high-rise building surrounded by sparse
low-rise buildings. Such an arrangement is common at the outskirts
of large cities, university campuses displaced from city centers, etc.
Fig. 2(a,b) shows the incident vertical profiles of mean stream-wise
wind speed (𝑈 ), the stream-wise turbulence intensity (𝐼𝑈 ) and the
ertical turbulence intensity (𝐼𝑊 ). 95% confidence intervals related to
he uncertainty estimates of the experimental data are marked with
ertical ticks from both marker sides. At building height, the values
re 16m∕s, 13% and 11%, respectively. The wind tunnel measurements
lso included pressure measurements using 64 taps on the roof and 26
aps on the facades (marked in Fig. 1(b) and (c) with light gray circles).

.2. RANS simulations

All RANS simulations are performed with the same domain and
rid. The domain size is 𝐿 × 𝐵 × 𝐻 = 6.8 × 6.8 × 1.6m, where the
eight corresponds to the height of the wind tunnel. Moreover, the
pstream length is 5.8𝐻 , and the downstream length is 10.8𝐻 , which
s in agreement with best practice guidelines [36]. Similarly, as in [15]
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Fig. 1. Geometry of the high-rise building with (a) main dimensions and coordinate system; (b) top view with definition of wind directions; (c) position of horizontal and (d)
vertical planes for data analysis. (Light gray circles represent the locations used for the assessment of the grid dependency).
Fig. 2. (a,b) Incident vertical profiles: (a) mean streamwise velocity, (b) turbulence intensity in streamwise (𝐼𝑈 ) and vertical (𝐼𝑊 ) direction; (c) incident Von Karman turbulence
spectrum at building height [35].
different wind directions are obtained by modifying velocity compo-
nents imposed at the inflow. The grid is a structured grid containing 0.9
million hexahedral cells where refinement regions are applied near the
high-rise building. This grid is referred to as the medium grid and it is
as shown in Fig. 3. The number of cells along the streamwise, spanwise
and vertical edges are 23, 23 and 82, respectively; the resulting 𝑦+ is
141 on average. A grid dependency study is performed for the 0◦ angle.
The results are compared against a coarser and a finer grid. The coarser
and the finer grid are characterized by a spatial resolution that is 2
times lower, respectively higher near the building model than in the
medium case. The mean pressure coefficient predicted by those three
grids (coarse, medium and fine) are compared at the middle line of
the roof in Fig. 1(c). Here discrepancies can be observed between the
coarse grid on the one hand and the medium and fine grid on the other
hand. In contrast, results of the medium and fine grid are showing a
better agreement. Thus, the mean pressure coefficient of the medium
and fine grid simulations are compared at 64 locations on the roof and
26 locations on the facades (light gray circles marked in Fig. 1(b)). As
shown in Fig. 3(c), the comparison shows that 84.4% of the points on
the building surface have a relative difference below 10% (compared
to 34.7% when results of coarse and medium grid are compared). Thus,
the simulations are performed with the medium grid.

The inlet boundary conditions of mean velocity 𝑈 , turbulent kinetic
energy 𝑘 and specific turbulent dissipation rate 𝜔 are determined from
3

the incident vertical wind tunnel profiles. The turbulent kinetic energy
𝑘 is calculated from 𝑈 and 𝐼𝑢 using Eq. (1), where 𝑎 is a parameter in
the range between 0.5 and 1.5 [36–38]. In this study, 𝑎 = 1 is chosen, as
recommended by Tominaga et al. [36]. The specific turbulent dissipa-
tion rate 𝜔 is calculated based on the turbulence dissipation rate from
Eqs. (2) and (3), with the von Karman constant 𝜅 = 0.42 and 𝛽∗ = 0.09.

𝑘(𝑧) = 𝑎(𝐼𝑢(𝑧)𝑢(𝑧))2 (1)

𝜖(𝑧) =
𝑢∗3𝐴𝐵𝐿

𝜅(𝑧 + 𝑧0)
(2)

𝜔(𝑧) =
𝜖(𝑧)

𝛽∗𝑘(𝑧)
(3)

Rough wall boundary conditions are taken into account with the
standard wall function approach using the sand-grain roughness 𝑘𝑠,
which is related to the aerodynamic roughness length 𝑧0 by 𝑘𝑠 =
9.793𝑧0∕𝐶𝑠 [39,40]. In this study, for the ground surface values of 𝑘𝑠 =
0.00238 m and 𝐶𝑠 = 8.2 are used. The building walls have roughness
𝑘𝑠 = 0 and 𝐶𝑠 = 0.5. The outlet is treated as a pressure outlet with the
constant relative pressure equal to zero and a zero-gradient boundary
condition. Depending on the wind direction, the side boundaries are
either inlet or outlet.
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Fig. 3. (a) View of the RANS grid in the central vertical plane and; (b) a horizontal plane; (c) comparison of the mean pressure coefficient, medium against the fine grid at 64
locations on the roof and 26 locations marked with light gray dots in Fig. 1(b) and (c), the main diagonal represents a perfect fit; (d) comparison of the mean pressure coefficient
for coarse, medium and fine grid at the light gray dots from Fig. 1(b) that are belonging to the middle line of the roof.
Fig. 4. Wind tunnel test section with the high-rise building model: (a) experimental and (b) computation domain [35].
The open-source code OpenFOAM (controle-volume based method)
is used to perform the simulations. Different wind directions are sim-
ulated, keeping the same grid and modifying the inflow velocity com-
ponents, where boundary conditions are assigned using the groovyBC
library in OpenFOAM. The 3D steady RANS equations are solved in
combination with the 𝑘 − 𝜔−SST model [41]. The SIMPLE algorithm
is used for pressure–velocity coupling, and the discretization is done
using second-order numerical schemes.

2.3. LES simulations and validation

The computational domain for LES is a full numerical representation
of the wind tunnel. The domain size is 𝐿 × 𝐵 × 𝐻 = 13.5 × 1.8 ×
1.6m. The original geometry of the turbulence generators (castellated
barrier, spires and roughness field) is replicated in the driver section
(i.e., pre-cursor domain), as shown in Fig. 4.

Spatial discretization of the computational domain is performed
using a predominantly hexahedral grid, see Fig. 5, where a view of the
LES grid is presented. As it can be seen from Fig. 5, additional levels of
refinement are applied around the obstacles. The base of the refinement
4

strategy is cell splitting in predefined regions. The initial grid consists
of purely cubic cells with edge 𝛿∕𝐵 = 2.6 × 10−1 as a starting point
for further refinement (coarse grid in Fig. 5(a)). The precursor domain
grid is created following the guidelines in [42]. The finest zone, in the
building nearby, has a cell size of 𝛿∕𝐵 = 1.67 × 10−2. The resulting grid
resolution is higher than the minimum required by Tominaga et al.
[36]. Furthermore, at the model walls, a body-fitted structured grid
of 15 boundary layers is adopted, with an expansion ratio of 1.05,
as Murakami [43] suggested. The resulting mean dimensionless wall
distance 𝑦+ is around 5 in all cases, while the maximum values are
around 15. The final grid of the simulation has around 27 million cells.
The percentage of hexahedrons in the grid is over 97%.

Atmospheric boundary layer flow is simulated similarly as in the
wind tunnel, as computational domain explicitly considers turbulence
generators, castellated barrier and roughness field, as shown in Fig. 4,
Dirichlet conditions on the velocity field are specified at the inlet.
15m∕s is chosen as input value, as it produces a stream-wise wind speed
of 14.3m∕s at building’s height, similar to respective wind tunnel value
of 16m∕s. The outlet is treated as a pressure-outlet with a constant
relative pressure equal to zero and a zero-gradient boundary condition
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Fig. 5. (a) View of the LES grid through the vertical center plane; (b) close view of grid in vertical center plane; (c) top view of grid near building; (d) perspective view on grid
on building surfaces and on ground plane near the building.
for the other flow variables. Other boundaries, floor, and sides of the
tunnel, as well as the building surface, are modeled as a wall. To
reduce computational time and speed up the convergence process, the
initialization of the pressure and velocity fields is done by mapping the
mean fields from coarser LES simulations.

All LES simulations are performed using the pisoFOAM solver of
OpenFOAM, which uses the PISO velocity–pressure coupling scheme
[44]. To mimic the interaction between subgrid-scale turbulence and
resolved large-scale turbulent motion and overcome the closure prob-
lem, the Wall-Adapting Local Eddy-viscosity (WALE) SGS model by
Nicoud and Ducros [45] is used. Time discretization is performed using
an implicit, second-order backward scheme. The non-dimensional time
step, based on the edge length 𝐵 and velocity at the building height
𝑈𝑟𝑒𝑓 ,𝑁𝑈𝑀 , is set to 𝛥𝑡∗ = 𝛥𝑡⋅𝑈𝑟𝑒𝑓 ,𝑁𝑈𝑀∕𝐵 = 4.3×10−3 leading to the max-
imum and mean Courant–Friedrichs–Lewy number in all simulations
equal to 3 and 0.05, respectively. As far as the spatial discretization of
the LES equations is concerned, discretization of the convection terms
is performed by applying the second-order accurate linear upwind
stabilized transport (LUST) scheme. All the other terms of the equations
are discretized using a centered second-order differentiation scheme.
All simulations are run for 1000𝑡∗ = 1000⋅(𝑡⋅𝑈𝑟𝑒𝑓 ,𝑁𝑈𝑀∕𝐵). Data has been
sampled from 200𝑡∗, representing two flow cycles through the domain,
as it is considered a minimum to develop the turbulent flow [46] fully.
Time histories of the velocity and pressure are monitored to evaluate
the convergence carefully in addition to monitoring equation residuals.
More details on the LES setup can be found in the previous work [35].

The validation of the LES simulations is conducted using available
experimental data [31]. First and second-order statistics of velocity and
pressure data considering two wind directions 0◦ and 45◦ are validated
and presented in [35]. Here only validation results related to the flow
at the building location and surface pressures are summarized.

To check whether the incident flow is adequately modeled at the
building location (i.e. at the center of the turntable of the empty
wind tunnel), an additional LES simulation using the same domain
and grid as presented in Fig. 4(b) is performed without the building
model. Fig. 2 shows the resulting profiles of the mean streamwise
velocity and the turbulence intensities from this numerical simulation,
compared to profiles obtained in the experimental measurements at the
same location. Graphs in Fig. 2 show a good agreement between data.
In addition, the power spectrums at building height from numerical
simulation and experiment fit well the Von Karman spectrum [47]
shown in Fig. 2(c). In the high-frequency range, energy in the LES
drops as expected due to the filtering. However, more than 80% of
turbulence kinetic energy is resolved, which is a generally adopted
threshold defined for a well-resolved LES [48].

Validation of the LES simulation results is performed by comparing
with the experiments of the mean �̄�𝑝 and fluctuating 𝐶 ′

𝑝 values and
presented in Table 1. The experimental data from all pressure taps
marked in Fig. 1 are considered (light gray dots at the roof and
5

Table 1
Performance metrics in terms of percentages for the pressure coefficient for 0◦ and 45◦

degrees wind direction.
Performance Flat roof building

metrics 0◦ 45◦

[%] �̄�𝑝 𝐶 ′
𝑝 �̄�𝑝 𝐶 ′

𝑝

10% tolerance 77.33 46.67 45.33 45.33
20% tolerance 97.33 90.67 84.00 60.00
30% tolerance 100.00 100.00 86.67 64.00

facades), and the percentage of data points with deviations less than
10%, 20%, and 30% are presented in Table 1. The simulated mean and
rms pressure coefficients are, in general, in good agreement with the
experimental results, that can be also observed in Fig. 6. As expected,
Table 1 also confirms that second-order statistics are more difficult to
predict, in particular in the case of wind direction of 45◦. Similar values
are reported in [2].

Fig. 7 shows the results of these validated LES simulations. Namely,
contours of the mean and rms pressure coefficient over the roof and
facades of the building are presented for angles 0◦, 15◦, 45◦.

3. Machine learning methodology

Section 3.1 first discusses a wide range of features used to predict
mean and rms pressure coefficients. This is followed by a short intro-
duction of feature selection techniques used to determine the dominant
ones that contribute the most to the prediction of the machine learn-
ing model in Section 3.2. Furthermore, Sections 3.3 and 3.4 briefly
describe applied machine learning models as well as hyperparameter
optimization techniques for improving the model performance. Finally,
in Section 3.5 the training strategy is presented related to the choice
of computationally costly LES simulations needed to provide accurate
predictions of mean and rms pressure coefficients with respect to the
entire wind rose.

3.1. Considered features

In machine learning, features are the independent variables that
represent and transform input measurements in order to improve the
predictive capability of the model. The features presented in [15]
are used as a starting point. This includes the mean pressure coeffi-
cient �̄�𝑝,RANS, the normalized local turbulence kinetic energy in the
center of the wall-adjacent cell 𝑘∕𝑈2

𝐻 , and the normalized height-
dependent incident velocity magnitude 𝑈𝑖𝑛∕𝑈𝐻 . These variables are
imposed as important ones as they are used in the standard empirical
models for rms pressure coefficient evaluation. One such model was
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Fig. 6. Comparison between results from LES and wind tunnel measurements for the 0◦ wind direction. The left plot shows the 𝐶𝑝 and 𝐶 ′
𝑝 results at 0.3 m height across the

perimeter of the building (Fig. 1c) and the right plot along the middle roof line in the central vertical plane (Fig. 1d).
proposed by Peterson [49] that calculates the rms value of the pressure
coefficient as

𝐶 ′
𝑝,RANS =

𝑘∕3 + 0.816|𝐶𝑝|𝑈𝑖𝑛
√

𝑘𝑖𝑛
0.5𝑈2

𝐻

, (4)

where 𝑘𝑖𝑛 is the incident turbulence kinetic energy, 𝑈𝑖𝑛 mean veloc-
ity magnitude of the incident atmospheric boundary layer flow and
𝑈𝐻 the reference wind velocity at building height. Note that �̄�𝑝,RANS
and 𝐶 ′

𝑝,RANS obtained using RANS are denoted with subscript RANS

throughout the paper.
Mean and rms pressure coefficients generally show a different be-

havior in different flow regimes, i.e. separation, reattachment and fully
attached flow, as observed in [35]. For example, Fig. 7 shows that the
rms pressure coefficient is higher inside of flow separation. Thus, Lam-
berti and Gorle [15] additionally included features to provide further
information on those flow regimes, such as: the friction coefficient
𝐶𝑓 = ‖𝜏𝑤‖∕0.5𝜌𝑈2

𝐻 and the non-dimensional norm of the pressure
gradient 𝐻‖∇𝑃‖∕0.5𝜌𝑈2

𝐻 . Here 𝜏𝑤 is the wall shear stress vector, 𝐻
is the building height, and 𝜌 is the air density.

Apart from these flow variables, other studies [6,26,50] considered
as well spatial position on the building surface, which in this study
corresponds to the coordinates of the faces. In addition, in [26], the
wind direction was also used as an additional feature.

Thus, this leads to a total number of 9 features (inputs) listed below:

• Mean pressure coefficient �̄�𝑝,RANS: 𝑃
0.5𝜌 𝑈2

𝐻

• Non-dimensional turbulence kinetic energy: 𝑘
𝑈2
𝐻

• Non-dimensional inflow velocity magnitude: 𝑈𝑖𝑛
𝑈𝐻

• Non-dimensional pressure gradient: 𝐻‖∇𝑃‖
0.5𝜌𝑈2

𝐻

• Friction coefficient 𝐶𝑓 : ‖𝜏𝑤‖
0.5𝜌𝑈2

𝐻

• X coordinate: 𝑥
• Y coordinate: 𝑦
• Z coordinate: 𝑧
• Wind direction: 𝛼.

These are used to predict two output parameters, the mean and the
rms value of pressure coefficient, �̄�𝑝 and 𝐶 ′

𝑝, respectively, based on the
ML model trained with the training LES simulations.

3.2. Feature selection

Feature selection is the process of reducing the number of input
variables in the model and represents an essential tool in machine
learning, which helps to improve the model performance [51]. In
6

addition, it deals with overfitting. Overfitting may occur if the model
adapts too well to the training data, but does not generalize to any
external set of data. Redundant or irrelevant features may be one of
the causes of overfitting; therefore, eliminating ambiguous features
from the training set ensures less noise during the training phase and
improves the quality of the model. Furthermore, less data demands
less storage space and eases the curse of dimensionality, i.e., eases
the difficulty of optimizing a function with too many input variables.
Thus, for a well-defined model, feature engineering can reduce the error
drastically and additionally can achieve faster training since the inferior
features are eliminated.

Thus, feature selection techniques are used to select only relevant
features to reduce the computational cost of modeling and improve
model performance. The aim is to identify the most dominant features
and potentially exclude the least important ones that can be excluded
without compromising the accuracy of the model. The end goal is to
determine such features that must be included in the training dataset
while solving similar problems, i.e. determination of the mean and rms
pressure coefficient values on the surfaces of the building.

To facilitate this goal, two feature selection techniques are used:
F-statistics [51], which considers the linear correlation between two
variables, and mutual information [52], which considers both linear
and nonlinear dependencies. The end goal is to rank the features by
their impact on the prediction based on obtained results. This ranking
is then used to determine the most dominant features.

• F-statistics
The F-statistics method determines a linear correlation between
features and the output variable and selects the best features
based on univariate statistical tests [51]. The method computes
the cross-correlation between each feature and the output and
converts it into an F score. The F score based on the coefficient
of determination is given as

𝐹 = 𝑅2

1 − 𝑅2
𝑛 − 𝑝
𝑝 − 1

, (5)

where 𝑅2 is the coefficient of determination, 𝑛 is the number of
observations, and 𝑝 is the number of features. The coefficient of
determination (𝑅2) is the square of the coefficient of correlation,
which provides information about the strength and direction of
the relationship between the two variables. Thus, the method first
computes the correlation coefficient and obtains the F score using
Eq. (5). A high value of the F score indicates a better dependency
between those two variables.

• Mutual information
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Fig. 7. Contours of mean pressure coefficient for angles: (a) 0◦, (c) 15◦, (e) 45◦; and same for rms pressure coefficient for angles: (b) 0◦, (d) 15◦, (f) 45◦.
Mutual information is a method that can capture any kind of
dependency between variables [53], not only linear as in the F-
statistics. The mutual information between two variables is given
by Ross [52]:

𝐼(𝑥, 𝑦) =
∑

𝑖,𝑗
𝑃𝑥𝑦(𝑖, 𝑗) log

𝑃𝑥𝑦(𝑖, 𝑗)
𝑃𝑥(𝑖)𝑃𝑦(𝑗)

, (6)

where 𝑃𝑥 and 𝑃𝑦 are the marginals of the variables 𝑋 and 𝑌 ,
respectively and 𝑃𝑥𝑦(𝑖, 𝑗) is the joint probability distribution. Mu-
tual information between two variables is a non-negative value
that measures the dependency between the variables. High values
indicate high dependency. Intuitively, 𝐼 measures how much
knowing the value of one variable reduces the uncertainty of the
other. For example, if 𝑥 and 𝑦 are two independent variables,
knowing 𝑥 does not give any information about 𝑦 and vice versa,
7

so their mutual information will be zero. Thus, the dominant
feature can be determined by indicating a strong dependency on
the target variable.

3.3. Machine learning models

The success of the algorithm is judged by reporting the root mean
square error (RMSE) and the coefficient of determination (𝑅2). For
the RMSE value to be used as a measure, it is also necessary to
relate to the scale of the variable of interest, e.g., the mean pressure
coefficient. On the other hand, 𝑅2 measures how well the regression
model approximates the given data, and 𝑅2 = 1 indicates that the model
fits the given data perfectly. A variety of machine learning algorithms
are considered:
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• Support vector machine
A support vector machine (SVM) is a supervised learning algo-
rithm initially designed for solving binary classification tasks but
could also be extended for solving regression problems [54]. The
objective of the support vector machine algorithm is to find a
hyperplane in a high dimensional feature space that distinctly
regresses the data points. The dimension of this hyperplane de-
pends on the number of features, meaning that for two features,
the hyperplane is a line, and for three features, it is a plane, etc.
The problem is that one can define many possible equations of a
line (hyperplanes) for the same data points. Thus, most regression
models minimize the sum of squared errors in order to obtain
the best hyperplane. In contrast, the objective function of SVM
minimizes the L2-norm of the unknown coefficient vector and not
the squared error [55], i.e.,

min‖𝑤‖

2
2,

where 𝑤 represents the vector of coefficients of regression. The
error term is handled by constraints, where it is less than or equal
to a specified margin, called the maximum error as

𝑦𝑖 −𝑤𝑥𝑖 ≤ 𝜖,

𝑤𝑥𝑖 − 𝑦𝑖 ≤ 𝜖,

where 𝜖 is the maximum error, also called margin of error. The
data points that are closest to the hyperplane are called support
vectors, hence the name support vector machine, which influence
the position and orientation of the hyperplane. These support
vectors are then used to maximize the margin of error. Maximiz-
ing the margin distance provides some reinforcement and avoids
overfitting. Additionally, the SVM uses a Kernel trick to work well
with the nonlinear data [55]. The idea is to transform the training
data into a high dimensional space where it becomes linear and
then use a simple linear SVM. The most common choices of the
kernel functions are linear, polynomial, radial basis function, and
sigmoid.

• Random forest
In machine learning, instead of using only one model, an ensem-
ble of models can be used to improve the model’s performance.
Ensemble methods combine several models into a single machine
learning model to increase the performance and robustness [56].
Random forest is a type of model that combines decision trees [57,
58]. A decision tree is a tree structure model that breaks down a
dataset into smaller and smaller subsets having similar values. A
new branch of the tree is created by splitting the data into two
subsets. One of the choices to split the data into two groups is
variance [59]. Initially, the algorithm generates various splits,
and the variance of each subset is computed. It is known that
the dataset having similar values has low variance. Thus, to
combine similar values, the algorithm selects the split that gives
the smallest variance. This split process is repeated until the last
node of the tree is pure, i.e., either has all homogeneous values or
only one value. For prediction, the test data are fed to the trained
tree and sorted into the branches having similar values until the
last nodes. The output is then the average of the last nodes in
which the test data is sorted. To avoid overfitting and increase the
performance, the random forest combines several decision trees
and takes the average of their outputs.

• Gradient boosting
The gradient boosting algorithm is another ensemble algorithm
considered in this study [60]. It is used for reducing bias and vari-
ance in supervised learning that combines several models (weak
learners) into a single robust model in an iterative fashion [61].
The algorithm starts with a simple model (first weak learner)
and uses it to predict some output. As a next step, in order to
improve this output, the algorithm fits a new model (next weak
8

learner) to the residual errors made by the previous model. This
process is then repeated for certain iterations until the residual
is minimized. Adding a new model to improve the previous
model iteratively (boosting stages) is called boosting. In gradient
boosting, these models are the decision trees with only a few
branches. On the other hand, the random forest constructs full-
grown decision trees. Also, the random forest algorithm builds
trees in parallel and thus faster than the gradient boosting, which
builds trees sequentially. However, gradient boosting sometimes
gives better results than the random forest. The reason being each
tree in the gradient boosting is grown using information from
previously grown trees, which minimizes the overall error.

• Neural Network
An artificial neural network (ANN) has also been used for re-
gression in this work. It is comprised of a large number of
connected nodes called neurons, each of which performs a simple
mathematical operation [62,63]. They are organized in several
layers, including one input layer, one output layer and one or
more hidden layers. For example, it has features described in
Section 3.1 as input and output as mean and/or rms pressure
coefficient in our case. Neurons within two successive hidden
layers are cross-connected with varying weights and biases. The
computation results from the previous neurons are sent to the
neurons of the next layer in a feedforward manner. This process
from the input to the output layer is called the feedforward
procedure, which can be explained using a single neuron readily.
As shown in Fig. 8(a), the input values 𝑥𝑖 are feedforwarded into
a neuron through some connections. Each of these connections
is characterized by some weight 𝑤𝑖. The output of the neuron is
then computed directly from the sum of the product of connection
weights plus some bias 𝑏 as

𝑏𝑖 +
𝑛
∑

𝑖
𝑥𝑖𝑤𝑖, 𝑖 = 1,… , 𝑛.

An undesirable property of this formula is that the output pre-
diction is a linear function. Thus, to get nonlinear characteristics,
some nonlinear function 𝑓 , also known as the activation function
is applied to this weighted sum as

𝑧𝑖 = 𝑓 (𝑏𝑖 +
𝑛
∑

𝑖
𝑥𝑖𝑤𝑖), 𝑖 = 1,… , 𝑛.

This nonlinear function assures the nonlinear output of the neu-
rons. There are different choices for the activation function,
namely the sigmoid function 𝑓 (𝑥) = (1 + 𝑒−𝑥)−1, the hyperbolic
tangent function 𝑓 (𝑥) = 𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥 , or the rectified linear unit (ReLu)
𝑓 (𝑥) = max(0, 𝑥) [64]. The selection of the appropriate activation
function is later discussed in Section 3.4.
Each layer of the neural network contains such single neurons,
and the feedforward neural network is the combination of such
layers, as shown in Fig. 8(b). Thus, the output of a layer is the
combined output of each neuron within that layer. In order to
improve this output, the neural network has to adjust the weights
and biases of these layers. This adjustment is made by finding
the weights and biases that minimize the error between truth and
the output iteratively during the training process. A loss function
can be defined to measure this difference between the predicted
and the actual output. The most commonly used loss function is
the mean square error, defined for 𝑁 input–output training pairs
(𝑥𝑖, 𝑦𝑖) is

𝐸 = 1
2𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2,

where �̂�𝑖 denotes the predicted output. The loss function is usually
minimized using a gradient descent algorithm, which adjusts the
weights and biases in the direction of the negative gradient of
the loss function. The new weights and biases are determined
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Fig. 8. (a) Single-layer perceptron; (b) feedforward neural network. The dotted neurons represents dropout.
iteratively until convergence (back propagation of errors). There
are different modifications of gradient descent algorithms called
optimizers, e.g., stochastic gradient descent, RMSProp [65] or
Adam [66]. See [63] for more details. In short, training can be
defined as the process of finding the optimal weights/bias, which
is achieved by minimizing the error between ANN output and
truth [26,67]. When attempting to train the neural network using
these optimization techniques, overfitting might be a problem.
The dropout technique proposed in [68] avoids this overfitting
problem in neural networks. The basic idea is to randomly drop
the neurons along with their connections from the neural network
during training, as shown in Fig. 8 with the dotted circles. This
process repeats itself for every epoch, i.e., iteration, sampling only
a thinned neural network at each iteration. Thus, the dropout
technique avoids the co-adaptation making the model less prone
to overfitting.

3.4. Hyperparameter optimization

The above machine learning algorithms aim to train a model that
minimizes a loss function over a given data. In addition to it, these
models are governed by some underlying parameters called hyperpa-
rameters presented in Table 3. For example, in the case of neural
networks, these hyperparameters are the number of hidden layers,
activation functions, the number of neurons, or the algorithm used for
reducing the loss function called optimizer. The problem is that it is
not a priori known how many layers are the most suitable, how many
neurons are the best, or which optimizer will give the best results.
Hence, the choice and the combination of these parameters significantly
affect the model’s performance. Consequently, it is necessary to define
an efficient method to determine the optimal combinations of these
hyperparameters that will provide the best results. This problem of
determining optimal hyperparameters can be formulated as an opti-
mization problem, which in this study is solved using the random
search technique [69,70]. See [71,72] for the implementation and
applications of random search hyperparameter optimization.

Also, an adaptive learning rate is considered. When learning stag-
nates, and a metric has stopped improving, a model often benefits from
9

reducing the learning rate by some factor. Thus, if no improvement
is noticed for a few epochs, the learning rate is reduced. Finally, the
hyperparameter optimization for the ML models discussed above is
performed, and the considered hyperparameters for each model are
presented in Table 3.

3.5. Full dataset and adaptive training strategy

The full dataset consists of the RANS and LES simulations for 7
different wind directions: 0◦, 7.5◦, 15◦, 22.5◦, 30◦, 37.5◦, 45◦. Given
the symmetry of the building, these wind directions cover the entire
wind rose. The considered RANS grid has 7153 faces on the building
surface. Thus, for each wind direction, there is a set of 7153 data
points for each considered feature, i.e. in the general case, nine features
defined in Section 3.1 and two outputs, 𝐶𝑝 and 𝐶 ′

𝑝.
Note that this number of faces on the building surface is a con-

sequence of the adopted RANS grid, yet it strongly influences the
machine learning output as it defines the size of the dataset. Thus, this
number should be large enough to provide enough data for the machine
learning predictions. Therefore, the optimization of the size of the grid
in terms of its influence on the machine learning output could be of
interest in future studies.

The main aim is to optimize the machine learning framework not
just in terms of the model but as well as training datasets that can
capture the entire wind rose, i.e. the whole range of wind directions.
This leads to optimizing, i.e. reducing the number of computationally
costly LES simulations that the machine learning algorithm uses to
improve the prediction of 𝐶𝑝 and 𝐶 ′

𝑝 coefficients. For that purpose, this
paper presents an adaptive training strategy that gradually increases
the number of selected training datasets, as:

• Baseline model: that exploits as training data the LES datasets of
only two wind directions, i.e., 0◦ and 45◦. This means that for
training, the ML model takes features (RANS-based data) as inputs
and the corresponding 𝐶𝑝 or 𝐶 ′

𝑝 LES values as outputs for those
two wind directions. As the goal is the adequate prediction for
all wind directions, it is reasonable to consider a combination of
those two extreme wind directions as the first training set. Those
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Table 2
Test RMSE and 𝑅2 values of the selected models (with or without hyperparameter optimization) trained on {0◦ , 45◦} wind direction datasets and tested on the 15◦ wind direction
dataset.

Model 𝐶𝑝 𝐶 ′
𝑝

Non-optimized model Optimized model Non-optimized model Optimized model

Support vector machine 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE

5 flow features 0.9293 0.1464 0.9293 0.1464 −0.2264 0.1176 −0.2264 0.1176
5 flow features + Angle 0.9352 0.1431 0.9352 0.1431 0.2589 0.0914 0.2589 0.0914
5 flow features + Coords 0.9253 0.1512 0.9253 0.1512 0.1805 0.0961 0.1805 0.0961
5 flow features + Coords + Angle 0.9511 0.1224 0.9511 0.1224 0.4006 0.0822 0.4006 0.0822

Random forest 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE

5 flow features 0.9295 0.1421 0.9381 0.1377 −0.2123 0.1169 −0.1887 0.1158
5 flow features + Angle 0.9368 0.1399 0.9445 0.1304 0.2830 0.0908 0.2959 0.0891
5 flow features + Coords 0.9301 0.1502 0.9416 0.1337 0.1846 0.0936 0.2097 0.0944
5 flow features + Coords + Angle 0.9532 0.1200 0.9581 0.1131 0.3840 0.0882 0.4223 0.0807

Gradient boosting 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE

5 flow features 0.9321 0.1408 0.9501 0.1237 −0.1188 0.1123 −0.0855 0.1107
5 flow features + Angle 0.9415 0.1313 0.9585 0.1127 0.3131 0.0880 0.3738 0.0841
5 flow features + Coords 0.9403 0.1380 0.9512 0.1217 0.2908 0.1084 0.3573 0.0851
5 flow features + Coords + Angle 0.9524 0.1199 0.9613 0.1088 0.3936 0.0827 0.4403 0.0794

Artificial neural network 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE

5 flow features 0.9469 0.1297 0.9515 0.1201 −0.1012 0.1078 0.0702 0.1024
5 flow features + Angle 0.9588 0.111 0.9668 0.1008 0.3994 0.0823 0.5046 0.0759
5 flow features + Coords 0.9606 0.1098 0.9633 0.1051 0.3524 0.0978 0.4322 0.0800
5 flow features + Coords + Angle 0.9656 0.1002 0.9705 0.0951 0.4358 0.0803 0.5745 0.0693
t
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incident wind directions are extreme in terms of flow patterns,
as 0◦ wind direction creates a large separation bubble on top of
the building and symmetrical separations on the sides, whereas
the 45◦ angle produces two symmetrical conical separations on
top of the building and separation of the flow behind the leeward
sides of the building. More details, including the visualizations
of those flow structures, over the same high-rise building, are
presented in [35]. More importantly, those flow features are
affecting the pressure distribution in a very different way, as
shown in Fig. 7. The pressure distribution pattern created due
to the wind direction of 15◦, as well as the others, can be seen
as ‘‘in between’’ above mentioned extreme wind directions, thus,
making 0◦ and 45◦ incident angles good candidates for the initial
training set.

• Universal model: In order to improve the accuracy of the ma-
chine learning model, a need for an additional LES dataset at
some intermediate wind direction may arise. Consequently, an
additional wind direction dataset is added to the initial training
dataset by including the relevant features as inputs and LES
outputs for that specific wind direction. This process is controlled
by monitoring 𝑅2 and RMSE values. 𝑅2 and RMSE values are
estimated for each wind direction by comparing the ML model
results against LES data on the test wind directions (the training
wind directions are excluded). If necessary, this procedure can
be repeated until a satisfactory prediction is obtained. To achieve
this, an important criterion is followed. Namely, the machine
learning model should provide an 𝑅2 value of at least 0.8 for each
tested wind direction, as the regression models with 𝑅2 ≥ 0.8 are
considered satisfactory [73]. Section 4.2 will further explore the
inclusion of the additional training set and, finally, the formation
of the optimal training set.

. Results

.1. Initial ML model, preliminary feature selection and hyper-parameter
ptimization

Based on the initial training dataset {0◦, 45◦}, all machine learning
odels are tested for all considered wind directions, and the worse

esults are obtained for the angle of attack of 15◦. Thus, Table 2 reports
2 and RMSE values for each machine learning model for the 15◦ case.
10

d

It is noticed that the artificial neural network performs best among
all considered approaches. Also, the gradient boosting regression gives
slightly better results than the random forest. While in comparison, the
random forest regression outperforms support vector regression.

Fig. 9 illustrates these results more clearly. The three plots show
the 𝐶𝑝 and 𝐶 ′

𝑝 results at three different heights along the perimeter of
he building and one plot in the central vertical plane, as illustrated in
ig. 1(c) and (d). It can be observed that the artificial neural network
ollows the trend of 𝐶𝑝 and 𝐶 ′

𝑝 values comparatively better than the
other models. In particular, this is related to the second and third
horizontal slices, i.e., at heights 0.2 m and 0.3 m, where all other
models fail to predict 𝐶 ′

𝑝 compared to the ANN. A similar phenomenon
is clearly observed in the vertical center plane plot, where the ANN
mimics the LES results quite well. Note that the difference between
RMSEs in Table 2 for 𝐶𝑝 and 𝐶 ′

𝑝 is due to the fact that RMSE is a scale-
ependent metric, and 𝐶𝑝 and 𝐶 ′

𝑝 have different scales, as demonstrated
n Fig. 7.

Regardless of the model, all developed models perform compara-
ively better for 𝐶𝑝 than 𝐶 ′

𝑝, as can be seen from Table 2 and Fig. 9.
he reason can be related to the fact that �̄�𝑝,RANS obtained using RANS

s used as a feature, that is not the case for 𝐶 ′
𝑝.

Fig. 9 shows another interesting phenomenon, where the 𝐶 ′
𝑝 results

n zone 1–2 are overpredicted. The reason is the difference between
he range of the 0◦ and 45◦ training dataset 𝐶 ′

𝑝 values. For example,
ig. 7(b) and (f) indicate that the 𝐶 ′

𝑝 values for the 0◦ and 45◦ wind
irections in zone 1–2 range from 0.123 to 0.458 and 0.089 to 0.286,
espectively. Since the machine learning models interpolate between
hese values to predict the results for the 15◦ test case, they get
nfluenced by these values. Therefore, the machine learning models
eliver 𝐶 ′

𝑝 results in the range of 0.125 to 0.398 for the 15◦ test case,
ike a weighted average of 0◦ and 45◦ 𝐶 ′

𝑝 results. Here the weighted
verage means that the machine learning algorithms put more weight
n the 0◦ as the 15◦ is closer to the 0◦ than the 45◦ during testing.
herefore, the predicted values are more influenced by high 0◦ 𝐶 ′

𝑝
alues, and are overpredicted.

In addition, Table 2 demonstrates the benefit of carefully selecting
nput features, as it compares models using different feature sets. In all
resented cases, feature sets include the RANS five features, introduced
n 3.1 and in addition, their combination with coordinates and wind

irection. Table 2 reveals the significant effect of different feature sets
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Table 3
Column 2: The type of the hyperparameter and its default/initial value. Column 3: the list of all hyperparameter values tested during the hyperparameter optimization. Column
4: The optimized hyperparameters obtained for each model.

Model Hyperparameter: Default value Hyperparameter values Optimized value

Support vector regression Kernel: Radial basis function
Regularization parameter: 1
Kernel coefficient: 1/(no. features × Variance)

Linear, Polynomial, Radial basis function, Sigmoid
1, 10, 100, 1000, 10 000
1/(no. features × Variance), 1/no. features

Radial basis function
1
1/(no. features × Variance)

Random forest Number of trees: 100
Maximum depth of a tree: pure tree
Minimum number of samples at leaf node: 1
Minimum number of samples required to split an
internal node: 2
Bootstrap: True

20 evenly spaced values from 100 to 2000
10 evenly spaced values from 10 to 100
1, 2, 4
2, 5, 10

True, False

1100
50
1
2

True

Gradient boosting Number of boosting stages: 100
Learning rate: 0.1
Minimum number of samples at leaf node: 1
Maximum depth of the individual tree: 3

Range from 1 to 2000
0.01, 0.1, 0.05, 0.2, 0.5
1, 2, 4: 1
1 to 10

1217
0.15
1
3

Artificial neural network Number of hidden layers: 5
Number of neurons: 10
Learning rate: 0.001
Activation function: relu, final layer: linear
Dropout rate: -
optimizer: Adam
Batch size: 64
Number of epochs: 100

1, 2, 3, 4, 5, 6
5, 10, 16, 32, 64, 128, 256
0.0005, 0.001, 0.005, 0.01, 0.1, adaptive
tanh, relu, linear
0.1, 0.2, 0.3, 0.4, 0.5
Adam, Adamax, RMSprop
8, 16, 32
100, 200, 300, 400

4
32, 64, 64, 32
Adaptive
relu, final layer: linear
0.15
Adamax
32
300
w

m
t

u

e
i

on the model’s output. It can be noticed that the results obtained with
only five flow features are not satisfactory enough for some models as
the 𝑅2 values are negative, meaning that the model fails to follow the
rend of the data. On the other hand, it is apparent that the inclusion
f coordinates and/or wind direction improves the model performance
emarkably. Table 2 demonstrates that the model trained with five flow
eatures and wind direction performs slightly better than the model
rained with five flow features and coordinates. This is because the
ind direction is a dominant feature due to its strong correlation with

he outputs. The feature selection and the dominant features are later
iscussed in Section 4.3. Nonetheless, the results obtained with all nine
eatures are superior.

Table 2 also highlights the benefits of hyperparameter optimization.
t can be seen that the optimal choice of hyperparameters significantly
mproves the model performance. In the case of the artificial neural
etwork and 𝐶 ′

𝑝, the 𝑅2 value increases by 60%, and RMSE decreases
y 30% after hyperparameter optimization. Table 3 lists all tested
yperparameter values and shows the default/initial as well as the final
ptimized hyperparameter values that are used for each model. The
nitial hyperparameters for the support vector regression, random forest
nd gradient boosting are as defined in the scikit-learn library [74].
here is no change in support vector regression results before and after
yperparameter optimization as the default parameters give the best
esults. Additionally, as discussed in Section 3.4, an adaptive learning
ate has been used for the neural network. The algorithm reduces the
earning rate by 0.2 if no improvement is noticed in the validation loss
or two consecutive epochs.

Therefore, as the optimized artificial neural network obtained the
est results, the remainder of the paper will focus on this specific
ethodology. In addition, it can be concluded that even though it

s evident that the quality of the results improves noticeably after
he hyperparameter optimization, the results obtained for the 15◦

ind direction case with {0◦, 45◦} wind direction datasets are not yet
atisfactory.

.2. Universal ML model

Results for prediction of 𝐶 ′
𝑝 using the baseline model reveal that

n additional wind direction dataset is required to reach satisfactory
erformance, as only two extreme wind directions {0◦, 45◦} cannot

model multi-directional wind loads properly. However, the criterion
for selecting the intermediate wind direction is not clear. Intuitively,
11
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Table 4
Test average 𝑅2 values for the optimized ANN trained on different training datasets

ith nine features.
Training data 𝐶𝑝 𝐶 ′

𝑝
Average 𝑅2 Average 𝑅2

0◦ , 7.5◦ , 45◦ 0.9566 0.6657
0◦ , 15◦ , 45◦ 0.9655 0.8296
0◦ , 22.5◦ , 45◦ 0.9832 0.8531
0◦ , 30◦ , 45◦ 0.9613 0.7856
0◦ , 37.5◦ , 45◦ 0.9577 0.6779

selecting the mid wind direction of 22.5◦ may be the obvious choice
since the predictability of the model drops further away from the
nearest neighbor points [15]. Moreover, this can be useful, as it is
not known in which case the ML model will perform best in advance.
Nevertheless, given that the prediction of 15◦ was the worst result
with the baseline model, one could argue that including this specific
wind direction might provide superior performance. Therefore, both
approaches are tested, i.e. the optimized ANN model is trained with
{0◦, 15◦, 45◦} and {0◦, 22.5◦, 45◦} wind directions, whereas the trained
models are tested for the 30◦ wind direction. The obtained 𝑅2 values
in the case of 𝐶 ′

𝑝 are 0.8824 and 0.8063 when the ANN models trained
with {0◦, 22.5◦, 45◦} and {0◦, 15◦, 45◦} datasets are used for testing the
30◦ wind direction test case, respectively. The results clearly show
superior performance when 22.5◦ wind direction is included.

Considering that the universal training dataset should provide op-
timal performance over the entire wind rose, the average 𝑅2 values
obtained over all test wind directions are compared. Furthermore, all
possible training sets are considered by adding a new dataset for one
wind direction between two extremes with the stepsize of 7.5◦, as
shown in Table 4. The testing is performed on all wind directions that
are not included in the training set, e.g., the wind directions 7.5◦, 22.5◦,
30◦ and 37.5◦ are the test cases for the training dataset {0◦, 15◦, 45◦}.
Since 𝑅2 is a scale-independent metric, it is used as a performance

easure. The averaged 𝑅2 results over all test wind directions confirm
he initial hypothesis that the mid wind direction of 22.5◦ provides the

most informative outcomes; therefore, the training set {0◦, 22.5◦, 45◦} is
sed in all further experiments.

The benefits of adding the intermediate wind direction can be
stimated by comparing the results obtained using the universal model
n Table 5 to the baseline model in Table 2 with the complete feature

et, i.e., all nine features. The predictions obtained for all tested wind
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Fig. 9. Comparison between results from LES and different ML models trained on {0◦ , 45◦} wind direction datasets with nine features and tested for the 15◦ wind direction. The
three plots show the 𝐶𝑝 and 𝐶 ′

𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one plot along the lines in the central vertical plane (Fig. 1d).
Table 5
Test RMSE and 𝑅2 values of the optimized ANN trained on {0◦ , 22.5◦ , 45◦} wind direction datasets and tested for 15◦ and 30◦ wind direction datasets.

Model 𝐶𝑝 𝐶 ′
𝑝 𝐶𝑝 𝐶 ′

𝑝

15◦ 30◦

Artificial neural network 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE

5 flow features 0.9653 0.1030 0.3672 0.0822 0.9672 0.0907 0.4769 0.0749
5 flow features + Angle 0.9717 0.0930 0.7985 0.0478 0.9759 0.0777 0.8611 0.0412
5 flow features + Coords 0.9708 0.0945 0.7849 0.0501 0.9796 0.0890 0.8308 0.0485
5 flow features + Coords + Angle 0.9764 0.0871 0.8294 0.0438 0.9814 0.0701 0.8824 0.0355
6 dominant features 0.9768 0.0850 0.8256 0.0439 0.9812 0.0702 0.8861 0.0352
directions are substantially improved, as in all cases, 𝑅2 values are
above 0.8 when considering the complete feature set. Again, the worst
results are obtained for the 15◦ wind direction. Nevertheless, Table 5
reports that the 𝑅2 value for the 15◦ case has increased by 43%, and the
RMSE has decreased by 37% for the complete feature set case. These
significant improvements are also well depicted in Fig. 10. A similar
improvement is observed for all other tested angles, and as an example,
results obtained for 30◦ are presented as well in Table 5. 𝑅2 and RMSE
values for 30◦ with all features demonstrate a very good fit, as the 𝑅2

value has been improved by approximately 50% after considering all
features.

Table 5 again highlights the necessity of defining the most impor-
tant features, as it indicates that the inclusion of the wind angle or
coordinates as additional features significantly improves the model’s
performance. This is well observed in Fig. 11, where instability is ob-
vious when an initial subset of 5 flow features is used and successfully,
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this is overcome by simply including the wind direction or coordinates
in the feature set.

Since the observed training dataset {0◦, 22.5◦, 45◦} provides satisfac-
tory results for all tested wind directions, this dataset is considered as
the universal training dataset.

4.3. Dominant features

So far, the obtained results are discussed based on five flow features
and their combinations with additional features such as wind direction
and coordinates. However, some features might not contribute much
to the final output among these nine features. Thus, feature selection
techniques are utilized to determine the most dominant features and
omit the irrelevant information in the training datasets.

The F-statistics and mutual information techniques explained in
Section 3.2 are used for feature selection. The results are presented



Building and Environment 234 (2023) 110135A. Sarkić Glumac et al.
Fig. 10. Comparison between results from LES, RANS (or Paterson-Holmes (PH) model for 𝐶 ′
𝑝) and the ANN trained on {0◦ , 45◦} and {0◦ , 22.5◦ , 45◦} wind direction datasets with

nine features and tested for the 15◦ wind direction. The three plots show the 𝐶𝑝 and 𝐶 ′
𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one

plot along the lines in the central vertical plane (Fig. 1d).
in Fig. 12, where a high value depicts a strong correlation between
that feature and the output. The barplot also shows the ranking of
the features based on obtained results at the bottom of the respective
bar. The F-statistics technique captures the linear dependency between
the output and features, whereas mutual information can consider
nonlinear dependencies. When modeling 𝐶𝑝 both techniques depict
�̄�𝑝,RANS as the most dominant attribute, as expected. Besides, both
techniques in modeling 𝐶𝑝 and 𝐶 ′

𝑝 exhibit mean pressure coefficient,
wind direction, 𝑥 and 𝑧 coordinates as the most prominent features with
only slight variation in their ranks. The only exception is related to the
mutual information result for 𝐶𝑝 where the non-dimensional pressure
gradient is ranked as the fourth feature followed by the 𝑧 coordinate.
Nonetheless, it can be concluded that both methods show that the most
dominant features are the mean pressure coefficient, wind direction and
coordinates.

In contrast, both methods infer that the non-dimensional inflow
velocity magnitude, friction coefficient, and 𝑦 coordinate are the least
important attributes. The lesser importance of the 𝑦 coordinate can be
attributed to its lower variance compared to the other two coordinates,
which was noticed in [50] as well. Similarly, as the inflow velocity
magnitude does not provide significant variation in the data and in-
formation on the different flow regimes, it is one of the least important
features.

From Fig. 12, it can be stated that ranks after the first four most
dominant features do not change much considering both techniques
and both outputs. Thus, to determine the relevant features, the ANN
model is tested for the 15◦ wind direction test case based on the
13
{0◦, 22.5◦, 45◦} training dataset by increasing the number of features
sequentially, starting with the first four. It is observed that the six
leading features (mean pressure coefficient, 𝑥 and 𝑧 coordinates, non-
dimensional turbulence kinetic energy, non-dimensional pressure gra-
dient) deliver the maximum 𝑅2 value for both 𝐶𝑝 and 𝐶 ′

𝑝 predictions,
and perform as good as the complete feature set. Thus, they form
the optimal feature subset. This is confirmed in Fig. 13. Improvement
in computational cost is also witnessed: the model with the optimal
feature subset trains approximately two times faster than the model
with the complete feature set.

Lamberti and Gorle [15] have employed principal component analy-
sis to determine which flow features contribute most to the final output.
Thus, to verify and confirm the results, in the present study the prin-
cipal component analysis is performed with only five features, similar
to their study. It is observed that the first two principal components
comprise 99% of the total variance, and the mean pressure coefficient
and pressure gradient are the most dominant flow features. However,
the results show that considering features like the coordinates and
the wind direction improves the model performance significantly, and
thus they are included in the analysis. Again, with nine features, it is
noticed that the first two principal components comprise 99% of the
total variance and received dominant features similar to the F-statistics
results.

Therefore, based on the presented analysis, it can be concluded
that the most optimal features are the first six features highlighted in
Fig. 12.
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Fig. 11. Comparison between results from LES and ANN trained on {0◦ , 22.5◦ 45◦} wind direction datasets with different input features and tested for the 15◦ wind direction.
Considered features are: five flow features, five flow features plus wind direction or coordinates (6 or 8 features), and five flow features with both wind direction and coordinates
(9 features). The three plots show the 𝐶𝑝 and 𝐶 ′

𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one plot along the lines in the central vertical
plane (Fig. 1d).
4.4. Confidence intervals

A confidence interval can be used to measure the degree of un-
certainty of the developed machine learning model [75]. A way to
estimate this uncertainty related to the machine learning framework
is to use bootstrap as done in [15]. Bootstrap is a famous resampling
method used to estimate the statistics of machine learning algorithms.
Also, bootstrapping might help to reduce variance and, by extension,
prevent overfitting. However, the need for recursion in order to pro-
duce 𝑁 samples complicates implementation and requires much more
computational power. Thus, this overall increases the time required to
train the machine learning framework. See [76] for more details on the
bootstrap method.

In this work, to assess the quality of the developed feedforward
neural network, 100 training samples by sampling the original dataset
with replacement are generated. The results of the ANN trained on
{0◦, 22.5◦, 45◦} datasets with six optimal features and five flow features
and tested for 15◦ wind direction are discussed here. Those cases are
selected as they represent the optimal case and the case with the worst
prediction, as shown in Table 5.

It is observed that 92.04% of LES 𝐶𝑝 and 68.37% of LES 𝐶 ′
𝑝 data lie

in the confidence interval of the model trained with five flow features.
On the other hand, a considerable improvement is observed in the
results for the model trained with six optimal features, where 97.29%
of LES 𝐶 and 94.48% of LES 𝐶 ′ data lie in the confidence interval.
14

𝑝 𝑝
This improvement is also clearly illustrated in Fig. 14, which shows that
most of the ANN results fall within the confidence interval. Also, it can
be concluded that the developed model demonstrates great precision as
the confidence is narrow.

Another phenomenon that is observed is the smoothing of results
due to bootstrapping. For example, in Fig. 11, one can see that the
results obtained with five features have some fluctuations in the last
section. However, by applying bootstrapping and due to averaging,
these oscillations are damped. Anyhow, Fig. 13 show that the model
with six optimal features outperforms the five flow features by a
considerable margin, clearly highlighting the advantages of feature en-
gineering suggested in this paper. Thus, feature engineering combined
with hyperparameter optimization is suggested as a reliable approach
to tackle similar problems.

4.5. Extrapolation problem and transfer learning application

Here the developed framework is tested for extrapolation prob-
lems. Unfortunately, such problems are inherently hard to solve using
regression-based techniques. This is because the trend in the data, as
summarized by the trained model, does not necessarily hold outside
the model’s scope. Consequently, extrapolation beyond the range of the
training data must be treated skeptically.

In particular, of interest are predictions for the 0◦ wind direction
test case when the model has been trained on {15◦, 30◦, 45◦} wind
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Fig. 12. Feature selection results using F-statistics and mutual information. The optimal six features are highlighted in gray color, and the rank of each feature is mentioned at
the bottom of the respective bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
direction datasets and 45◦ when the model is trained on {0◦, 15◦, 30◦}
wind direction datasets. For the 0◦ test case, the ANN model gives
𝑅2 = 0.9113 and RMSE = 0.1791 for 𝐶𝑝, while 𝑅2 = 0.1291 and RMSE =
0.0811 for 𝐶 ′

𝑝. Similarly, for the 45◦ test case, the ANN model offers
𝑅2 = 0.9308 and RMSE = 0.1073 for 𝐶𝑝, while 𝑅2 = 0.2608 and RMSE =
0.0541 for 𝐶 ′

𝑝. Although the results for 𝐶𝑝 are satisfactory, the neural
network fails to accurately predict extrapolation results of 𝐶 ′

𝑝, as they
have 𝑅2 values below 0.30. This can also be witnessed in Fig. 15, where
𝐶 ′
𝑝 values around the buildings are compared with the LES data. Thus,

the 0◦ case is discussed here as it provides severely underpredicted
results. This is mainly prominent in zones 1−2 and 3−4 of the height
plots in Fig. 15, where the predicted 𝐶 ′

𝑝 values are nowhere near
the LES values. Also, between two considered extrapolation cases, the
results for 0◦ are worst than 45◦.

Another interesting problem with the extrapolation is that the pre-
dicted 𝐶 ′

𝑝 results lack symmetry, which is expected for the 0◦ case,
as evident from the LES results. This is because the training dataset
contains simulations for 15◦, 30◦, and 45◦ wind directions, which do
not hold such inherent symmetry of �̄�𝑝 and 𝐶 ′

𝑝 in their flow fields, as
demonstrated in Fig. 7. Thus, the ANN could not learn this symmetry
during the training phase and failed to capture it for the test problem.

To tackle this extrapolation problem and for plausible improve-
ments of 𝐶 ′

𝑝 predictions, a transfer learning technique is considered
in this work, which has been used to solve similar problems in the
literature before [77–79]. Transfer learning is a technique that uses a
pre-trained model that has already been learned on a wide variety of
data to solve a similar problem that lacks data. It improves the learning
of a new task by utilizing the knowledge from a pre-trained model. The
idea is to reuse partly or wholly the pre-trained model on a similar
problem to accelerate training and improve performance.

The following workflow is pursued to construct the transfer learning
framework. Since RANS results for the 0◦ case are already available,
this information can be used to train the model and construct the pre-
trained model. Basically, the pre-trained model is obtained by learning
on the data comprised of only RANS features for all wind directions
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and corresponding 𝐶 ′
𝑝,RANS values obtained using the empirical model.

Therefore, the developed model has already learned the features that
correspond to the 0◦ case and has some information related to the
distribution of 𝐶 ′

𝑝 values, which makes it robust during the re-training
process. Furthermore, a few layers of this pre-trained model are taken
during the transfer learning process and frozen to avoid destroying any
of the vital information they contain during the fine-tuning process.
Also, if necessary, some new trainable layers are added to the existing
model. Finally, the model is trained on the new dataset having RANS
and LES results at 15◦, 30◦, and 45◦ wind directions and six optimal
features. Additionally, the learning rate is reduced to prevent overfit-
ting. To solve the problem at hand, two extra layers are added to the
pre-trained model with 32 neurons in each layer. The pre-trained model
has a total of 8705 parameters, and the transfer learning model has a
total of 9761 parameters, out of which 1409 are trainable.

The results obtained using the transfer learning model are also
shown in Fig. 15. The trained transfer learning model delivers 𝑅2 =
0.5310 and RMSE = 0.0648 for the 0◦ test case, which evidently shows
better results than the results obtained using the traditional model
trained that gives 𝑅2 = 0.1291. Even though the model performance is
still not comparable to the interpolation cases considered in this study,
the transfer learning approach has opened a new doorway to tackle
similar problems.

4.6. Computational efficiency

Machine learning models can also be compared based on the com-
putational efficiency. Computational times required to perform all men-
tioned machine learning tasks are summarized below.

The training time is measured as based on the 𝐶 ′
𝑝 as an output and

considering all 9 features. The training times for all cases are relatively
low. Support vector regression, random forest, gradient boosting and
artificial neural network are trained in 0.13, 0.24, 0.32, 0.4 CPU hours,
respectively. For that purpose, a regular personal computer is used
(8 cores Intel i9 11th gen. at 2.90 GHz). A more computationally
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Fig. 13. Comparison between results from LES and ANN trained with nine features and six optimal features on {0◦ , 22.5◦ 45◦} wind direction datasets and tested for the 15◦ wind
direction. The three plots show the 𝐶𝑝 and 𝐶 ′

𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one plot along the lines in the central vertical
plane (Fig. 1d).
demanding task is related to the hyperparameter optimization. For
example, hyperparameter optimization of support vector regression,
random forest, gradient boosting, and artificial neural network re-
quires approximately 4.2, 12.3, 12.5, and 14.7 CPU hours, respectively.
Hyperparameter optimization is run for all mentioned cases on the Uni-
versity of Luxembourg high performance computing facility (2 nodes
with 2 cores Skylake at 4.5 GHz). It is apparent that hyperparameter op-
timization of the artificial neural network is the most time-consuming
option, as it is more than three times slower than the support vector
regression. However, from Table 2, it is clear that the results obtained
with the artificial neural network are significantly superior to the
support vector regression. Regarding the bootstrapping process, for
100 training samples it takes around 16.8 CPU hours on a personal
computer (8 cores Intel i9 11th gen. at 2.90 GHz).

On the other hand, numerical methods, in particular LES are much
more computationally time consuming. For each wind direction, an
LES simulation needs about 5.65 × 104 CPU hours on the University
of Luxembourg high performance computing facility (7 nodes with 28
cores Skylake at 4.5 GHz). Each RANS simulation took around 20 CPU
hours (6 core at Intel Core i-7 at 2.6 GHz).

5. Limitations of the study and future perspectives

Some limitations of the study are mentioned below:

• The present study is focused on an isolated high-rise building
without considering the impact of the surrounding buildings in
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an urban setting. Moreover, the building is centrosymmetric. As
the machine learning models are data-driven, any change (consid-
ering more complex building geometry or neighborhood) might
need to retrain these models again. Therefore, future work will
explore the ways of increasing this challenged universality by
applying techniques like transfer learning.

• The considered neural network is a black box that does not give
any insights into the structure of the function being approxi-
mated. Thus, in the future, techniques that can provide a better
understanding of how a neural network makes predictions based
on interpretable models can be explored.

• The analysis encompasses mean and rms pressure coefficient to
assess the wind load on structures. As peak pressure is another
particularly relevant quantity of interest when assessing the wind
load on the facades, further development can focus on this specific
parameter.

6. Conclusions

A machine learning framework is proposed that uses a larger num-
ber of computationally affordable RANS simulations with an optimized
number of computationally costly LES simulations aiming to accurately
predict mean and rms pressure coefficients on high-rise building, cover-
ing the whole wind rose. The full dataset consists of the RANS and LES
simulations for 7 different wind directions: 0◦, 7.5◦, 15◦, 22.5◦, 30◦,
37.5◦, 45◦. To optimize the needed number of costly LES simulations,
an adaptive training strategy is proposed. It starts with a baseline model



Building and Environment 234 (2023) 110135

17

A. Sarkić Glumac et al.

Fig. 14. Comparison between results from LES and ANN trained on {0◦ , 22.5◦ 45◦} wind direction datasets with six optimal features with bootstrap mean and confidence interval
and tested for the 15◦ wind direction. The three plots show the 𝐶𝑝 and 𝐶 ′

𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one plot along the
lines in the central vertical plane (Fig. 1d).

Fig. 15. Comparison among results from LES, RANS, ANN, and transfer learning model trained on {15◦ , 30◦ 45◦} wind direction datasets with six optimal features and tested for
the 0◦ extrapolation case. The three plots show the 𝐶 ′

𝑝 results at three different heights across the perimeter of the building (Fig. 1c) and one plot along the lines in the central
vertical plane (Fig. 1d).
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that considers only two LES simulations of the most extreme wind
direction cases as a training set, i.e. the approaching wind directions of
0◦ and 45◦. This is followed by determining a supplementary dataset
that increases the accuracy to an acceptable level. The accuracy of the
model is judged by the scale-dependent RMSE metric and, in addition,
by the 𝑅2 value, where a value above 0.8 is considered satisfactory. Dif-
ferent machine learning algorithms are considered, including support
vector machine, random forest, gradient boosting and artificial neural
networks.

The main conclusions are summarized below:

• The study shows that the set of only 3 LES simulations for 3 wind
directions is sufficient to define the universal training dataset
that can accurately predict distributions of 𝐶𝑝 and 𝐶 ′

𝑝 over the
high-rise building for the entire wind rose. These wind directions
comprise two extreme cases in terms of flow pattern: 0◦ and 45◦;
and the median wind direction of 22.5◦. In addition, significant
improvement is observed in the case of 𝐶 ′

𝑝 values when compared
to the standard empirical model, even when a dataset of {0◦, 45◦}
is used.

• The best-performed machine learning model is based on the
artificial neural network approach. Moreover, hyperparameter
optimization is shown to significantly improve the model predic-
tions. In the case of the neural network, the 𝑅2 value related to
𝐶 ′
𝑝 has increased by 60% and the RMSE decreased by 30% after

applying hyperparameter optimization.
• All developed machine learning models perform comparatively

better for 𝐶𝑝 than 𝐶 ′
𝑝, due to the use of RANS 𝐶𝑝 as an input

feature.
• The prediction can be improved even further by carefully select-

ing the input features. After applying feature selection techniques
over a wider range of 9 input features, 6 dominant features are
defined. These are: mean pressure coefficient, 𝑥 (streamwise)
and 𝑧 (lateral) coordinates, nondimensional turbulence kinetic
energy, nondimensional pressure gradient and wind direction. It
is observed that those dominant features provide the same level
of accuracy as the complete feature set. Moreover, the same 6
features are considered to be optimal for both outputs, 𝐶𝑝 and
𝐶 ′
𝑝.

• The confidence intervals are evaluated by utilizing the bootstrap
method. It is observed that the confidence is very narrow for the
model with the dominant features, confirming its high accuracy.

• Other training datasets are explored, in particular related to
extrapolation problem. The test case with the worst results is
related to the 0◦ wind direction and prediction of 𝐶 ′

𝑝. The transfer
learning technique brought a noticeable improvement of the 𝑅2

values by increasing them from 0.13 to 0.53.
• The developed multi-fidelity framework is 2.3 times computation-

ally more efficient in terms of CPU time than performing LES
simulations for all 7 wind directions.

The findings of this study have broader relevance for the use of ma-
chine learning in wind engineering problems, as they provide important
methodological steps that should be considered when similar problems
are treated.
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