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Abstract. D. Wardowski proved in 2012 a generalization of Banach
Contraction Principle by introducing F -contractions in metric spaces.
In the next ten years, a great number of researchers used Wardowski’s
approach, or some of its modifications, to obtain new fixed point results
for single- and multivalued mappings in various kinds of spaces. In this
review article, we present a survey of these investigations, including some
improvements, in particular concerning conditions imposed on function
F entering the contractive condition.

Mathematics Subject Classification (2010). 47H10, 54H25.

Keywords. F-contraction, fixed point, generalized metric space, multi-
valued mapping.

1. Introduction and preliminaries

The year 2022 marks the 100th anniversary of the publication (in [31]) of
Banach Contraction Principle (or Banach Fixed Point Theorem), the mile-
stone of Metric Fixed Point Theory. Let us recall the formulation of this
fundamental theorem:

Theorem 1.1. [31] If T is a mapping from a complete metric space (X, d)
into itself and if there is a constant λ ∈ [0, 1) such that for every x, y from
X,

d(Tx, Ty) ≤ λd(x, y) (1.1)

holds, then there exists exactly one point z ∈ X such that T (z) = z. Moreover,
for each point x0 ∈ X, the iterative sequence {xn} defined by xn = Txn−1,
n ∈ N converges to z.

The mapping T : X → X satisfying (1.1) is called a contraction. Among
other things, Banach used his theorem to solve a special type of integral
equations.
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Remark 1.2. Actually, this result appeared two years earlier in Banach’s
Ph.D. Thesis (written in Polish) at L’vov University. However, it did not
become widely known until its publication in the journal Fundamenta Math-
ematica.

Starting from 1922, a large number of mathematicians tried to generalize
this famous theorem. These generalizations went in two main directions:

(a) The known axioms of metric space (X, d) were modified and so a
lot of new spaces, so-called generalized metric spaces, were introduced. We
mention just some of them: b-metric spaces, partial metric spaces, metric-like
spaces, cone metric spaces, G-metric spaces, rectangular metric spaces, etc.

(b) Condition (1.1) was replaced by various other conditions that gen-
eralize the condition of contraction.

There were also a lot of attempts which combined both directions.
In this review, we talk about a special generalization of Banach’s re-

sult, which was introduced in 2012 by the Polish mathematician Darius War-
dowski [150] (note that it is now the 10th anniversary of this result). This
generalization is of direction (b).

Namely, Wardowski considered mappings F : (0,+∞)→ R that satisfy
the following conditions:

(F1) F is a strictly increasing function;
(F2) A sequence tn ∈ (0,+∞) converges to zero if and only if F (tn) → −∞

as n→ +∞;
(F3) lim

t→0+
tkF (t) = 0 for some k ∈ (0, 1).

Wardowski denoted by F the collection of mappings F : (0,+∞) → R
that satisfy the conditions (F1), (F2) and (F3). Using such functions, he
introduced a new type of contraction in a given metric space in the following
way:

Definition 1.3. Let F ∈ F and let T be a mapping from a metric space
(X, d) into itself. If there is a positive number τ such that for all x, y ∈ X for
which d(Tx, Ty) > 0,

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) (1.2)

holds, then the mapping T is called an F-contraction.

The main result of D. Wardowski was the following

Theorem 1.4. Each F -contraction T on a complete metric space (X, d) has
a unique fixed point. Moreover, for each x0 ∈ X, the corresponding Picard
sequence {Tnx0} converges to that fixed point.

Obviously, taking F (t) = log t and τ = log(1/λ), λ ∈ (0, 1) the condition
(1.2) reduces to (1.1), i.e., Theorem 1.4 is a generalization of Theorem 1.1.
Moreover, by an example, Wardowski showed that this generalization was
genuine (see further Example 2).

This nice result inspired dozens of mathematicians to try to obtain new
results by:
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1. applying similar idea in various other spaces (among them those men-
tioned under (a));

2. modifying the contractive condition (1.2) in various ways;
3. modifying conditions (F1)–(F3) for the function F .

In this survey, we present briefly some of these attempts, together with
some modifications and improvements, in particular concerning properties
(F1)–(F3). A review treating some other aspects of these problems can be
found in [77].

2. A modification of Wardowski’s theorem and its proof

First of all, we illustrate relationship between the properties (F1)–(F3).

Example. Consider the following functions that map (0,+∞) into R: F1(x) =

ex, F2 = − 1

x
, F3(x) =

x− 1

x
, F4(x) = xx, F5(x) = log x, F6(x) = − 1

x1/n
,

n ∈ N, F7(t) = t+ log t. Then:

1. F1 satisfies (F1) and (F3) but not (F2);
2. F2 and F3 satisfy (F1) and (F2) but not (F3);
3. F4 satisfies (F3) but not (F1) and (F2);
4. F5, F6 and F7 satisfy all three properties.

Now we list some properties of a function F that follow just from prop-
erty (F1):

1. F is continuous almost everywhere.
2. At each point r ∈ (0,+∞) there exist its left and right limits lim

t→r−
F (t) =

F (r−) and lim
t→r+

F (t) = F (r+). Moreover, for the function F one of the

following two properties holds: F (0+) = m ∈ R or F (0+) = −∞.
3. Property (F2) is equivalent to

(F2′) F (0+) = −∞, as well as to
(F2′′) inft∈(0,+∞) F (t) = −∞.

For more details see [22], [118].
We recall the following two properties of sequences in metric spaces that

have often been used, sometimes implicitly, in proving fixed point results (see,
e.g., [38, 53, 82, 91, 146, 147, 148, 149] for the first property and [113, 146,
147, 148, 149] for the second one).

Lemma 2.1. Let {xn} be a Picard sequence of a self-map T in a metric
spaces (X, d) (i.e., xn = Txn−1, n ∈ N). If

d(xn+1, xn) < d(xn, xn−1) (2.1)

holds for each n ∈ N, then xn 6= xm whenever n 6= m.

Lemma 2.2. Let {xn} be a sequence in a metric space (X, d) such that
d(xn, xn+1) → 0 as n → +∞. If {xn} is not a Cauchy sequence then there
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exist ε > 0 and two sequences {mk} and {nk} of positive integers, satisfying
nk > mk > k, such that the following sequences tend to ε+ as k → +∞:

d(xmk
, xnk

), d(xmk
, xnk+1), d(xmk−1, xnk

),

d(xmk−1, xnk+1), d(xmk+1, xnk+1), . . .

We now formulate an improved version of Wardowski’s result that is
given in [112, Corollary 2]. Our proof is shorter than the original one, since
it uses Lemmas 2.1 and 2.2 (for the sake of brevity, we treat just the basic
case α = 1 of [112, Theorem 5]).

Theorem 2.3. Let (X, d) be a complete metric space and T be a self-mapping
on X. Assume that there exist a strictly increasing function F : (0,+∞)→ R
and τ > 0 such that (1.2) holds for all x, y ∈ X with Tx 6= Ty. Then T has
a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary, let {xn} be the corresponding Picard se-
quence defined by xn = Txn−1, n ∈ N, and denote dn = d(xn−1, xn). We
can assume that dn > 0 (i.e., xn−1 6= xn) for each n ∈ N (otherwise there is
nothing to prove).

Putting x = xn−1, y = xn in the condition (1.2), we get that

τ + F (dn+1) ≤ F (dn), (2.2)

and hence (using (F1)) dn+1 < dn for each n ∈ N. It follows by Lemma 2.1
that xn 6= xm whenever n 6= m. Also, the sequence {dn} must converge to
some d ≥ 0. If d > 0, then, passing to the limit when n → +∞ in (2.2), it
follows that τ +F (d+) ≤ F (d+) which is in contradiction with τ > 0. Hence,

lim
n→+∞

dn = 0. (2.3)

Suppose now that {xn} is not a Cauchy sequence and consider the sequences
{mk} and {nk} that satisfy conditions as in Lemma 2.2. Since nk > mk, it
follows that xmk

6= xnk
, hence we can use contractive condition (1.2) with

x = xnk
and y = xmk

. We obtain that

τ + F (d(xnk+1, xmk+1)) ≤ F (d(xnk
, xmk

)).

Passing to the limit as k → +∞, using Lemma 2.2 and the mentioned prop-
erty (2) of the increasing function F , we get that

τ + F (ε+) ≤ F (ε+),

which is in contradiction with τ > 0. Hence, {xn} is a Cauchy sequence and,
since (X, d) is complete, it converges to some x∗ ∈ X.

Observe now that the contractive condition (1.2) (where F satisfies the
property (F1)) implies that the mapping T is continuous. Hence, it follows
in a routine way that x∗ is a unique fixed point of T . �

Remark 2.4. Note that the case (2.3) can only take place if F (0+) = −∞.
Indeed, if d = 0, then it follows from (2.2) that τ +F (0+) ≤ F (0+), which is
impossible if F (0+) is finite. It means that condition (F2) for the function F is
implicitly contained in the formulation of Theorem 2.3. In other words, there
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is no mapping T which satisfies Wardowski’s condition (1.2) with function F
satisfying (F1) and not satisfying (F2). Hence, no essentially new results can
be obtained by using functions F satisfying just (F1). Bearing this in mind,
we will formulate our further results assuming both properties (F1) and (F2).

We recall here the original Wardowski’s example that shows that his
result is more general than the Banach’s one.

Example. [150, Example 2.1] Consider the set X = {xn | n ∈ N} where
xn =

∑n
k=1 k = 1

2n(n + 1), equipped with the standard metric given by
d(x, y) = |x − y|, x, y ∈ X. Then, (X, d) is a complete metric spaces. Let
T : X → X be defined by T (x1) = x1 and T (xn) = xn−1, n > 1. It is easy to
see that Banach’s condition (1.1) is not satisfied, but Wardowski’s condition
(1.2) holds with τ = 1 and F (t) = t+ ln t. For details see [150].

The next example shows that Theorem 2.3 is a genuine generalization
of Theorem 1.4.

Example. [112, Example 1] Let X = {an | n ∈ N} ∪ {b} and d : X ×
X → [0,+∞) is given by d(an, an) = d(b, b) = 0, n ∈ N and d(an, an+p) =
d(an+p, an) = d(an, b) = d(b, an) = 1

n for n, p ∈ N. Obviously, (X, d) is a
complete metric space. Let T : X → X be given by Tan = an+1, n ∈ N and
Tb = b. It is shown in [112] that T cannot satisfy conditions of Theorem 1.4
with any function F ∈ F , but it satisfies condition of Theorem 2.3 with τ ≤ 1
and F (t) = − 1

t (note that this function does not satisfy the property (F3)).
For details see [112].

Remark 2.5. The following result was proved in [112] as Theorem 6.

Let (X, d), T and F satisfy the conditions of Theorem 2.3, except that,
instead of (F1), F is supposed to be continuous and satisfy condition (F2).
Then the same conclusion holds.

By an example (see [112, Example 2]), it was shown that this result
was essentially different from Theorem 2.3, i.e., there exists a mapping T in
a metric space (X, d) which does not satisfy conditions of Theorem 2.3, but
which satisfies conditions presented in this remark and which has a unique
fixed point.

3. Some generalizations

3.1. Common fixed points

Let (X, d) be a metric space and T, S be two self-mappings on X. Recall
that if T (x) = S(x) = y then x is called a coincidence point of T and S,
and y is said to be their point of coincidence. If, moreover, y = x then x is
called a common fixed point of T and S. In order to obtain a Wardowski-
type version of the famous Jungck theorem [72], the authors of [2] called T
an F -contraction with respect to S if there exists a function F and τ > 0
such that

τ + F (d(Tx, Ty)) ≤ F (d(Sx, Sy)) (3.1)
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holds for all x, y ∈ X satisfying Tx 6= Ty. They proved some coincidence and
common fixed point results for a pair of mappings acting in ordered metric
spaces.

For the sake of simplicity, we formulate these results here without using
ordering. Again, just conditions (F1) and (F2) are used and the proof is much
shorter because Lemmas 2.1 and 2.2 are used.

Theorem 3.1. Let (X, d) be a complete metric space and T, S be two self-
mappings on X, such that T (X) ⊆ SX, one of these subsets being closed. If
T is an F -contraction with respect to S, where the function F satisfies condi-
tions (F1) and (F2), then they have a unique point of coincidence. Moreover,
if T and S are weakly compatible (i.e., if they commute at their coincidence
points), then they have a unique common fixed point.

Proof. The condition (3.1), together with property (F1), immediately imply
that d(Tx, Ty) < d(Sx, Sy) if Tx 6= Ty. Further, let x0 ∈ X be arbitrary and
let the respective Picard-Jungck sequence be defined by

yn = Txn = Sxn+1, for n ∈ N ∪ {0}.

Then, using property (F1), it follows that d(yn, yn+1) < d(yn−1, yn) if yn 6=
yn+1. Now, again, by using Lemmas 2.1, and 2.2 it easily follows that {yn}
is a Cauchy sequence. The rest of the proof is standard. �

Results on coincidence and common fixed points under F -contractions
were also obtained in [14, 39, 40, 141, 142].

3.2. Property (P)

Denote by Fix(T ) the set of fixed points of a self-map T in a metric space
(X, d). Recall that it is said that T satisfies property (P) if Fix(Tn) = Fix(T )
holds for each n ∈ N (here Tn denotes the n-th iterate of the mapping T ). It
is easy to prove the following assertion.

Proposition 3.2. Let T be a self-map in a metric space (X, d) satisfying
condition (1.2) with function F satisfying (F1) and (F2). Then T has the
property (P).

Proof. Since T satisfies the condition (1.2), then so does Tn for each n ∈ N.
Indeed, for x, y ∈ X,

F (d(Tnx, Tny)) ≤ F (d(Tn−1x, Tn−1y))− τ ≤ · · ·

≤ F (d(x, y))− nτ ≤ F (d(x, y))− τ.
Hence, if Tnx 6= Tny, then Tn−1x 6= Tn−1y, . . . , and condition (1.2) holds
for Tn. By Theorem 2.3, Tn has a unique fixed point, and since, obviously,
Fix(T ) ⊆ Fix(Tn), it follows that property (P) is satisfied. �

A result about the property (P) for F -contractions was also obtained in
[2].
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3.3. Generalized contraction

The following result is an improvement of [152, Theorem 2.4]. Its proof can
be also made shorter, similarly as in some earlier mentioned cases.

Theorem 3.3. Let (X, d) be a complete metric space and T be a self-map in
X satisfying that

τ+F (d(Tx, Ty)) ≤ F
(

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

})
(3.2)

holds for some τ > 0, some function F : (0,+∞) → R satisfying (F1) and
(F2), and all x, y ∈ X satisfying d(Tx, Ty) > 0. If T or F is continuous,
then T has a unique fixed point.

Further types of generalized F -contractions were treated in [3, 9, 23, 26,
27, 32, 33, 35, 44, 51, 54, 61, 62, 71, 76, 80, 88, 92, 106, 108, 109, 111, 115,
121, 122, 123, 125, 130, 135, 136, 137, 140, 143, 144, 151].

3.4. Best proximity points

In [37], the authors obtained some results concerning so-called best proximity
points of non-self mappings in a complete metric space. We note here just
that their Theorems 3.1, 3.2 and 3.3 remain true when just conditions (F1)
and (F2) are imposed on the function F , and that the proofs of these results
can be made much shorter by using Lemmas 2.1 and 2.2, as was done here
in the case of Theorem 2.3.

Other results on best proximity points using F -contractions were ob-
tained in [103].

3.5. Results in b-metric spaces

Recall that a triplet (X, d, s) is called a b-metric space if X is a non-empty
set, s ≥ 1 is a given real number and d : X×X → [0,+∞) satisfies axioms of
a metric spaces, but with the triangular inequality replaced by the condition

d(x, z) ≤ s[d(x, y) + d(y, z)]

for all x, y, z ∈ X.
Results about fixed points in b-metric spaces using Wardowski-type con-

ditions were obtained in several papers. We note here that most of these
results can be obtained with weaker assumptions on the function F . For ex-
ample, it is the case for a common fixed point result [97, Theorem 1] for four
mappings which was proved with weaker assumptions in [154].

We present also another kind of result, obtained by Suzuki in [138],
where different assumptions are imposed on the function F (note that (F1)
is here not used).

Theorem 3.4. [138, Theorem 23] Let (X, d, s) be a complete b-metric space
and T be a self-map on X. Assume that there exist τ > 0 and a function
F : (0,+∞) → R satisfying (F2) such that (1.2) holds for all x, y ∈ X with
Tx 6= Ty. Then T has a unique fixed point.
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Some other papers where F -contractions in b-metric spaces were inves-
tigated are [13, 15, 45, 50, 74, 75, 84, 86, 101, 107, 110].

3.6. Multivalued mappings

Investigation of fixed points of multivalued mappings started in 1969 with
the work [94] of Nadler. After 2012, a lot of researchers attempted to apply
Wardowski’s approach to such problems in various spaces—see, e.g. [1, 4, 5,
6, 7, 12, 18, 19, 20, 24, 25, 29, 41, 46, 48, 58, 60, 63, 68, 69, 70, 73, 81, 83,
89, 95, 98, 105, 116, 119, 129, 131, 132, 138, 153]. We present here just one
of the basic results of this kind.

Let (X, d) be a metric space, CB(X) be the family of its nonempty,
closed and bounded subsets, and K(X) the family of its nonempty compact
subsets. Recall that the Hausdorff-Pompeiu metric on CB(X) is the function
H : CB(X)× CB(X)→ [0,+∞) defined for A,B ∈ CB(X) by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
.

The following is Theorem 2.2 in [19].

Theorem 3.5. Let (X, d) be a complete metric spaces and T : X → K(X)
be a (multivalued) mapping satisfying

τ + F (H(Tx, Ty)) ≤ F (d(x, y))

for some τ > 0 and F : (0,+∞) → R satisfying conditions (F1), (F2) and
(F3), and for all x, y ∈ X with H(Tx, Ty) > 0. Then T has a fixed point,
i.e., there exists x∗ ∈ X such that x∗ ∈ Tx∗.

An open question (which we state at the end of this article) is whether,
like in a single-valued case, this result remains valid if just assumptions (F1)
and (F2) are imposed on the function F .

3.7. Some other areas of research

The following is the list of other areas where F -contractions were investigated
and respective articles.

Problems including spaces with additional structure (ordered spaces,
relational-theoretic spaces, spaces endowed with a graph and spaces with α-
admissible mappings) were considered in [30, 34, 49, 52, 55, 56, 65, 66, 67,
99, 120, 139, 155].

Spaces with alternate distance or two metrics and respective F -contractions
were considered in [36, 102].

Vector-valued spaces and Perov-type problems were treated in [21, 90].
F -contractions in metric-like and b-metric-like spaces were under inves-

tigation in [8, 16, 42, 57, 78, 79, 91, 96].
Partial metric spaces and F -contractions in them were treated in [17,

100, 114, 133, 134].
Modular and fuzzy-metric spaces and F -contractions in them were ob-

served in [10, 11, 59, 64, 87, 104].
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Other generalized metric spaces and respective problems were treated
in [85, 124, 126, 128]

4. Some possibilities for further investigation

We present some open problems for further investigation.

Question 4.1. Does an F -version hold for Ćirić’s quasicontraction (see [43] or
[117]), i.e., does the following result hold true: If (X, d) is a complete metric
space and if the self-map T on X satisfies

τ + F (d(Tx, Ty)) ≤ F (max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)})
for all x, y ∈ X with Tx 6= Ty, where τ > 0 and F satisfies conditions (F1)
and (F2), then T has a unique fixed point?

Question 4.2. Let (X, d) be a complete metric spaces and let the self-map T
on X satisfy

τ + F (d(Tnx, Tny)) ≤ F (d(x, y))

for all x, y ∈ X with Tnx 6= Tny, where τ > 0, F satisfies conditions (F1)
and (F2), and n = n(x, y). Does T have a unique fixed point? The positive
answer would be a generalization of Sehgal’s result [127].

Question 4.3. Can conditions for the function F be reduced to (F1) and (F2),
and can the proof be made simpler in some results for multivalued mappings
in the same way as it was presented in this survey for single-valued mappings?
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of set-valued F -contraction mappings on domain of sets endowed with directed
graph. Comput. Appl. Math. 36 (2017), 1607–1622.
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University of Belgrade,
Faculty of Civil Engineering,
Bulevar Kralja Aleksandra 73,
11000 Belgrade, Serbia
e-mail: vsesumcavic@grf.bg.ac.rs

Stojan Radenović
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