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IMPORTANCE OF THE GLOBAL SENSITIVITY ANALYSIS IN 

DEVELOPMENT OF METAMODELS FOR GEOTECHNICAL BACK 

ANALYSIS 

Summary: This paper investigates the use of global sensitivity analysis during the development of 

metamodels for back-analysis of geotechnical problems. Variance-based  global sensitivity analysis 
was combined with Particle swarm optimization algorithm and POD-ERBF metamodel to back-
calculate the hypothetic (synthetic) problem of anchor-supported excavation. PLAXIS 2D FE code 
was used for numerical simulations. The results of the back analysis for different sets of model 
parameters were compared to emphasize the importance of global sensitivity analysis before 
performing the back analysis and the recommendations for the robust modeling of presented 
geotechnical problem were given. 
Keywords: metamodel, PLAXIS 2D, variance-based sensitivity analysis, back analysis, particle 
swarm optimization 

ZNAČAJ GLOBALNE ANALIZE OSETLJIVOSTI U RAZVOJU 

METAMODELA ZA GEOTEHNIČKU POVRATNU ANALIZU 

Rezime: U ovom radu se istražuje primena globalne analize osetljivosti prilikom razvoja 

metamodela za povratnu analizu geotehničkih problema. Variance-based globalna analiza 
kombinovana je sa PSO optimizacionim algoritmom i POD-ERBF metamodelom i izvršena je 
povratna analiza hipotetičkog geotehničkog problema iskopa zaštićenog potpornom sidrenom 
konstrukcijom. PLAXIS 2D MKE kod je korišćen za numeričke simulacije. Rezultati povratne 
analize za različite setove parametara modela su upoređeni kako bi se istakao značaj sprovođenja 
globalne analize osetljivosti pre izvođenja povratne analize. Date su preporuke za robusne modele 
prikazanog geotehničkog problema. 
Ključne reči: metamodel, PLAXIS 2D, variance-based analiza osetljivosti, povratna analiza, PSO 

algoritam 
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1. INTRODUCTION 

Optimization methods are indispensable tools in civil engineering that enable 

engineers to find optimal solutions to complex problems while considering various 

constraints and objectives. Whether in structural design, transportation planning, water 

resources management or construction management, these methods play a crucial role in 

ensuring the efficiency, safety and sustainability of civil engineering projects. As 

technology advances, the integration of optimization methods into civil engineering 

practices will continue to drive innovation and improve the quality of infrastructure 
worldwide. 

Important engineering activities such as design optimization, probabilistic 

investigation of uncertainties, parameter determination, inverse problems or sensitivity 

analyses become impossible because they require thousands or even millions of 

computationally expensive simulations. Engineers commonly address this challenge by 

adopting simplified models to closely approximate the original model's behavior with 

high precision [3]. Such approximated models, capable of simulating the original model, 

are known as metamodels or surrogate models. While metamodels offer numerous 

advantages, they are not without challenges. The accuracy of metamodels heavily 

depends on the quality and quantity of data used for model training. Ensuring the 

reliability of metamodels requires rigorous validation against field measurements or 

laboratory tests. Calibration is often necessary to fine-tune model parameters and 
improve accuracy. Advances in machine learning and artificial intelligence are expected 

to enhance the predictive capabilities of metamodels. These technologies can handle 

complex relationships and adapt to varying data inputs, making them valuable tools for 

geotechnical analysis. 

In geotechnical problems, obtaining representative and diverse data sets can be 

challenging, especially in regions with limited geotechnical information. Soil behavior is 

influenced by numerous factors, including soil type, moisture content, loading conditions 

and structural geometry. The availability of big data and remote sensing technologies can 

provide geotechnical engineers with more extensive and real-time information about soil 

properties and behavior, enabling the development of more accurate and responsive 

metamodels. Metamodels can be integrated with multi-objective optimization techniques 
to consider multiple design objectives simultaneously, such as safety, cost, and 

environmental impact, leading to more sustainable and efficient designs.  

2. METAMODELING CONCEPT 

The main idea behind metamodeling is to approximate (replace) an unknown 

function u that describe the behaviour of an considered engineering problem. In order to 

construct a metamodel, two main components are necessary: (1) the input parameter 

matrix (P) which includes the s parameters of np sample points; (2) the matrix of system 

responses or snapshot matrix (U), in which the np function values of m observation points 

are stored. Therefore, P and U matrices are of size s×np and m×np, respectively. Khaledi 

et al. [3] performed a comparative study and evaluated the performance of various 

metamodels: Polynomial Regression (PR), Moving Least Squares (MLS), Proper 
Orthogonal Decomposition with Radial Basis Function (POD-RBF) and Proper 

Orthogonal Decomposition with Extended Radial Basis Function (POD-ERBF), using 
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different types of mathematical functions for calculating the systems response. All the 

evaluation results obtained from this comparative study are summarized and they showed 

POD-ERBF (along with POD-RBF) excels in most categories. In this paper, Proper 

Orthogonal Decomposition (POD) combined with Extended Radial Basis Functions 

(ERBF), proposed by [7], is used to construct a reliable metamodel. The algorithm 

consists of two main parts: (1) proper orthogonal decomposition of the snapshot matrix 

and (2) interpolation using a combination of radial and non-radial basis functions.  

The performance of each metamodeling technique can be evaluated considering 
the following criteria [3]: (1) accuracy (an accurate metamodel should be capable of 

making predictions across the entire design space with minimal error); (2) problem 

dependency (a metamodel that is independent of the specific problem should achieve 

high accuracy across different problems) and (3) efficiency (an efficient metamodeling 

approach should require minimal computational effort during the metamodel construction 

process). The overall performance of the metamodels can be evaluated using standard 

accuracy measure: Normalized Root Mean Squared Error (NRMSE), which provides a 

global error measure over the entire design domain. 

2.1. Sampling technique and sample size 

The precision of a metamodel relies heavily on how samples (training points) are 

distributed within the design space. Consequently, sampling techniques are employed to 

identify the optimal sample points within the design domain. The selection of an 
appropriate sampling technique is generally considered a critical factor influencing the 

effectiveness of any metamodeling approach [3]. The general concept behind a sampling 

strategy is to generate a series of points that are uniformly dispersed throughout the input 

parameter space. Latin Hypercube Sampling (LHS) sampling technique has been applied 

in this paper. It is a statistical sampling technique widely used in fields such as 

engineering design, computer experiments (simulation studies), optimization, sensitivity 

analysis and uncertainty quantification. It is particularly useful when you want to 

generate a representative and evenly distributed set of samples across multiple 

dimensions or variables. It helps ensure that the entire parameter space is adequately 

explored while avoiding over-sampling in any particular region. Therefore, researchers 

and engineers can efficiently explore and analyze complex systems by providing a 
balanced and representative set of input values for their models or experiments. 

There is a strong connection between the quantity of sample (training) points and 

the accuracy of the metamodel. The number of sample points needed for creating a 

metamodel relies on two primary factors: the dimensionality of the unknown function and 

the level of nonlinearity. Consequently, quantifying the optimal sample size can be a 

challenge. Zhao and Xue [10] suggested the following equations to determine the suitable 

size of samples: l(s+1)(s+2) for high dimensional and 3l(s+1)(s+2) for low dimensional 

problems, where l=0.5-2 is a scaling parameter and s is the number of the input 

parameters. 
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3. GLOBAL SENSITIVITY ANALYSIS 

Sensitivity analysis is a valuable technique in numerical modeling. The main goal 

of sensitivity analysis is to help engineers to understand how the input parameters of a 

numerical model influence the model’s output and provides insights into model’s 

behavior, reliability and robustness. Global sensitivity analysis (GSA) is widely applied 

in numerical modeling in civil engineering for various problems, such as uncertainty 

assessment, model calibration, design optimization, risk assesment, decision support etc. 

In this paper, GSA is used for model parameter ranking and dimensionality reduction of 
initial, more complex numerical model. 

Among different global sensitivity analysis methods, Variance-based GSA metod 

is widely recognized. The output variance is decomposed to the sum of contributions of 

each individual input parameter and the interactions between different parameters [6]. 
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The Si represents the first order sensitivity measure, evaluating the impact of input 
parameter xi on the model Y without considering interactions between input parameters. 

On the other hand, the total effect sensitivity index STi is a more comprehensive metric 

that accounts for interactions between parameters [2]. 

The procedure for calculating Si and STi begins with the generation of two 

matrices (np x s), A and B, each containing random parameters sets. Here, np represents 

the number of samples and s represents the number of input parameters. A third matrix Ci 

is defined, where all its columns are copied from matrix B except ith column copied from 

its corresponding column in A. The next step involves calculating model outputs for all 

input values present in the sample matrices A, B and Ci. Finally, sensitivity indices for 

each parameter are obtained with following equations: 
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Where yA, yB and yCi are vectors containing model evaluations for matrices A, B 

and Ci respectively. 
Ay  and 

By  are the mean value estimates for the components of yA 

and  yB. 

4. BACK ANALYSIS 

The material parameters of soil around the structure can be determined through 

inverse analysis of experimental measurements. In order to obtain the optimized values of 

related model parameters which can give a good match between predicted and measured 

values, back analysis is applied to conduct the parameter optimization. 

Due to the complexity of the optimization problems in geotechnical engineering, a 

robust optimization algorithm is required to obtain the global minimum of the objective 
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function. In this paper, the particle swarm optimization (PSO) algorithm is used to 

perform the optimization process. It is one of the evolutionary computational techniques, 

originally introduced by Kennedy & Eberhart [1], inspired by the social behaviour of 

birds flocking or fish schooling. 

If the objective function is highly non-linear with a large number of input 

variables, a large number of evaluations of the objective function are needed before the 

best set of parameters is identified. This high computation cost makes the algorithm of 

inverse analysis inefficient. Therefore, a practical solution is to replace the original FE 
model by the metamodel (POD-ERBF). The flow chart shown in Figure 1 describes the 

parameter identification procedure using the particle swarm optimization algorithm with 

the proposed metamodel. 

 

Figure 1. Flowchart of back analysis procedure  

5. NUMERICAL EXAMPLE 

The primary objective of this section is to demonstrate effectiveness and accuracy 

of the proposed metamodeling technique in a real geotechnical problem. A 2D FEM 

model of the construction of an excavation is replaced with POD-ERBF metamodel in a 
computationally expensive parameter back calculation problem. The original model has 

been simulated by the finite element method using the commercial code PLAXIS 2D 

(Figure 2) and user python scripts for model pre-/post-processing [5]. 

The excavation is 30 m wide and the final depth is 20 m. It extends in longitudinal 

direction for a large distance, so that a plane strain model is applicable. The sides of the 

excavation are supported by 30 m long diaphragm walls, which are braced by horizontal 

struts at an interval of 5 m. Since the geometry is symmetric, only one half (the left side) 

is considered in the analysis. The excavation process is simulated in three separate 

excavation stages. The diaphragm wall is modelled using plate finite elements. The 

interaction between the wall and the soil is modelled at both sides by means of interfaces. 

The interfaces allow for the specification of a reduced wall friction compared to the 

friction in the soil. The strut is modelled as a spring element for which the normal 
stiffness is a required input parameter. Table 1 provides the description of material 

parameters and their value ranges. The excavation example presented in this paper 
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concerns only with the homogeneous soil conditions. In reality, the material properties of 

soil can change along the excavation. However, uncertainties and spatial variability of 

soil properties were not in the framework of this research. 

 

Figure 2. Model of an excavation in PLAXIS 2D  

Parameters  
Parameter 

Ranges 
Soil (HS model)  

c Effective cohesion at failure [0, 7] kPa 

φ Effective friction angle at failure [33, 37] deg 

υ Poisson’s ratio [0.1, 0.3] 

m Power for stress level dependency of stiffness [0.4, 0.7] 

γunsat Volumetric weight of unsaturated soil [16, 19] kN/m3 

Eur Stiffness modulus for unloading/reloading in drained triaxial test [125, 175] MPa 

Eoed Stiffness modulus for primary loading in oedometer test [25, 35] MPa 

ψ Dilatancy angle at failure =φ-30 

K0,NC Earth pressure coefficient at rest =1-sinφ 
E50 Stiffness modulus for primary loading in drained triaxial test =Eoed 

Diaphragm wall 

EA1 Axial stiffness 7.5x106 kN/m 

EI Bending stiffness 1.0x106 kNm2/m 

Anchor   

EA Axial stiffness 2.0x106 kN 

Table 1. Description of material parameters and their predefined value and ranges  

The Hardening soil (HS) model [8] has been used as the constitutive model for 

describing the elasto-plastic behavior of soil elements. The Hardening Soil model is an 
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advanced model for the simulation of soil behavior. As for the Mohr-Coulomb model, 

limiting states of stress are described by means of the key parameters, including the 

friction angle φ, the cohesion c and the dilatancy angle ψ. One distinctive feature of the 

HS model is its use of multiple input stiffness parameters to describe soil stiffness more 

accurately. These parameters include: the triaxial stiffness E50, the triaxial 

unloading/reloading stiffness Eur  and the oedometer loading stiffness Eoed. Unlike 

simpler models like Mohr-Coulomb, the HS model takes into account the stress-

dependency of stiffness moduli. This means that as the stress on the soil changes, the 
stiffness of the soil also changes, and this relationship is described using a power law. 

Also, the HS model incorporates hardening mechanisms to simulate irreversible plastic 

deformation. It includes: (1) shear hardening (this accounts for the accumulation of 

irreversible plastic strains during primary deviatoric loading - shear loading), and (2) 

compression hardening (this models irreversible plastic strains due to primary 

compression during oedometer loading tests). More details about HS model can be found 

in [8, 9]. Replacing the FE model with POD-ERBF metamodel 

The data obtained at various observation points (snapshots) can be any physical 

properties such as pressure, strain, force, displacement and temperature. In this numerical 

example, we focused on the maximum horizontal displacement of the diaphragm wall 

and the force in the strut. These two values are read and recorded as output.  

Modelling the elasto-plastic behaviour of soil according to the HS model requires 
ten parameters: φ, c, ψ, Eur, E50, Eoed, ν, m, γunsat and K0,NC where, as given in Table 1, ψ 

and K0,NC are functions of the friction angle, and E50=Eoed. Now, the number of 

independent material parameters reduces to seven. The constructed metamodel for this 

numerical example will have 7 inputs and 2 outputs.  

We generated np sample points within the range of input parameters values as 

specifies in Table 1. The size of the input parameter matrix is 7 x np. Samples were 

generated using the LHS method. It is very important to determine the most appropriate 

sample size for this numerical example. To do so, the metamodel’s accuracy need to be 

assessed across different sample sizes. Since we were not able to perform such an 

analysis in this work, the sample size was determined based on the recommendations 

given in [3]. The adopted sample size is 100. The adopted number of additional test 
points is 20. For relatively simple 2D problems like this, the sample size could be even 

smaller. But when we talk about numerical models of high complexity, such as 3D 

models of tunnel excavations or some other complex structures, this kind of analysis 

plays a very important role. Once the metamodel is created, computation time drastically 

decreases. 

In order to establish a metamodel, it is necessary to go through the following 

steps: 

1. The 2D finite element model is run for each parameters set, and the 

resulting maximal horizontal displacement of the diaphragm wall and 

force in the strut were saved in the snapshot matrix. This matrix has 2 

rows and np columns. 
2. The input matrix is normalized between 0 and 1 in order to prevent the 

potential scaling errors caused by varying input parameter magnitudes. 

3. With the input parameter and snapshot matrices ready, the construction 

of POD-ERBF metamodel can be completed 

4. Constructed metamodel is tested (validated) against additional training 

points, by calculating the total NRMSE 
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5.1. Global sensitivity analysis 

In order to estimate the parameters of the model using back analysis, ranking input 

parameters by their importance and selecting the most sensitive ones is really important. 

In order to evaluate the importance of input parameters to the model responses global 

sensitivity analysis has been conducted. The results are shown below. 
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Figure 3. Results of Variance-based GSA  

As can be seen, the sensitivity indices show that the maximal horizontal 

displacement of the diaphragm wall is sensitive to the change of cohesion, Poisson's ratio 
and friction angle, while the force in the strut is highly sensitive to parameters such as 

volumetric weight, cohesion and friction angle. According to the sensitivity analysis, the 

parameters Eur and m do not significantly affect the result, so they can be excluded from 

the analysis in the next step. 

5.2. Back analysis 

The primary goal of this section is to obtain the material parameters by inverse 

analysis of synthetic data generated for a simulated excavation problem. The term 

"synthetic" is used here because the data used for analysis come from numerical 

simulations and not from actual field measurements. To achieve this, we calculate the 

maximum horizontal displacement of the diaphragm wall and force in the strut using a 

finite element solver and a predefined set of model parameters. These calculated results 

correspond to in-situ measurements and can be used in the parameter identification 
algorithm shown in Figure 1. In order to consider the effects of the probable errors, the 

measurements errors are assumed to be ±3%. The original FEM model is replaced by 

POD-ERBF metamodel constructed in previous section and parameter back calculation is 

performed according to the flowchart given in Figure 1. The particle swarm optimization 

algorithm was used to perform the optimization process, using optimum algorithm 

parameters [4].  

The goal is to examine the ability of metamodel to find same set of pre-defined 

model parameters. First, a test was conducted to identify seven parameters of HS model 

(designated MM7x2). To assess the accuracy of identified parameters, they have been 

inserted into the FE model and responses at the observation points have been compared 

with the original responses (measurements). The obtained results for metamodel, 
PLAXIS 2D and measurements are given in the Table 2.  
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As already mentioned, the results of the sensitivity analysis showed that the 

importance level of each parameter is not the same. Therefore, in the second step, the 

results of the sensitivity analysis were taken into account and less important input 

parameters (Eur and m) were excluded from the new metamodel (designated MM5x2). 

The same procedure was repeated again, now excluding 3 initial input parameters that 

showed minimum sensitivity (Eur, m and Eoed), and another metamodel (designated 

MM4x2) was created. 

Back analysis was repeated for both new metamodels, and results are shown in 
Table 2. In order to create a robust and reliable metamodel, this analysis can be continued 

until an even smaller set of the most important parameters is found. The parameter sets 

identified by the metamodel for all three cases are given in Table 3 and compared with 

pre-defined set used to obtain synthetic measurements. As shown in Tables 2 and 3, all 

three metamodels show great effectiveness in replacing the initial Plaxis 2D numerical 

model, as well as in model parameter identification via back analysis.  

Outputs Measurements 
MM (7x2)  MM (5x2)  MM (4x2) 

MM P2D MM P2D MM P2D 

Ux [mm] 0.120 0.120 0.117 0.120 0.119 0.120 0.120 

F [kN] -2535 -2535 -2522 -2535 -2528 -2535 -2558 

Table 2. The results of back analysis, for all metamodels (designated MM7x2, MM5x2, MM4x2), 
compared with synthetic measurements and Plaxis 2D (P2D) results  

 γ 

[kN/m3] 

c 

[kPa] 

ϕ 

[deg] 

E50 

[MPa] 

Eur 

[Mpa] 
ν m 

Measurements  18.66 2.201 33.32 31480 152267 0.254 0.479 

MM 7x2  18.97 3.563 33.00 31756 129540 0.201 0.7 

MM 5x2  18.57 2.861 33.12 27715 / 0.278 / 

MM 4x2  18.13 2.331 33.00 / / 0.274 / 

Table 3. The parameter sets identified by back analysis, for all three cases of analysis, compared 
with synthetic measurements  

6. CONCLUSIONS 

The main objective of this paper was to demonstrate how metamodels can reliably 

replace the finite element simulation model and drastically reduce the expensive 

computation time of the back analysis.  Inverse analysis of measurements has been 

performed for excavation problem to identify the material parameters for HS constitutive 
model. In order to do this, the error between the synthetic measurements and obtained 

results has been minimized by particle swarm optimization algorithm combined with 

metamodeling technique. The obtained results show that with the aid of accurate and 

efficient metamodeling method such as POD-ERBF, it’s possible to obtain the solution of 

the optimization problem with a small error in a significantly shorter time. In this way, 

solving computationally expensive problems such as parameter identification and 

sensitivity analysis becomes possible. The shown example is relatively simple due to 

limited resources and may not clearly show the time efficiency of this approach, but for 

some more complex examples such as those shown in [3] and [2], it is quite clear. 

However, the principle is exactly the same. 
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One of the most important parts of this work is the global sensitivity analysis, 

which provides clear information on the level of importance of the considered 

parameters. GSA can greatly help to construct a robust and reliable metamodel, with 

gradual reduction of number of input parameters. Also, the numerical example presented 

in this paper concerns only with homogeneous soil conditions, and in reality soil 

parameters are quite variable in space. However, uncertainties and spatial variability of 

soil parameters were not considered in this paper. Further work is foreseen to be done for 

investigating this type of problem. 
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