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A B S T R A C T   

Previous works related to the application of the multifractal theory for analyzing the grain size distribution 
(GSD), showed the potential of this approach to deal with this complex issue. However, absence of the practical 
application of this kind of statistical analysis raised some doubts among the soil scientists. Compared to the 
experimental dry sieving method, which is based on mass representations of different grain sizes, the approach 
presented in this work relies on the analysis of grain densities (density indicators) scanned by means of X-ray CT 
(Computed Tomography). By reducing the resolution of the scanned soil image(s), the cumulative representation 
of solid particles equal to or larger than the actual discretization element can be determined, and described 
analytically by means of the universal multifractals (UM). 

For validation of the new UM approach, the X-ray CT results of three different soils were used: the volcanic 
substrate covering Green Wave (a green roof of Champs-sur-Marne in France), and two horizons of the soil 
collected from the low land mountain area of Sierra de Guadarrama in Spain. Comparison between the proposed 
UM model and the experimental data of these three materials confirms that the GSD can be reasonably well 
predicted from the scanned images of soils covering wide range of grain sizes. The UM model, unlike the fractal- 
based models, accounts for fractal dimension that depends on grain size, and hence, based on the preliminary 
results presented in this work, it could be rather useful in case of multi-modal soils whose GSD curves are 
described with multiple fractal dimensions.   

1. Introduction 

The grain size distribution (GSD) is one of the fundamental proper
ties of granular soils that, besides the influence on mechanical charac
teristics, also affects the packing arrangement of grains (Nolan and 
Kavanagh, 1993; He et al., 1999 among the others), and hence the dis
tribution of pores that further impacts the hydraulic properties of the 
porous medium (Segal et al., 2009). Most often the GSD curve is 
experimentally determined based on the mass fractions of different grain 
sizes extracted either by using sieves of different void sizes, for grains 
larger than 80 µm (dry sieving method - AFNOR, 1996), or by means of 
sedimentation test (AFNOR, 1992; Beuselinck et al., 1998) for finer 
particles. The alternative approach proposed to measure GSD is a laser 
diffraction method (Miller and Schaetzl, 2012). 

Detailed overview of different approaches used for describing the 
complexity of GSD curves can be found in Ghanbarian and Hunt (2017). 

One of them is the self-similarity principle which is included in fractal- 
based models and which assumes occurrence of the same pattern of the 
soil structure at all scales. According to Ghanbarian-Alavijeh et al. 
(2011), the three-phase PSF (pore-solid-fractal) approach (Perrier et al., 
1999; Bird et al., 2000) is the most consistent and with the strongest 
physical-basis among the fractal-based approaches. Besides pores and 
grains, it assumes one additional “fictive” type of soil elements – fractals 
- that are successively broken at smaller scales in a self-similar way, 
leading finally to the structure consisting of fractal-distributed pore and 
grain sizes. Thus, the GSD can be represented by means of a power 
(fractal) law, where the fractal coefficient is included in the exponent. 
However, unlike assumed in the PSF model, grain densities are non- 
homogeneous, which also contributes to the complexity of distribution 
of different mass fractions that often cannot be described with a single 
fractal dimension (Bittelli et al., 1999). 

Multifractal formalism, that takes into account different fractal 
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coefficients for different threshold values, was also used for analyzing 
the complexity of GSD. Grout et al. (1998) and Posadas et al. (2001) used 
Renyi dimensions, one of the multifractal parameters, to characterize 
the heterogeneous distribution of different mass fractions. Besides this 
type of multifractal analysis, the singularity spectra analysis is also 
applied for analyzing the dry soil volume-size distribution obtained by 
using a laser distraction method (Martín and Montero, 2002). Recently, 
Torre et al. (2016) used a X-ray CT, a non-destructive technique for 
obtaining a three-dimensional grey-scale image of a porous material 
(Hseih, 2003; Banhart, 2008) in order to compare the three-dimensional 
structural complexity of spatial arrangement of grains and pores, with 
that of differently oriented two-dimensional planes. The multifractal 
analysis has also proved to be convenient in this case. Even though the 
multifractal theory brings great potential for understanding the 
complexity of GSD (Ghanbarian and Hunt, 2017), up to date this kind of 
analysis has not found practical application. 

This work is focused on development of a new physically-based GSD 
model founded on the Universal Multifractal (UM) framework (Schert
zer and Lovejoy, 1987, 1997). Based on a grey-scale soil image scanned 
by means of X-ray CT, it is possible to recognize solid particles of 
different sizes by progressively decreasing the resolution of the image 
while keeping the fixed value of the threshold. Change of the repre
sentation of solid particles with the resolution of the image can be 
directly linked with the grain size distribution, and described analyti
cally in a mathematically-elegant way by means of the UM framework. 
Compared to work of Lai and Chen (2019), where a sophisticated ma
chine learning tool was used for particle recognition, this approach is 
much simpler and more convenient for practical application. 

The UM framework in combination with X-ray CT imaging was firstly 
validated for some artificial volcanic substrate (Stanić et al., 2020a, 
2020b) used for covering green roof named Green Wave (Versini et al., 
2018, 2020). Results of the model, whose parameters are directly 
determined from scanned images, were first compared with the exper
imental data obtained by means of the standard dry sieving method 
(AFNOR, 1996) and sedimentation test (AFNOR, 1992). Furthermore, 
the UM model was tested on scanned images of two horizons of an intact 
soil sample collected from the low land mountain area of Sierra de 
Guadarrama (Schmid et al., 2016) called La Herreria. In this case, results 

of the model were compared with measured percentages of sand, silt and 
clay particles, since detailed GSD curves are lacking. Finally, for pub
lished experimental GSD data of the GW substrate and Walla Walla soil 
(Bittelli et al., 1999), the UM model was compared with the fractal- 
based PSF model. 

2. Methodology 

The GSD model proposed in this work is based on the recognition of 
solid particles of different sizes from the scanned soil image, by changing 
the resolution of the image. This can be described analytically through 
the application of the Universal Multifractals (UM) framework (Schert
zer and Lovejoy, 1987, 1997) which is briefly described below. Note that 
two-dimensional scanned soil images (Euclidian dimension E = 2), 
extracted from the three-dimensional one (E = 3), were analyzed in this 
work in order to simplify the methodology presented. However, this 
simplified approach (E = 2) is credible only under certain conditions 
that are described later in the text, while otherwise the same method
ology should be applied for E = 3. 

2.1. Universal multifractal (UM) theoretical framework 

In Fig. 1 is presented a renormalized two-dimensional soil density 
indicator field ρind(λ) at various resolutions λ, which is, due to the better 
visualization, presented in a three-dimensional form. Here, λ = L

l(λ) is 
equal to the ratio between the size of the image L [L] and the size of a 
single pixel l(λ) [L], representing the number of pixels along an edge of 
the image. Values of ρind(λ) = ρ(λ) / ρbulk are presented as histogram at 
each λ, where ρbulk is the constant bulk density of the dry material [M/ 
L3] (ρind = 1 is a renormalized ρbulk). Clearly, ρind(λ) values mitigate as λ 
decreases by merging pixels in groups by λ1

2, where λ1 is an integer value 
equal 2 (check dashed gridlines in Fig. 1e). By averaging ρind(λ) values of 
each group, attenuated ρind(λ) field is obtained with λ1 times smaller λ 
and λ1 times larger pixel size l(λ). 

By means of the UM (Schertzer and Lovejoy, 1987, 1997) it is 
possible to compute, at different λ, the probability that ρind(λ) exceeds λγ, 
a renormalized threshold value that changes with λ (a transparent color 

Fig. 1. Change of the two-dimensional ρind(λ) field with λ at: (A) λ = 128; (B) λ = 64; (C) λ = 32; (D) λ = 16; (E) λ = 8; (F) λ = 4. A turquoise color platform signifies a 
fixed threshold ρind

s,min = 1.55, while the one with transparent color signifies a resolution dependent threshold λγ (γ = 0.211). 
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platform in Fig. 1). Threshold value is expressed through the fixed 
dimensionless singularity γ [-], and therefore it decreases together with λ 
(see Fig. 1a–f) until it reaches unit value at λ = 1. For a certain value of γ 
(=0.211 in Fig. 1), the previously mentioned probability of exceeding 
can be computed as: 

P
(
ρind(λ) ≥ λγ) =

N(ρind(λ) ≥ λγ)

λE ≈ λ− c(γ) (1)  

c(γ) = C1

(
γ

C1α’ +
1
α

)α’

;α’ =

(

1 −
1
α

)− 1

,α ∕= 1 (2) 

where N(ρind(λ) ≥ λγ) is the number of ρind(λ) values that are equal to 
or higher than λγ, while c(γ) is the co-dimension function that, besides γ, 
depends on two parameters, C1 and α. Note that in Eq. (1) an approxi
mate equal sign is used because term N(ρind(λ)≥λγ)

λE is computed by counting 
N(ρind(λ) ≥ λγ) at different λ (discrete form), while λ− c(γ) is related to the 
UM analytical form. 

Parameters C1 and α fully characterize ρind field, where C1 describes 
the sparseness of the mean value of the field while α describes the 
change of sparseness for values around the mean. As explained in 
Schertzer and Lovejoy (1987), C1 takes values between 0 (mean value is 
ubiquitous - homogeneous field) and E (mean value is too sparse to be 
observed), while α takes values between 0 (no occurrence of extremes – 
fractal field) and 2 (maximal occurrence of extremes – log-normal field). 
Equation (1) is presented in Fig. 2a for C1 = 2.23 × 10− 2 and α = 1.67, 
values that characterize ρind(λ) field in Fig. 1, and different γ values 
(including γ = 0.211) corresponding to various dashed lines. 

2.2. Adaptation of the UM framework – New GSD model 

In this work, the presented up-scaling procedure is used for recog
nizing solid particles of different sizes from the obtained ρind(λ) field. 
Compared to the previous explanation, where a resolution dependent 
threshold λγ was accounted for, here is used a fixed threshold value ρind

s,min 

(solid platform in Fig. 1) related to the renormalized minimal grain 

density 
(

ρind
s,min > 1

)
. Therefore, ρind ≥ ρind

s,min values indicate the total area 

of the image covered with solid particles (grains). As shown in Fig. 1, 
this area reduces when up-scaling, mostly by getting rid of isolated 
ρind(λ) ≥ ρind

s,min values that are surrounded by those lower than ρind
s,min. On 

the contrary, larger continuous zones covered by ρind(λ) ≥ ρind
s,min values 

resist longer to the up-scaling process, indicating the presence of a large 
grain on that location (central zone in Fig. 1). Therefore, the total area 
covered with ρind(λ) ≥ ρind

s,min values at certain λ indicates a cumulative 

representation of solid particles of diameter equal to or larger than the 
size of a single pixel l(λ) = L/λ: 

P
(

ρind(λ) ≥ ρind
s,min

)
=

N
(

ρind(λ) ≥ ρind
s,min

)

λE (3) 

In order to transform Eq. (3) into the distribution function P (d ≥ l 
(λ)), it is necessary to renormalize it with respect to the initial repre
sentation of solid particles met at λn ≤ λup. Therefore, P (d < l(λ)) = 1–P 
(d ≥ l(λ)) can be expressed as: 

P(d < l(λ)) = 1 −
P
(

ρind(λ) ≥ ρind
s,min

)

P
(
ρind(λn) ≥ ρind

s,min
) = 1 −

N
(

ρind(λ) ≥ ρind
s,min

)

N
(
ρind(λn) ≥ ρind

s,min
)
(λn

λ

)E

(4) 

The analogy between Eq. (4) and the dry sieving method is explained 
in the Appendix. Equation (3), and hence Eq. (4), can be described 
analytically through the UM framework if expressing ρind

s,min, which is 
independent on λ, through λ: 

ρind
s,min =

ρs,min

ρbulk
= λγ(λ) (5) 

where ρs,min is the minimal grain density [M/L3], and γ(λ) differs from 
a fixed γ used in Eqs. (1) and (2), since it changes with λ in order to 
maintain fixed value of ρind

s,min: 

γ(λ) =
ln
(

ρind
s,min

)

ln(λ)
(6) 

Finally, by introducing Eq. (6), instead of γ, into Eq. (2), it is possible 
to express Eq. (3) analytically: 

P
(

ρind(λ) ≥ ρind
s,min

)
≈ λ− c(γ(λ) ) = λ

− C1

⎛

⎜
⎜
⎜
⎜
⎝

ln(ρind
s,min)

ln(λ)
C1 α’ +1

α

⎞

⎟
⎟
⎟
⎟
⎠

α’

(7) 

Equation (7) is presented in Fig. 2b with solid line which is also fully 
characterized by means of parameters C1 and α. Value of γ(λ) = C1 

corresponds to the upper resolution limit λup =
(

ρind
s,min

)1/C1 
(see Eq. (6)) 

for which, due to the fact that c(γ(λ) = C1) = C1 (see Eq. (2)), P
(

ρind(λ) ≥

ρind
s,min

)
reaches its maximal value equal to 

(
ρind

s,min

)− 1
. On the contrary, the 

Fig. 2. a) Equation (1) (dashed lines) calculated for: C1 = 2.23 × 10− 2, α = 1.67 (values that characterize ρind(λ) field in Fig. 1) and different values of γ (including γ 
= 0.211); b) Eq. (5) (solid line) calculated for the same values of C1 and α and the fixed value of ρind

s,min = 1.55. 
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lower resolution limit λlow =
(

ρind
s,min

)1/γs 
can be also computed from Eq. 

(6) for γ(λ) = γs, which is known as the most probable singularity: 

γs = C1α’

((
E
C1

)1/α’

−
1
α

)

(8) 

Note that Eq. (8) is derived from Eq. (2) given that c(γs) = E. 
Finally, having on mind that l(λ) = dg, and thus λ = L / dg, the 

analytical GSD function can be derived by introducing Eqs. (7) into (4): 

P
(
d < dg

)
= 1 −

(
L
dg

)

− C1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ln(ρind
s,min)

ln(L/dg)
C1 α’ +1

α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

α’

(
L

dg,min

)

− C1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ln(ρind
s,min)

ln(L/dg,min)
C1 α’ +1

α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

α’ (9) 

where dg,min = l(λn) = L / λn is the minimal grain diameter [L] equal 
to the size of a pixel at λn. From Eq. (9) the probability density function p 
(d=dg) can be derived as the first derivative of P

(
d ≥ dg

)
= 1 − P

(
d < dg

)

with respect to ln(L/dg), providing the following expression: 

p
(
d = dg

)

= − c
(

L
dg

)(
L

dg,min

)c

(

L
dg,min

)
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −
ln(ρind

s,min)
C1

1
α ln
(

L
dg

)

+
ln(ρind

s,min)
C1α’

⎤

⎥
⎥
⎥
⎥
⎥
⎦

e
− c

(

L
dg

)

ln

(

L
dg

)

(10) 

where c
(

L
dg

)

= C1

⎛

⎝ ln
(

ρind
s,min

)

ln(L/dg)C1α’ +
1
α

⎞

⎠

α’ 

is the co-dimension, while 

E − c
(

L
dg

)

describes the change of fractal dimension with dg. The 

approach proposed here would face certain issues mostly related to the 
way pixels are grouped. Therefore, it is possible to have λ1

2 neighbor 
pixels that belong to a grain of larger size, but since they are distributed 
in different groups there is a “good” chance that this larger grain will not 
be recognized after the aggregation. On the contrary, those pixels can 
signify separated grains, but if they are aggregated as a part of the same 
group of λ1

2 pixels, they will be recognized as a part of the larger grain. 
Nevertheless, these special cases do not influence the proposed algo
rithm significantly if applied on the sufficiently large λ. 

2.2.1. Determination of the model parameters 
Parameters of the proposed model (Eq. (9)) are: dg,min, ρind

s,min, α and 
C1. The first two are physical parameters whose values are either esti
mated based on the type of material (dg,min), or calculated based on the 
experimentally determined values of ρbulk and ρs,min (see Eq. (5)), while 
the last two (α and C1) are statistical parameters determined by 
analyzing the scaling behavior of ρind field. This is done by means of the 

Fig. 3. Behavior of the proposed GSD model when changing values of: a) C1; b) α; c) ρind
s,min; d) dg,min. Initial parameter values (solid line in each graph) are C1 =

1.85x10-2, α = 1.3, ρind
s,min = 1.55 and dg,min = 1x10-3 mm. 
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Trace Moment (TM) technique (Schertzer and Lovejoy, 1987) which 
assumes that the scaling of the average statistical moments of order p 〈
(
ρind(λ)

)p
〉 can be described through the moment scaling function K(p): 

〈
(
ρind(λ)

)p
〉 ≈ λK(p) (11)  

K(p) =
C1

α − 1
(pα − p);α ∕= 1 (12) 

where K(p) is described through parameters C1 and α (for more de
tails see Schertzer and Lovejoy, 1987). Note that c(γ) and K(p) functions 
are linked by Legendre transform (Frisch and Parisi, 1985), meaning 
that for each γ there is a corresponding p (i.e. for γ = C1 and γ = γ s the 
corresponding values are p = 1 and p = ps, respectively). 

To determine values of α and C1 for a certain ρind(λ) field, the field is 
firstly up-scaled as previously described, and ρind(λ) values are raised on 
a power p at each λ. The average value of such a modified field 〈
(
ρind(λ)

)p
〉 is computed at each λ, and the procedure is repeated for va

riety of p ≥ 0 values. After plotting log
(
〈
(
ρind(λ)

)p
〉
)

against log(λ), 

different linear regressions depending on p value are formed. Their 
slopes are related to K(p) values that form the moment scaling function. 
Based on Eq. (12), the first derivative of the obtained K(p) function at p 
= 1 is equal to C1 =

dK(p)
dp |p=1 (calculated numerically), while the ratio 

between the second and the first derivative at p = 1 is α = 1
C1

d2K(p)
dp2 |p=1. 

2.2.2. Influence of the model parameters 
To better understand the influence of the four parameters on the 

model behavior, Eq. (9) has been tested on different values of each 
parameter, as illustrated in Fig. 3. For all cases presented in Fig. 3, value 
of L = 100 mm is kept constant while changing values of the four model 
parameters. 

The impact of C1 on the GSD is illustrated in Fig. 3a by increasing 
(dash-dotted line) / decreasing (dashed line) its initial value (solid line) 
by 50% while preserving values of the three remaining parameters. 
Similarly, in Fig. 3b value of α is changed by 50% in both ways. Fig. 3a 
shows that parameter C1 mostly affects the break onto the finer particles 
and the shape of that part of the curve in a way that smaller C1 secures 
higher contribution of fine grains (dashed line), while the case is 
opposite for higher C1 (dash-dotted line). On the contrary, the change of 
parameter α (Fig. 3b) is less affecting the representation of small grains, 
but it is mainly responsible for the slope of the central part of the GSD 
curve, where smaller α provides steeper curve. Thus, in case of granular 
soils higher α and smaller C1 values describe well-graded, while smaller 
α and higher C1 describe more uniformly graded materials. Indeed, well- 
graded materials usually have lower total porosity due to the better 
spatial packing of grains, meaning the lower representation of zeros in 
ρind field that causes stronger variability of the field (higher α) and lower 
intermittency of its mean value (lower C1). 

The impacts of ρind
s,min and dg,min on the GSD curve are also tested by 

varying one of the parameters while maintaining the rest. As illustrated 
in Fig. 3c, the higher ρind

s,min (more strict threshold value), the higher 
values of P (d < dg) (Eq. (9)), and vice versa. Unlike the three other 
parameters, dg,min dictates the total range of scales (L/dg,min) by affecting 
mostly the distribution of small grains (tail of the GSD) - see Fig. 3d. 

2.3. Soil sampling and image acquisition 

In this section are given information about soil sampling and image 
acquisition for three different materials: Green Wave substrate and 
Horizons A and A20 of La Herreria soil. 

2.4. Green Wave substrate 

Green Wave substrate is an artificial coarse material (VulkaTec 

Riebensahm GmbH, 2016) with 4% of organic matter, used for covering 
green roofs. Due to its volcanic nature (values of grain and dry bulk 
densities are 2.35 Mg/m3 and 1.42 Mg/m3, respectively), this material 
does not create a significant load on the roof construction which is the 
reason it has been used in case of Green Wave (Versini et al., 2018, 
2020), a wavy shape green roof located next to Ecole des Ponts Par
isTech in Champs-sur-Marne, France. The substrate contains 50% of 
grains larger than 1.6 mm, with 10% of particles between 10 and 20 mm 
in the coarse range, and 13% of fine particles smaller than 80 μm. Dis
tribution of grains larger than 80 μm was determined by means of the 
dry sieving method (AFNOR, 1996), while the sedimentation test 
(AFNOR, 1992) was used for finer particles. The curvature and unifor
mity coefficients are Cc = (D30)2/(D60 × D10) = 1.95 and Cu = D60/D10 =

55, respectively, and hence this substrate is regarded as well graded 
according to the ASTM D2487-06 (2006) standard. 

The sample of the GW substrate (10 cm diameter and 15 cm height) 
was prepared by mixing and pouring up the material into the plexiglass 
cylinder (compacted to in situ value of ρbulk = 1.42 Mg/m3), simulating 
the way substrate is placed on the roof to avoid segregation of fine 
particles at the bottom. Tomographic scans were conducted with a RX 
Solutions Ultratom microtomograph, including a Hamamatsu L10801 X- 
ray source and a Paxscan Varian 2520 V flat panel detector (1920 ×
1560 pix2, pixel size 127 μm). X-ray source tension and current were 
respectively 200 kV and 280 μA. The detector was set at 4 fps, each 
projection resulting of an average over 25 projections, giving a total 
number of 4320 averaged projections. The sample being a long cylinder, 
stack mode was used and set to three turns. The reconstructed 3D image 
is finally represented by 1785 × 1785 × 3072 voxels with the edge 
length of 53.7 μm. 

2.5. La Herreria soil (Horizons a and A20) 

Two intact samples (60 mm diameter and 100 mm height) of La 
Herreria soil were collected in the low land mountain area of Sierra de 
Guadarrama in Spain (Schmid et al., 2016), which is a highly degraded 
type of site because of the livestock keeping. One soil sample was 
extracted from the top 18 cm layer (Horizon A), being the result of 
biological alteration with roots resulting in fertile soil. This layer is 
moderately acid, with 2.5% of organic matter, 0.8% of Fe2O3, sandy 
texture (65% sand, 25% silt, 10% clay) and bulk density of 1.6 Mg/m3. 
The second soil sample was extracted from 18 to 40 cm depth (Horizon 
A20), also presenting an acid character (pH = 6) with 0.5% of organic 
matter, 0.7% of Fe2O3, 55%, 30% and 15% of sand, silt and clay parti
cles, respectively, and bulk density of 1.7 Mg/m3. 

X-ray CT scanning was performed using a Phoenix v | tome | x m 240 
kV system (GE Sensing & Inspection Technologies GmbH, Wunstorf, 
Germany) at the Hounsfield Facility, University of Nottingham, UK. The 
scanner consisted of a 240 kV microfocus X-ray tube fitted with a 
tungsten reflection target and a DXR 250 digital detector array with 200 
μm pixel size (GE Sensing & Inspection Technologies GmbH, Wunstorf, 
Germany). A maximum X-ray energy of 140 kV and 200 μA was used to 
scan the soil core. A total of 2400 projection images were acquired over 
a 360◦ rotation. Each projection was the average of six images acquired 
with a detector exposure time of 200 ms and the resulting isotropic voxel 
edge length was 32 μm. The 3D image of the soil samples used in this 
work is represented by 676 × 676 × 300 voxels. 

3. Results and discussion 

The approach presented in this work is firstly validated on soil im
ages of the GW substrate, and the experimental GSD data of the same 
material. Then, it is applied on two horizons of La Herreria soil, but in 
this case only measured percentages of sand, silt and clay particles were 
compared with model results because detailed GSD data are lacking. 
Finally, the comparison with the fractal-based PSF model (Perrier et al., 
1999; Bird et al., 2000) is presented. 
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3.1. Obtaining ρind field by means of X-ray CT 

The ρind field is transformed from a grey-scale image carrying the 
information about different intensities of grey color - bright shades of 
grey represent high, and dark shades low density zones. Since grey-level 
intensities (GL) can be linked with density ρ by means of the linear 
regression (Taina et al., 2008), a linear correlation between ρind [− ] and 
original grey-level (GL) is obtained by:  

- subtracting the GL0 threshold value from the original GL values.  
- setting to zero all GL values lower than GL0.  
- renormalizing the modified GL field. 

ρind =

⎧
⎪⎨

⎪⎩

GL > GL0,
GL − GL0

〈GL − GL0〉

GL ≤ GL0, 0
(13) 

where notation < > indicates the mean value. GL0 is adjusted based 
on the locations of pores that can be reliably identified on the image. By 
using Fiji (https://fiji.sc/), an open source Java-based image processing 
package, it was possible to estimate the value of GL0 for all three 
materials. 

In Fig. 4 are presented eight horizontal ρind fields of the GW substrate 
extracted from the full-three dimensional scanned image. The resolution 
of the presented planes is 1024 x 1024 pixels (λn = 210), and they are 
equally distant in vertical direction (1.6 cm between two consecutive 
images). In Fig. 5A are presented four horizontal ρind fields of La Herreria 
soil – Horizon A, while in Fig. 5B are presented horizontal fields of 
Horizon A20 (all images are 512 × 512 pixels - λn = 29). 

3.2. UM model vs. Experimental data 

The two-dimensional fields can be analyzed instead of the full-three 

Fig. 4. Eight two-dimensional horizontal ρind fields (1024 × 1024 pixels), extracted from the original three-dimensional grey scale image, that are equally distant 
along the specimen height. 

Fig. 5. a) Four equally distant horizontal ρind fields (512 × 512 pixels) of Horizon A of La Herreria soil, extracted from the original three-dimensional grey scale 
image; b) same as in (a) just for Horizon A20. 
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dimensional one only if the statistical isotropy within the soil specimen 
is secured, which is the case here (explained further in the text). Note 
that ρind

s,min and dg,min are physical properties of the particular material 
and they are considered as unique for the whole sample (and every two- 
dimensional slice within it), while α and C1 are statistical parameters 
determined for every horizontal plane individually. 

3.2.1. UM model parameters 
In case of the GW substrate, value of ρind

s,min is computed as ρind
s,min =

ρs,min
ρbulk

= 2.2
1.42 = 1.55, where ρs,min and ρbulk are experimentally determined, 

while in case of La Herreria soils ρind
s,min values are adjusted to fit measured 

percentages of sand, silt and clay particles (explained later in the text) 
because the corresponding ρs,min values are missing (only ρbulk values are 
given). Clearly, due to its physical basis, value of ρind

s,min should not change 
significantly regardless of the soil type (adjusted values are ρind

s,min = 1.73 
and 1.54 for Horizon A and A20, respectively). 

Value of dg,min depends on the range of scales that is analyzed. If 

focusing on the range of scales covered by the scanned image, dg,min 
corresponds to the pixel size at λn (=1024 and 512 for GW substrate and 
La Herreria soils, respectively), and thus it is equal to dg,min = L/λn ≈ 60/ 
1024 ≈ 50 μm in case of the GW substrate, and dg,min = 16/512 ≈ 32 μm 
for La Herreria soils. For the full-range of scales, dg,min represents the 
absolute minimal grain size that needs to be approximately estimated if 
not measured. For the GW substrate, dg,min = 1 μm is adopted based on 
the GW experimental data, while lower values of dg,min = 0.1 μm and 
0.05 μm are adopted for Horizons A and A20 of La Herreria soil, 
respectively, having on mind significant percentages of clay particles in 
both cases (10% and 15%, respectively). 

Finally, the UM parameters are determined by performing TM 
analysis on every ρind(λ) field presented in Fig. 4 and Fig. 5. In Fig. 6 is 

presented log
(
〈
(
ρind(λ)

)p
〉
)

versus log(λ) for four different p values (0.2, 

1.5, 2 and 3) and eight horizontal ρind(λ) fields of the GW substrate 

presented in Fig. 4. In all cases, scaling of log
(
〈
(
ρind(λ)

)p
〉
)

(different 

symbols) can be reasonably well interpreted with linear regressions. 

Fig. 6. Scaling of statistical moments of eight horizontal ρind(λ) fields of the GW substrate presented in Fig. 4.  

Fig. 7. a) Scaling of statistical moments of four horizontal ρind(λ) fields of La Herreria soil (Horizon A) presented in Fig. 5a; b) same as in (a) just for Horizon A20 
(fields presented in Fig. 5b). 
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This is also the case with La Herreria soils whose moment scaling 
behavior is illustrated in Fig. 7a for Horizon A, and in Fig. 7b for Horizon 
A20. The same kind of analysis is applied on the eight vertically oriented 
fields (λn = 210) of the GW substrate (equal horizontal distance between 
the two consecutive images). The quality of scaling is slightly better for 
vertical planes, but they are not presented in the Figure. Vertical planes 
for La Herreria soils were not analyzed since the maximal resolution of 
the vertically oriented image is 256 x 256 pixels (λn = 28), which is 
regarded as insufficient. 

Based on the slopes of the obtained linear regressions, in Fig. 8 are 
presented K(p) functions for all analyzed horizontal planes (different 
solid lines) of three different soils, together with K(p) functions related 

Fig. 8. Moment scaling functions K(p) obtained by applying TM technique on: a) eight horizontal fields from Fig. 4 (different solid lines), and eight vertically 
oriented fields (dashed lines); b) four horizontal fields from Fig. 5a; c) four horizontal fields from Fig. 5b. 

Table 1 
Determined UM parameters for eight horizontal ρind(λ) fields of the GW substrate presented in Fig. 4, and eight vertical fields  

Horizontal plane  
1 2 3 4 5 6 7 8 

C1 9.34E− 03 9.93E− 03 1.64E− 02 2.23E− 02 1.66E− 02 2.72E− 02 1.45E− 02 1.93E− 02 
α 1.93 1.96 1.83 1.67 1.80 1.61 1.85 1.66 
Vertical plane  

1 2 3 4 5 6 7 8 
C1 2.66–02 2.21E− 02 1.74E− 02 1.72E− 02 1.67E− 02 1.63E− 02 2.06E− 02 2.37E− 02 
α 1.56 1.72 1.75 1.75 1.76 1.82 1.78 1.60  

Table 2 
Determined UM parameters for eight ρind(λ) fields of La Herreria soil (Horizons A 
and A20) presented in Fig. 5.  

Horizon A  
1 2 3 4 

C1 3.36E− 02 3.55E− 02 3.03E− 02 2.60E− 02 
α 1.15 1.25 1.30 1.37 
Horizon A20  

1 2 3 4 
C1 1.62–02 1.63E− 02 1.73E− 02 1.62E− 02 
α 1.46 1.40 1.48 1.44  

Fig. 9. Comparison between: a-top) Equation (9) applied on the GW Hor. plane 4 – solid line (L = 60 mm, ρind
s,min = 1.55, dg,min = 50 μm, C1 = 2.23 × 10− 2, α = 1.67), 

Eq. (4) applied on the same field – connected dots (ρind
s,min = 1.55, λn = 1024), and truncated experimental GSD data (dg ≥ 50 μm) - triangles; a-bottom) Equation (10) 

computed with the same parameter values as in a-top, and truncated experimental GSD data (triangles); b-top) Eq. (9) applied on eight ρind(λ) fields from Fig. 4 – solid 
lines (L, ρind

s,min and dg,min identical as in (a), α and C1 presented in Table 1), and truncated experimental GSD data (triangles); b-bottom) Same as in a-bottom just for all 
fields from Fig. 4; c-top) Same as in b-top just for dg,min = 1 μm (solid lines), and full-range experimental GSD data (dg ≥ 1 μm) – squares; c-bottom) Same as in b- 
bottom just for dg,min = 1 μm (solid lines), and full-range experimental GSD data (dg ≥ 1 μm) – squares. 
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to the vertical planes of the GW substrate (dashed lines in Fig. 8a). Since 
vertical and horizontal K(p) functions are overlapping in case of the GW 
substrate, indicating similar values of α and C1 (see Table 1), it is 
reasonable to assume the statistical isotropy within the GW specimen. 
Even though vertical images are not analyzed, the same assumption is 
adopted for two remaining soils, having on mind the obtained horizontal 
K(p) functions are rather similar (values of α and C1 are presented in 
Table 2). 

Low values of C1 (order of magnitude 10-2) obtained for all three soils 
indicate the narrow range of ρind values, meaning that ρ cannot be 
significantly larger than ρbulk (should be the case regardless of the soil 
type). Also, higher α values (closer to 2) point out more significant 
fluctuations of ρ around ρbulk, indicating the presence of different grain 
sizes with different densities. 

3.2.2. Comparison with experimental data 
After determining values of the four model parameters, Eq. (9) is 

firstly tested on the ρind field of the Hor. plane 4 of the GW substrate (see 
Fig. 4). Since focusing on the range of scales covered by the image, dg,min 
= 50 μm is used. Fig. 9a-top illustrates comparison between Eq. (9) (UM 
model - solid line), Eq. (4) (connected dots) that uses the counted 
number of ρind(λ) ≥ ρind

s,min values at different λ, and the truncated 
experimental GSD data of the GW substrate (triangles). In Fig. 9a-bottom 
are compared probability density functions coming from the UM model 
(Eq. (10) – solid lines) and measurements (triangles). Good agreement 
between different analytical curves and truncated experimental data 
that consider only dg ≥ 50 μm is obtained. 

In Fig. 9b-top is presented comparison between the same truncated 
experimental data (triangles) and Eq. (9) applied on every ρind field of 
Fig. 4 (different solid lines), while in Fig. 9b-bottom are illustrated the 
corresponding probability density functions (Eq. (10)). 

Finally, in Fig. 9c-top and Fig. 9c-bottom the full range experimental 
data (squares) are compared with Eqs. (9) and (10), respectively, by 
using the same parameter values as in Fig. 9b, with only difference that 
dg,min = 1 μm is adopted. The agreement between the Eqs. (9) / (10) and 
both truncated and full-range experimental data is considered as satis
factory. The obtained family of curves creates reasonably narrow 
confidential zone around experimental points, verifying that way the 
analytical model proposed. 

In Fig. 10 is presented the same kind of analysis as in Fig. 9, but for 
Horizons A and A20 of La Herreria soil. In Fig. 10a and b are illustrated 
results obtained from ρind fields of Fig. 5a (Horizon A) and Fig. 5b 
(Horizon A20), respectively, where dg,min = 32 μm is adopted, while in 
Fig. 10c are compared full-range results for Horizon A (solid lines) and 
Horizon A20 (dashed lines) using dg,min = 0.1 μm and dg,min = 0.05 μm, 
respectively. As mentioned earlier in the text, values of ρind

s,min (1.73 and 
1.54 for Horizons A and A20, respectively) are adjusted so that the 
average percentages of sand, silt and clay particles, computed based on 
the model results from Fig. 10c, fit well with measured values. For 
Horizon A, the average computed values of sand, silt and clay particles 
are 64%, 27% and 8% (about 1% of particles greater than 2 mm), 
respectively, while for Horizon A20 those values are 54%, 32% and 
14%, respectively. The results obtained with a model are rather close to 
measurements, confirming the UM model is valid. 

The proposed UM approach was successfully evaluated on soils that 
cover wide range of grain sizes with significant percentages of both 
coarse and fine particles. To see limitations of the model, it was addi
tionally tested on a material with a rather uniform GSD curve, the 
Hostun sand HN31 extracted in the Drôme region in France (Bruchon 
et al., 2013). This sand is made of about 98% of quartz (grain densities 
are uniform), and it covers rather narrow spectrum of grain sizes (0.2 ÷
0.8 mm). Preliminary results showed the proposed approach is not 
applicable on such material, having on mind the scaling of statistical 
moments in log–log scale significantly deviates from linear regression, 
and hence parameters α and C1 cannot be determined. 

3.3. UM model vs. PSF model 

The PSF approach, a three-phase fractal-based GSD model firstly 
introduced by Perrier et al. (1999), is also used for interpreting the 
experimental GSD curve of the GW substrate. According to this model, 
the GSD can be described using the following expression (Bird et al., 
2000): 

P
(
d < dg

)
=

(
dg

dg,max

)3− Df ,PSF

(14) 

where Df,PSF is the fractal coefficient [− ] whose optimal value can be 
determined from the slope of the best fitting linear regression in 

Fig. 10. Comparison between: a) Eq. (9) applied on four Horizon A fields from Fig. 5a (L = 16 mm, ρind
s,min = 1.73, dg,min = 32 μm, α and C1 from Table 2), and Eq. (4) 

(box-counting method) applied on same fields (λn = 512 ≈ L/dg,min); b) Same as in (a) just for Horizon A20 (ρind
s,min = 1.54); c) Eq. (9) applied on four fields from 

Fig. 5a (parameters same as in (a), only dg,min = 0.1 μm – solid lines) and on four fields from Fig. 5b (parameters same as in (b), only dg,min = 0.05 μm – dashed lines). 
In all three cases bottom graphs are obtained by means of Eq. (10) using the corresponding parameter values. 
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logarithmic scale that goes through the experimental GSD data and 
reaches 100% at dg,max. By adopting dg,max = 18 mm in case of the GW 
substrate, the optimal value of Df,PSF = 2.57 is obtained (dashed line in 
Fig. 8a). 

To better illustrate the difference between the PSF (Eq. (14)) and the 
UM model (Eq. (9)), probability functions are presented in a log–log 
scale (Fig. 11a). For the same values of L, dg,min and ρind

s,min as in Fig. 9c, 
the best agreement between Eq. (9) and measurements is obtained for α 
= 1.60 and C1 = 2.25 × 10− 2. These values are rather close to those 
describing the horizontal plane 4 of the GW substrate (see Table 1), 
confirming the physical basis of the proposed approach. 

To test whether the UM model can be used for soils with multi-modal 
GSD curves that are described with multiple fractal dimensions, Eq. (9) 
is compared with experimental data of Walla Walla (WW) soil, described 
in Bittelli et al. (1999) by means of three different fractal dimensions 
related to distributions of sandy, silty and clayey particles. According to 
the U.S. soil taxonomy, this soil is Typic Haploxeroll with 8.3% of sand, 
78.4% of silt and 13.3% of clay. Due to the lack of scanned soil images 
and other relevant information, the UM model parameters could not be 
determined as explained earlier in the text, but only roughly estimated / 
adjusted. Fig. 11b shows that for ρind

s,min = 1.72, α = 1.05, C1 = 4.5 ×
10− 2, and L/dg,min = 1 mm/1 × 10− 4 mm (from the graph), Eq. (9) 
provides rather good agreement with WW experimental points. Since 
the relevant information are missing, these results should be taken with 
a grain of salt and understood only as a test if the model is capable of 
interpreting multi-modal GSD curves. 

Compared to Eq. (14) which considers the fixed fractal dimension Df, 

PSF, Eq. (9) takes into account the fractal dimension that changes with dg 
(the co-dimension function). Therefore, for the UM approach it is quite 
important to know the total range of scales investigated (L/dg,min). Even 
though the PSF model (Eq. (14)) is more convenient for practical 
application, since it uses only two parameters that can be determined 
quite easily, the UM model proposed in this work (Eqs. (9) and (10)) 
shows better agreement with experimental GSDs for soils with wide 
spectrum of grain sizes whose distribution cannot be accurately 
described with a simple fractal (power) law. 

4. Conclusion 

This work shows that the up-scaling approach presented can be used 
for predicting the GSD of a certain material based on its scanned micro- 
structure which represents a density indicator field. By reducing the 
resolution of the scanned image, density indicator values above the fixed 
threshold are treated at each resolution as a cumulative representation 

of solid particles of diameter equal to or larger than the corresponding 
pixel size. The quantity of values above the threshold at different reso
lutions can be analytically described by means of the Universal Multi
fractals (UM), leading to the new multifractal-based GSD model. The 
model uses four parameters, where two of them are physical (the min
imal grain diameter and the ratio between the minimal grain density and 
dry bulk density), while the other two are statistical UM parameters that 
characterize the spatial heterogeneity of the soil density field. 

An innovative approach proposed in this work was tested on three 
different materials containing significant percentages of both coarse and 
fine particles: an unconventional volcanic granular material used for 
covering green roofs, and two horizons of La Herreria soil collected from 
the low land mountain area of Sierra de Guadarrama in Spain. By per
forming the Trace Moment analysis on two-dimensional scanned soil 
images (density indicator field) of different materials, the statistical 
parameters (C1 and α) were determined and families of analytical GSD 
curves were obtained for each material, showing a good agreement with 
experimental data. Additionally, the UM approach was tested on 
Houston quartz sand and results showed that such a uniform GSD cannot 
be reliably estimated by means of the presented methodology. In all 
cases, the analysis was applied on two-dimensional images to save 
computational time and memory, which is legit if the statistical isotropy 
within the specimen is secured. 

Results showed the values of C1 are the same order of magnitude for 
different soils (10− 2) because density of an individual grain cannot be 
significantly larger than the dry bulk density, regardless of the soil type. 
Also, it was proved that lower C1 and higher α are related to GSD curves 
that change gradually with respect to grain sizes, while lower α and 
higher C1 are related to the steeper GSD curve in its central part and 
stronger curvature close to the break onto the finer particles. 

Finally, the proposed four parameters UM model was compared with 
the fractal-based two parameters PSF model, showing better agreement 
with the Green Wave experimental data. Its advantage was additionally 
emphasized by showing excellent agreement with multi-modal GSD 
curve of Walla Walla soil that is described in the literature by means of 
three different fractal dimensions related to sandy, silty and clayey 
particles. 
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Fig. 11. a) Comparison between the experimental GSD data of the GW substrate (squares) and Eq. (9) (solid lines) and (14) (dashed lines) computed with the 
adjusted parameter values that fit the measurements (C1 = 2.25 × 10− 2 and α = 1.60 for UM model, and Df,PSF = 2.57 for PSF model); b) same as in (a) just for Walla 
Walla soil taken from Bittelli et al. (1999) – L = 1 mm, dg,min = 1 × 10− 4 mm, ρind

s,min = 1.72, α = 1.05, C1 = 4.5 × 10− 2 (PSF model is not illustrated since it clearly 
deviates from the measurements). 
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Appendix:. Analogy between the up-scaling approach and the dry sieving method 

The analogy between Eq. (4) (the up-scaling approach) and the dry sieving method can be derived under the following assumptions:  

1. Three-dimensional space is considered (E = 3) since the dry sieving method is based on the grain masses.  
2. All grains have the same shape and density ρs.  
3. A discrete number of sieves is used, and hence the size of voids on each sieve follows the size of voxels l(λn-i) at different λn-i, where i = [0 ÷ n]. 

The total mass of the specimen (Mtotal) is placed on the cascade of sieves arranged in a descending order (the largest void size is on the top, while the 
smallest one is on the bottom). If all grains are distributed on the corresponding sieves i = [0 ÷ n], it can be assumed that those staying on a certain 
sieve have diameter equal to the size of sieve voids. Therefore, the following can be written for i = 0: 

M(d ≥ l(λn)) = Mtotal = CV ρs

∑n

j=0
Ng(λn− j)l(λn− j)

3 (A1) 

where CV is the volume shape coefficient [− ] (for cube CV = 1, for sphere CV = π/6), Ng(λn− j) is the number of grains [− ] that stay on the sieve of 
void size l(λn− j) [L] (j = 0 ÷ n). Since grains that stay on the sieve l(λn) are assumed to have identical diameters, l(λn)

3 can be pulled outside the sum, 
and the following is obtained: 

M(d ≥ l(λn)) = CV ρsl(λn)
3
∑n

j=0
Ng(λn− j)

(
l(λn− j)

l(λn)

)3

(A2)  

Ncum
g (λn) ≈ CV

∑n

j=0
Ng(λn− j)

(
l(λn− j)

l(λn)

)3

(A3) 

where Ncum
g (λn) is the cumulative number of grains equal to or larger than dg,min = l(λn). Following Eq. (A2), the cumulative mass of all grains equal 

to or larger than l(λn− i) can be expressed as the following: 

M(d ≥ l(λn− i)) = CV ρsl(λn− i)
3
∑n

j=i
Ng(λn− j)

(
l(λn− j)

l(λn− i)

)3

(A4)  

Ncum
g (λn− i) ≈ CV

∑n

j=i
Ng(λn− j)

(
l(λn− j)

l(λn− i)

)3

(A5) 

By introducing Eqs. (A3) into (A2) and (A5) into (A4), and having on mind that dg = l(λn− i), the GSD can be expressed as: 

P
(
d < dg

)
= 1 −

M(d ≥ l(λn− i))

M(d ≥ l(λn))
(A6)  

P
(
d < dg

)
= 1 −

Ncum
g (λn− i)

Ncum
g (λn)

(
l(λn− i)

l(λn)

)3

(A7) 

Note that Ncum
g (λn− i) and Ncum

g (λn) correspond to N
(

ρind(λ) ≥ ρind
s,min

)
and N

(
ρind(λn) ≥ ρind

s,min

)
in Eq. (4), respectively, while l(λn− i)

l(λn)
= λn

λn− i
. Therefore, Eq. 

(A7) is identical to Eq. (4) for E = 3, just in a discrete form. 
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Association Française de Normalisation, France.  

ASTM International. 2006. Standard Practice for Classification of Soils for Engineering 
Purposes (Unified Soil Classification System). ASTM D2487-06(2006). West 
Conshohocken, PA: ASTM International, approved May 1, 2006. 10.1520/D2487-06. 

Banhart, J., 2008. Advanced Tomographic Methods in Materials Research and 
Engineering. Oxford University Press, New York.  

Beuselinck, L., Govers, G., Poesen, J., Degraer, G., Froyen, L., 1998. Grainsize analysis by 
laser diffractometry: Comparison with the sieve-pipette method. Catena 32 (3-4), 
193–208. https://doi.org/10.1016/S0341-8162(98)00051-4. 

Bird, N.R.A., Perrier, E., Rieu, M., 2000. The water retention function for a model of soil 
structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51 (1), 55–63. 
https://doi.org/10.1046/j.1365-2389.2000.00278.x. 

Bittelli, M., Campbell, G.S., Flury, M., 1999. Characterization of particle-size distribution 
with a fragmentation model. Soil Sci. Soc. Am. J. 63, 782–788. 

Bruchon, J.F., Pereira, J.M., Vandamme, M., Lenoir, N., Delage, P., Bornert, M., 2013. 
Full 3D investigation and characterisation of capillary collapse of a loose unsaturated 
sand using X-Ray CT. Granular Matter. 15 (6), 783–800. https://doi.org/10.1007/ 
s10035-013-0452-6. 

Frisch, U., Parisi, G., 1985. A multifractal model of intermittency. Turbulence 
Predictability in Geophisical Fluid Dynamics Climate Dynamics. 84–88. 

Ghanbarian-Alavijeh, B., Millán, H., Huang, G., 2011. A review of fractal, prefractal and 
pore-solid-fractal models for parameterizing the soil water retention curve. Can. J. 
Soil Sci. 91 (1), 1–14. https://doi.org/10.4141/cjss10008. 

Ghanbarian, B., Hunt, A.G., 2017. Fractals - Concepts and Applications in Geoscience. 
CRC Press, Boca Raton.  

Grout, H., Tarquis, A.M., Wiesner, M.R., 1998. Multifractal analysis of particle size 
distributions in soil. Environ. Sci. Technol. 32 (9), 1176–1182. https://doi.org/ 
10.1021/es9704343. 

He, D., Ekere, N. N., Cai, L. 1999. Computer Simulation of Random Packing of Unequal 
Particles. Physical Review E. 60 (6), 7098–7104. http://www.ncbi.nlm.nih.gov/ 
pubmed/11970649. 

Hseih, J., 2003. Computed Tomography: Principles, Design, Artifacts, and Recent 
Advances, 114th ed. Society of Photo Optical. 
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