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Abstract

Let U(λ) denote the class of all analytic functions f in the unit disk Δ of the form f (z) = z + a2z2 + · · ·
satisfying the condition∣∣∣∣f ′(z)

(
z

f (z)

)2
− 1

∣∣∣∣ � λ, z ∈ Δ.

In this paper we find conditions on λ and on c ∈ C with Re c � 0 �= c such that for each f ∈ U(λ) satisfying
(z/f (z)) ∗ F(1, c; c + 1; z) �= 0 for all z ∈ Δ the transform

G(z) = Gc
f (z) = z

(z/f (z)) ∗ F(1, c; c + 1; z) , z ∈ Δ,

is univalent or starlike. Here F(a, b; c; z) denotes the Gauss hypergeometric function and ∗ denotes the
convolution (or Hadamard product) of analytic functions on Δ.
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1. Introduction

Let Δ := {z ∈ C: |z| < 1} be the open unit disk in the complex plane C and A be the set
of all functions analytic in Δ with the usual normalization f (0) = 0 = f ′(0) − 1. Also, we let
S = {f ∈ A: f is univalent in Δ}. If f ∈ S maps Δ onto a starlike domain (with respect to
the origin), i.e. if tw ∈ f (Δ) whenever t ∈ [0,1] and w ∈ f (Δ), then we say that f is a starlike
function. The class of all starlike functions is denoted by S∗. A necessary and sufficient condition
for f ∈A to be starlike is the inequality [3,5]

Re

(
zf ′(z)
f (z)

)
> 0, z ∈ Δ. (1)

Let U(λ) denote the class of all functions f ∈ A satisfying the condition∣∣∣∣f ′(z)
(

z

f (z)

)2

− 1

∣∣∣∣ � λ, z ∈ Δ.

We set U = U(1). We remark that from f ∈ U(λ) it follows that f (z)/z �= 0 for z ∈ Δ. It is
well known that U � S (see [1,10]) and so, for 0 � λ � 1, one has U(λ) � S . In a recent pa-
per [9, Corollary 1.1] the authors have obtained the largest r ∈ (0,1] such that for each f ∈ S
the function z �→ r−1f (rz) is included in U . More precisely, the authors have proved that

max
{
r ∈ (0,1]: r−1f (rz) ∈ U for every f ∈ S

} = 1/
√

2. (2)

For the proof of our results, we need the following lemmas.

Lemma 1. (See [8].) If f ∈ U(λ), a := |f ′′(0)|/2 � 1 and 0 � λ �
√

2−a2−a
2 , then f ∈ S∗.

Recently, Fournier and Ponnusamy [4] have indicated a proof for the sharpness part of
Lemma 1 by stating that there exists a nonstarlike function f ∈ U such that with a = |f ′′(0)|/2
it holds that

0 <

√
2 − a2 − a

2
< sup

z∈Δ

∣∣∣∣f ′(z)
(

z

f (z)

)2

− 1

∣∣∣∣ � 1 − a.

A careful analysis of results in [4] implies that Lemma 1 is actually sharp (see also [15] for a
detailed proof). For a general result, we refer to [13,14].

Lemma 2. (See [12, Corollary 3.2].) If f (z) = z + an+1z
n+1 + · · · (n � 2) belongs to U(λ) and

0 � λ � n − 1√
(n − 1)2 + 1

,

then f ∈ S∗.

We observe that for n = 2 (i.e. f ∈ U(λ) with f ′′(0) = 0), Lemma 2 gives Lemma 1.

Lemma 3. Let φ(z) = 1 + ∑∞
n=1 bnz

n be a nonvanishing analytic function on Δ and let f be of
the form

f (z) = z

φ(z)
= z

1 + ∑∞
n=1 bnzn

. (3)

Then, we have the following:



760 M. Obradović, S. Ponnusamy / J. Math. Anal. Appl. 336 (2007) 758–767
(1) If
∑∞

n=2(n − 1)|bn| � λ, then f ∈ U(λ).

(2) If
∑∞

n=2(n − 1)|bn| � 1 − |b1|, then f ∈ S∗.

The first part of Lemma 3 is from [7,8] whereas the second part is obtained from [16, Theo-
rem 1]. At this place it is important to present the following example: Consider the function

f (z) = z

1 + ibz + (e2iβ/2)z3
.

Then, for |b| � 1/2 and β a real number, we have (with b1 = ib, b2 = 0, b3 = e2iβ/2 and bn = 0
for n � 4)

Re

(
z

f (z)

)
> 1 − |b| − 1

2
� 0 and

∞∑
n=2

(n − 1)|bn| = 1

and so, by Lemma 3(1), f ∈ U ⊆ S . On the other hand f is not in S∗ when 0 < b � 1/2 and
0 < β < arctan(2b), because

Re

(
zf ′(z)
f (z)

)∣∣∣
z=1

= [sinβ − 2b cosβ] sinβ

|1 + ib + (e2iβ/2)|2 < 0.

This example shows the sharpness of the condition in part (2) of Lemma 3.

2. Results

If f and g are analytic functions on Δ with f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n, then
the convolution (Hadamard product) of f and g, denoted by f ∗ g, is an analytic function on Δ

given by

(f ∗ g)(z) =
∞∑

n=0

anbnz
n, z ∈ Δ.

For f (z) = z + ∑∞
n=2 anz

n in A, we have a natural convolution operator defined by

zF (a, b; c; z) ∗ f (z) :=
∞∑

n=1

(a)n−1(b)n−1

(c)n−1(1)n−1
anz

n, c /∈ −N, z ∈ Δ, (4)

where (a)n denotes the Pochhammer symbol (a)0 = 1, (a)n := a(a+1) · · · (a+n−1) for n ∈ N.
Here F(a, b; c; z) denotes the Gauss hypergeometric function which is analytic in Δ. As a special
case of the Euler integral representation for the hypergeometric function, one has

F(1, b; c; z) = �(c)

�(b)�(c − b)

1∫
0

1

1 − tz
tb−1(1 − t)c−b−1 dt, z ∈ Δ, Re c > Reb > 0.

Using this representation we have, for f ∈A,

zF (1, c; c + 1; z) ∗ f (z) = z

(
F(1, c; c + 1; z) ∗ f (z)

z

)
and therefore, we obtain the following form:

zF (1, c; c + 1; z) ∗ f (z) = zc

1∫
f (tz)

tz
tc−1 dt, z ∈ Δ, Re c > 0. (5)
0
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Now, we state and prove our results.

Theorem 1. Let f ∈ U(λ) and c ∈ C with Re c � 0 �= c such that(
z/f (z)

) ∗ F(1, c; c + 1; z) �= 0 in Δ,

and G = Gc
f be the transform defined by

G(z) = z

(z/f (z)) ∗ F(1, c; c + 1; z) , z ∈ Δ. (6)

Further, let A be a nonnegative real number such that A = | c
c+1

f ′′(0)
2 | � 1. Then we have the

following:

(1) G ∈ U(λ|c|/|c + 2|). The result is sharp especially when |f ′′(0)/2| � 1 − λ. In particular,
G ∈ U whenever 0 < λ � |(c + 2)/c|.

(2) G ∈ S∗ whenever 0 < λ � |c+2|
2|c| (

√
2 − A2 − A).

In particular, if λ = 1, f ′′(0) = 0 and |c − 2| � 2
√

2 with Re c � 0, then G ∈ S∗.

Proof. We consider the function
z

G(z)
= z

f (z)
∗ F(1, c; c + 1; z), z ∈ Δ. (7)

Differentiating z/G(z) shows that

(c + 1)
z

G(z)
−

(
z

G(z)

)2

G′(z) = c
z

G(z)
+ z

(
z

G(z)

)′
, z ∈ Δ. (8)

Further, using the series expansion of F(1, c; c + 1; z) from (4), we have

F(1, c; c + 1; z) = 1 +
∞∑

n=1

(c)n

(c + 1)n
zn = 1 +

∞∑
n=1

c

c + n
zn, z ∈ Δ, (9)

which yields

cF (1, c; c + 1; z) + zF ′(1, c; c + 1; z) = c

1 − z
, z ∈ Δ,

from which in combination with (7) and (8), one obtains

(c + 1)
z

G(z)
−

(
z

G(z)

)2

G′(z) = c
z

f (z)
, z ∈ Δ. (10)

Now, we set

p(z) =
(

z

G(z)

)2

G′(z).

Then p(z) is analytic on Δ (with p(0) = 1 and p′(0) = 0); for one has the relations (7) and,
by (10),

p(z) = (c + 1)
z

G(z)
− c

z

f (z)
, z ∈ Δ, (11)

and z �→ z/f (z) is analytic on Δ, as by assumption f ∈ U(λ) and so f (z)/z �= 0 on Δ. From (8),
(10) and (11) one then obtains that
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cp(z) + zp′(z) = (c + 1)c
z

G(z)
+ (c + 1)z

(
z

G(z)

)′
− c2 z

f (z)
− cz

(
z

f (z)

)′

= c

[
(c + 1)

z

f (z)
− c

z

f (z)
− z

(
z

f (z)

)′]

= c

[
z

f (z)
− z

(
z

f (z)

)′]

= c

(
z

f (z)

)2

f ′(z). (12)

Now, as f ∈ U(λ), it follows that∣∣∣∣p(z) + 1

c
zp′(z) − 1

∣∣∣∣ < λ, z ∈ Δ, (13)

and so (because p′(0) = 0), from the work of Hallenbeck and Ruscheweyh [6] (see also [11]),
we deduce that∣∣p(z) − 1

∣∣ � λ|c|
|c + 2| |z|

2, z ∈ Δ.

The conclusion (1) follows and the bound λ|c|/|c + 2| is sharp. To prove the sharpness, we
consider functions f in U(λ) of the form

f (z) = z

1 − a2z + λz2
, z ∈ Δ,

where a2 = f ′′(0)/2 and |a2| � 1 − λ, so that 1 − a2z + λz2 �= 0 for all z ∈ Δ. Moreover, since
Re c � 0, it follows that |c + 2| > |c + 1| > |c| and, therefore,∣∣∣∣1 − a2

c

c + 1
z + λ

c

c + 2
z2

∣∣∣∣ �= 0

for all z ∈ Δ, provided |a2| � 1 − λ. Then, by (6) and (9), a computation gives

G(z) = z

1 − a2(c/(c + 1))z + (λc/(c + 2))z2

which is analytic on Δ, z/G(z) �= 0 on Δ and(
z

G(z)

)2

G′(z) − 1 = − λc

c + 2
z2.

We have that G ∈ U(λ|c|/|c + 2|).
The second part is a consequence of Lemma 1. In fact, it suffices to observe from the definition

of G(z) that

A :=
∣∣∣∣G′′(0)

2

∣∣∣∣ =
∣∣∣∣ c

c + 1

f ′′(0)

2

∣∣∣∣.
Then, by Lemma 1, G is starlike whenever A � 1 and

0 � λ|c|
|c + 2| �

√
2 − A2 − A

2

and the result follows from the last inequality. �
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Remark. We recall first that if |a2| � 1 − λ, then it is known that [8]

Re

(
f (z)

z

)
>

1

1 + |a2| + λ
� 1

2
for z ∈ Δ. (14)

Further, from the work of Ruscheweyh [17, Lemma 2], it follows that

ReF(1, c; c + 1; z) >
1

2
, z ∈ Δ, Re c � 0. (15)

From (14), it follows that Re(f (z)/z) > 0, z ∈ Δ. From this observation and (15), we obtain
(using either the Herglotz representation formula for functions with positive real part or [18])
that

Re

(
f (z)

z
∗ F(1, c; c + 1; z)

)
> 0, z ∈ Δ, Re c � 0,

and so, in particular, that (z/f (z)) ∗ F(1, c; c + 1; z) �= 0 for all z ∈ Δ, Re c � 0.

Remark. In case Re c > 0, the formula (5) shows that the transform G(z) = Gc
f (z) defined by (6)

has a second representation in the form

G(z) = z

(
c

1∫
0

tz

f (tz)
tc−1 dt

)−1

, z ∈ Δ.

Using Lemma 2, Theorem 1 can be generalized as follows:

Theorem 2. For a fixed n � 2, let f (z) = z + an+1z
n+1 + · · · belong to U(λ) and let c ∈ C

with Re c � 0 �= c such that (z/f (z)) ∗ F(1, c; c + 1; z) �= 0 in Δ, and G = Gc
f be the transform

defined by (6). Then we have the following:

(1) G ∈ U(λ|c|/|c + n|). In particular, G ∈ U whenever 0 < λ � |(c + n)/c|.
(2) G ∈ S∗ whenever 0 < λ � |c+n|(n−1)

|c|
√

(n−1)2+1
.

Proof. We note that

z

f (z)
= 1

1 + an+1zn + · · · = 1 − an+1z
n + · · · ,

so that

z

f (z)
∗ F(1, c; c + 1; z) = 1 − an+1

(
c

c + n

)
zn + · · · .

Thus, G can be written in the form

G(z) = z + an+1

(
c

c + n

)
zn+1 + · · ·

and therefore, as in the proof of Theorem 1, the function p defined by

p(z) =
(

z
)2

G′(z) = 1 + (n − 1)an+1

(
c

)
zn + · · ·
G(z) c + n
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is analytic in Δ such that p(0) = 1, p′(0) = · · · = p(n−1)(0) = 0. As f ∈ U(λ), p satisfies (13).
Consequently (see [6,11]),∣∣p(z) − 1

∣∣ � λ|c||z|n
|c + n| , z ∈ Δ,

and the proof of part (1) is complete. The second part is a consequence of Lemma 2. �
3. Sufficient conditions for functions in U or in S∗

We recall that U � S . Next we consider the following question: Given a univalent function f ,
is it possible to generate functions in U or in S∗? Our next result actually provides a method of
obtaining functions in U .

Theorem 3. Let h(z) = 1 + ∑∞
n=1 cnz

n be an analytic function on Δ and a2 ∈ C such that

|c1a2| +
( ∞∑

n=2

|cn|2
n − 1

)1/2

� 1 and λ :=
( ∞∑

n=2

(n − 1)|cn|2
)1/2

< +∞. (16)

Then for every function f ∈ S with f ′′(0)/2 = a2 the function Hf defined by

z

Hf (z)
=

(
z

f (z)

)
∗ h(z)

belongs to U(λ), and thus to S if λ � 1, and even to S∗ if λ � 1 − |a2c1|.

Proof. Let f ∈ S and be of the form (3). Then a2 = f ′′(0)/2 = −b1,

z

Hf (z)
=

(
z

f (z)

)
∗ h(z) = 1 +

∞∑
n=1

bncnz
n

and from the well-known Area Theorem [5, Theorem 11, p. 193, Vol. 2] we have
∞∑

n=2

(n − 1)|bn|2 � 1. (17)

Now, by the triangle inequality, we see for all z ∈ Δ that∣∣∣∣ z

Hf (z)

∣∣∣∣ � 1 − |c1b1||z| −
∞∑

n=2

(√
n − 1|bn|

)( |cn|√
n − 1

)
|z|n

� 1 − |c1a2||z| − |z|2
∞∑

n=2

(√
n − 1|bn|

)( |cn|√
n − 1

)

� 1 − |c1a2||z| − |z|2
( ∞∑

n=2

(n − 1)|bn|2
)1/2( ∞∑

n=2

|cn|2
n − 1

)1/2

(by Cauchy–Schwarz inequality)

� 1 − |c1a2| −
( ∞∑

n=2

|cn|2
n − 1

)1/2

by (17)

� 0 by (16).



M. Obradović, S. Ponnusamy / J. Math. Anal. Appl. 336 (2007) 758–767 765
Using this and the first inequality in (16), we obtain that z/Hf (z) �= 0 in Δ. Next we find that

∞∑
n=2

(n − 1)|cnbn| =
∞∑

n=2

(√
n − 1|bn|

)(√
n − 1|cn|

)

�
( ∞∑

n=2

(n − 1)|bn|2
)1/2( ∞∑

n=2

(n − 1)|cn|2
)1/2

� λ by (17) and (16).

Thus, Hf ∈ U(λ) by Lemma 3(1), and, in particular, Hf ∈ U ⊆ S if λ � 1. By Lemma 3(2), we
obtain the last part of the conclusion. �
Example 1. Choose h(z) = 1/(1 −az) with |a| = r < 1. Then, according to (16), r has to satisfy
the condition

|a2|r + r
(
log

(
1/

(
1 − r2)))1/2 � 1 and λ = r2/

(
1 − r2).

Then for each function f ∈ S with f ′′(0)/2 = a2 the function a−1f (az) belongs to U(λ) and
thus to S if λ � 1, and even to S∗ if λ � 1 − |a2|r . In particular, it is a simple exercise to see that

f ∈ S with f ′′(0) = 0 ⇒ a−1f (az) ∈ U ∩ S∗

whenever 0 < |a| = r � 1/
√

2. At this place it is interesting to compare with (2).

Example 2. Choose h(z) = 1/(1 − az2) with |a| = r < 1. Then, by (16), r has to satisfy the
condition

r

2
log

(
1 + r

1 − r

)
� 1 and λ = r

√
1 + r2

1 − r2
.

Therefore, if f ∈ S then the function z/((z/f (z)) ∗ h(z)) belongs to U(λ) and thus to S∗ if
λ � 1 (since h′(0) = 0). In fact, it is a simple exercise to see that the second condition λ � 1 is
equivalent to r � 1/

√
3, while the first condition is equivalent to the inequality

g(r) = (1 − r)e2/r − 1 − r � 0

which holds if r � 1/
√

3. Thus, if ω and ω′ denote the two square roots of a and if f ∈ S , then
the function Hf defined by

z

Hf (z)
= z

f (z)
∗ h(z) = 1

2

(
ωz

f (ωz)
+ ω′z

f (ω′z)

)

belongs to S∗ for r � 1/
√

3.

Corollary 1. Let f ∈ S be of the form (3) with a2 = f ′′(0)/2, and

h(z) = 1 + c1z + a

∞∑
n=2

1

(n + 1)
√

n − 1
zn

for some complex constant a, such that

|c1a2| + |a|
√

π2

12
− 11

16
� 1 and λ = |a|

√
π2

6
− 5

4
.
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Then the function Hf defined by z/Hf (z) = (z/f (z)) ∗ h(z) belongs to U(λ), and thus to S if
λ � 1, and even to S∗ if λ � 1 − |c1a2|.

Proof. Set cn = a/((n + 1)
√

n − 1 ) for all n � 2. The condition (16) takes the form

|c1a2| + |a|
( ∞∑

n=2

1

(n2 − 1)2

)1/2

� 1 and λ = |a|
( ∞∑

n=2

1

(n + 1)2

)1/2

.

Recall that
∞∑

n=2

1

(n + 1)2
= π2

6
− 5

4
.

Now, if we write

1

(n2 − 1)2
= 1

4

[
1

(n − 1)2
+ 1

(n + 1)2
−

(
1

n − 1
− 1

n + 1

)]
,

then it is a simple exercise to see that

∞∑
n=2

1

(n2 − 1)2
= 1

4

[
2

∞∑
n=1

1

n2
− 1 − 1

4
− 3

2

]
= π2

12
− 11

16
.

The conclusion follows from Theorem 3. �
Finally, it would be appropriate to recall the recent result of the authors in [2] in which a

number of interesting applications are also derived.

Theorem 4. (See [2, Theorem 3.9].) Let f,g ∈ S with the representations

z

f (z)
= 1 +

∞∑
n=1

bnz
n,

z

g(z)
= 1 +

∞∑
n=1

cnz
n.

If

Φ(z) = z

f (z)
∗ z

g(z)
= 1 +

∞∑
n=1

bncnz
n �= 0

for every z ∈ Δ, then F(z) = z
Φ(z)

∈ U , and, in particular, F is univalent in Δ.
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