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UNIVALENCY AND CONVOLUTION RESULTS ASSOCIATED
WITH CONFLUENT HYPERGEOMETRIC FUNCTIONS

M. OBRADOVIĆ AND S. PONNUSAMY

Communicated by Min Ru

Abstract. Given the confluent hypergeometric functions Φ(a; c; z), we

place conditions on a and c to guarantee that zΦ(a; c; z) will be in two sub-

classes of univalent functions. In addition, we obtain conditions to obtain

some convolution results.

1. Introduction and Statement of Results

Given complex numbers a, b, and c with c 6= 0, 1, 2, . . . , let

1F1(a; c; z) =
∞∑
k=0

(a)k
(c)k

zk

k!

denote the confluent (or Kummer) hypergeometric function. The series on the
right defines an entire function for a, c ∈ C, c 6= 0,−1,−2, . . .. In the unit disk
D = {z ∈ C : |z| < 1}, this function is related to the Gaussian hypergeomet-
ric function 2F1(a, b; c; z) through the limit which exists uniformly on compact
subsets of D (see [14]):

1F1(a; c; z) = lim
|b|→∞

2F1(a, b; c; z/b)

where 2F1(a, b; c; z) is the analytic continuation to the slit plane C\[1,∞) of

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, z ∈ D.
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For notational convenience, we use the shorter notation 1F1(a; c; z) = Φ(a; c; z)
in the sequel. It is well-known that the function w(z) = Φ(a; c; z) satisfies the
following differential equation

(1.1) zw′′(z) + (c− z)w′(z)− aw(z) = 0

and we have the following derivative formula

(1.2) Φ′(a; c; z) =
a

c
Φ(a+ 1; c+ 1; z), z ∈ C.

Further if Re c > Re a > 0, we have the integral representation

Φ(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1etz dt.

We make use of the standard notation S for the class of univalent functions f
that are analytic in D and normalized by f(0) = f ′(0)− 1 = 0. The starlike and
the convex subclasses of S are denoted by S∗ and C, respectively. It is well-known
that every f ∈ S∗ is characterized by the inequality

Re
(
zf ′(z)
f(z)

)
> 0, z ∈ D.

A function f ∈ C if and only if zf ′ ∈ S∗. Next we recall the class of functions
that has been studied in the recent years ([10, 11, 12]):

U(λ) =

{
f ∈ A :

∣∣∣∣∣f ′(z)
(

z

f(z)

)2

− 1

∣∣∣∣∣ < λ for z ∈ D

}
,

where A denotes the class of all analytic functions f in D with the normalization
f(0) = f ′(0)−1 = 0. We have the strict inclusion U(1) := U ⊂ S (see Aksentév [1]
and [2, p. 11]). Later, Krzyż [6] gave quasiconformal extensions of the extended
complex plane, using the transformation f(z) = 1/F (ζ), ζ = 1/z so that

F ′(ζ) =
(

z

f(z)

)2

f ′(z).

At this juncture it is important to remark that functions in U need not be starlike
(see [11]). Also functions in S∗ need not be in U (see [4]). Extremal functions of
many subclasses of S are in U (see [11]). For instance if

L =
{
z,

z

(1± z)2
,

z

1± z
,

z

1± z2
,

z

1± z + z2

}
,

then each function in this collection is in U ∩ S∗.
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In this paper we shall establish condition so that Φ(a; c; z) satisfies the inequal-
ity

|Φ′(a; c; z)− (a/c)| < |a/c|, z ∈ D

(and thus, Φ(a; c; z) is univalent in D). We also obtain condition under which
f ∈ S produces a class of functions Hf (z) to be in U or in S∗. Finally, we also
obtain a sufficient condition on the parameters a, c for the normalized function
zΦ(a; c; z) to belong to U .

To obtain our results we employ two different methods: the first one makes
use of a result due to Miller and Mocanu [8] on differential subordination. The
second method uses a convolution result and a result due to Fejér [3] about con-
vex decreasing sequences. In the rest of this section, we state our results and
present some of their consequences. In Section 2, we recall relevant lemmas and
in addition, we state and prove some new lemmas. The proofs of the main results
will be given in Section 3.

Theorem 1.1. Let ρ > 0, 0 6= a ∈ C and c ∈ C be such that Re c > ρ(|a| + 1).
Then

|Φ(a; c; ρz)− 1| < |a|ρ
Re c− ρ(|a|+ 1)

, z ∈ D.

Choosing ρ = 1, replacing a and c respectively by a+ 1 and c+ 1, we have

Corollary 1.2. Let −1 6= a ∈ C and c ∈ C be such that Re c > |a+ 1|. Then

(1.3) |Φ(a+ 1; c+ 1; z)− 1| < |a+ 1|
Re c− |a+ 1|

, z ∈ D.

In view of the derivative formula (1.2), the inequality (1.3) is equivalent to

(1.4) |(c/a)Φ′(a; c; z)− 1| < |a+ 1|
Re c− |a+ 1|

, z ∈ D

so that, for Re c ≥ 2|a+ 1|, one has

|(c/a)Φ′(a; c; z)− 1| < 1, z ∈ D

and hence, Φ(a; c; z) is univalent in D. In [9] sufficient conditions on the real
numbers a and c are established in order to prove that Re ((c/a)Φ′(a; c; z)) > 0
for z ∈ D. Note that 1 + z maps D onto a convex domain whereas z(1 + z) is not
even univalent in |z| < r if r > 1/2. Thus, in view of the different normalization
at the origin, the convexity (resp. the starlikeness or the univalency) conditions
for Φ(a; c; z) and zΦ(a; c; z) will be different.



1316 M. OBRADOVIĆ AND S. PONNUSAMY

We recall that the Hadamard product f ? g of two convergent power series
f(z) :=

∑∞
n=0 an(f)zn and g(z) :=

∑∞
n=0 an(g)zn in D is the power series defined

by

(f ? g)(z) := f(z) ? g(z) =
∞∑
n=0

an(f)an(g)zn.

It is clear that f ? g is analytic in D.

Theorem 1.3. Let hb(z) = 1 + bz +
∑∞
n=2 bnz

n be an analytic function on D,
where

bn =

√
(a)n−1

(c)n−1(n− 1)!
(n ≥ 2)

with a > 0 and c ≥ 2a+ 1. Then for each f ∈ S for which z
f(z) ? hb(z) 6= 0 in D,

the function Hf defined by

Hf (z) =
z

(z/f(z)) ? hb(z)

belongs to U ( and thus to S ) whenever a > 0 and c ≥ 2a + 1. Moreover, Hf (z)
even belongs S∗ if |f ′′(0)| < 2, a > 0 with c ≥ a+ (a+ 1)(2− |f ′′(0)|)2/4.

The most important part in Theorem 1.3 is to obtain condition under which
one actually has z

f(z) ?hb(z) 6= 0 in D. Often this is difficult to establish. However
there are cases where one can provide a proof for this part so that the assumption
that z

f(z) ? hb(z) 6= 0 in D may be dropped from the hypothesis. For instance, we
have

Corollary 1.4. Let f ∈ U with f ′′(0) = 0, and hb(z) be defined as in Theorem
1.3. Then the function Hf defined by

Hf (z) =
z

(z/f(z)) ? hb(z)

belongs to U ( and thus to S ) whenever a > 0, b ∈ (1/2, 1], and c satisfies the
condition

(1.5) max

2a+ 1,
a

b2

1 +

√√√√1−

√
(a+ 1)b2

2(a+ b2)


2 ≤ c ≤ a

(2b− 1)2
.

In the limiting case b→ (1/2)+, we obtain the following example:
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Example 1.5. Let f(z), hb(z) and Hf (z) be as in Corollary 1.4 with b = 1/2.
Then Hf belongs to U whenever a and c are related by a single sided inequality

c ≥ max

2a+ 1, 4a

1 +

√√√√1−

√
(a+ 1)

2(1 + 4a)


2 .

Remark 1.6. From the proof of Corollary 1.4, it is clear that the conclusion
of Corollary 1.4 continues to hold if the hypothesis “f ∈ U with f ′′(0) = 0” is
replaced simply by “Re (f(z)/z) > 1/2 in D”. For instance, every convex function
f ∈ C satisfies the later condition. Also, every normalized analytic function f such
that |f ′(z)− 1| < 1 in D satisfies the condition Re (f(z)/z) > 1/2 in D although
such functions need not even be starlike in D. �

There are number of papers dealing with univalency, starlikeness and convexity
of the confluent hypergeometric function zΦ(a; c; z) (see [13, 9]). Our next result
deals with a sufficient condition for zΦ(a; c; z) to belong to U .

Theorem 1.7. Assume that a and c are complex numbers such that Re c >

2|a|+ 1. If, in addition, a and c satisfy the condition

(1.6) (|c| − 2|a| − 1)(Re c− 5− |a|)− (|c− 2|+ |1− a|)|a| ≥ 0,

then the function zΦ(a; c; z) belongs to the class U .

In case a and c are real, this theorem takes the following simple form.

Corollary 1.8. For a > 0 and

c ≥ Ca =
{

2a+ 3 +
√
a2 + 4 if 0 < a ≤ 1

2a+ 3 +
√

3a2 − 2a+ 4 if a ≥ 1,

the function zΦ(a; c; z) belongs to U and thus univalent in D.

Proof. The condition on c clearly implies that c > 2a+ 1. Further, when a and
c are real, the condition (1.6) reduces to the inequality

c2 − (4a+ 6)c+ 2a2 + 13a− a|1− a|+ 5 ≥ 0.

Solving this gives the desired condition c ≥ Ca. The conclusion now follows from
Theorem 1.7. �

We remark that even a convex function need not belong to the class U and
hence, Theorem 1.7 has its own merit. However, as an application of the last
corollary, we set a = 1 and c = 1 + δ and obtain the following.
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Example 1.9. For δ ≥ 4 +
√

5, the function

gδ(z) = zΦ(1; δ + 1; z) = δz

∫ 1

0

(1− t)δ−1etz dt

is in U .

To state our final result and a lemma, we need the notion of subordination.
Suppose that f and F are two analytic functions in D, and F is univalent in D.
We say that f is subordinate to F , written f(z) ≺ F (z) or f ≺ F , if f(0) = F (0)
and f(D) ⊂ F (D).

Theorem 1.10. Let b ∈ (1/2, 1], a, c > 0 such that

max

2a + 1,
a

b2

1 +

√√√√1−

√
(a + 1)b2

2(a + b2)


2

,

(
1 +

√
1− 1√

2

)2

a

 ≤ c ≤ a

(2b− 1)2
.

Then we have
z(b− 1 + Φ(a; c; z)) ≺ 2z

1− z
, z ∈ D.

As an example, we consider the limiting case b → (1/2)+ and obtain the
following: If a > 0 and c satisfies the condition

c ≥ max

2a+ 1, 4a

1 +

√√√√1−

√
(a+ 1)

2(1 + 4a)


2

,

(
1 +

√
1− 1√

2

)2

a

 ,

then we have
2zΦ(a; c; z)− z ≺ 4z

1− z
, z ∈ D.

We conjecture that the constant 4 could be replaced by a smaller number.

2. Lemmas

Our results rely on a number of lemmas.

Lemma 2.1. [7, 8] Let Ω ⊂ C and let q be analytic and univalent on D except
for those ζ ∈ ∂D for which lim

z→ζ q(z) =∞. Suppose that ψ : C3 × D→ C satisfies
the condition

(2.1) ψ(q(ζ),mζq′(ζ), ζ2q′′(ζ); z) 6∈ Ω

when q(z) is finite, m ≥ n ≥ 1 and |ζ| = 1. If p and q are analytic in D,
p(z) = p(0) + pnz

n + · · · , p(0) = q(0), and further if

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω
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then p(z) ≺ q(z) in D.

Suppose that p(z) is analytic in D with p(z) = pnz
n + pn+1z

n+1 + · · · , and
q(z) = Mz. Then the condition (2.1) reduces to a simple form

ψ(Meiθ,Keiθ, L; z) 6∈ Ω

whenever K ≥ nM , Re {Le−iθ} ≥ (n − 1)K, z ∈ D and θ ∈ R. In the proof of
Theorem 1.1, we consider the situation n = 1 whereas in the proof of Theorem
1.7, we deal with the case n = 2. We remark that when ψ does not involve with
z2p′′(z), then the condition on L may be dropped in the investigation.

Lemma 2.2. Let φ(z) = 1 +
∑∞
n=1 dnz

n be a non-vanishing analytic function on
D and let f be of the form

(2.2) f(z) =
z

φ(z)
=

z

1 +
∑∞
n=1 dnz

n
.

Then, we have the following:

(1) If
∑∞
n=2(n− 1)|dn| ≤ λ, then f ∈ U(λ).

(2) If
∑∞
n=2(n− 1)|dn| ≤ 1− |d1|, then f ∈ S∗.

The first part of Lemma 2.2 is from [10, 12] whereas the second part is obtained
from [15, Theorem 1]. Also, it would be appropriate to present an example to
demonstrate Lemma 2.2. In [11], the present authors used the lemma to generate
a class of functions in U(λ).

Example 2.3. Let α be a complex number, a > −2 and

dn =
α

(n− 1)(n+ a)(n+ a+ 1)
.

Define fb(z) by
z

fb(z)
= 1 + bz +

∞∑
n=2

dnz
n.

Then it is easy to see that if |α| ≤ (1− |b|)(2 + a) then Re (z/fb(z)) > 0 in D so
that z/fb(z) 6= 0 in D. Moreover,

∞∑
n=2

(n− 1)|dn| = |α|
∞∑
n=2

1
(n+ a)(n+ a+ 1)

=
|α|

2 + a
.

By Lemma 2.2, it follows that fb belongs to U(1− |b|) whenever

|α| ≤ (1− |b|)(2 + a).

In particular, f0 belongs U ∪ S∗ whenever |α| ≤ 2 + a.
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The basic tool for our applications is the following widely used lemma.

Lemma 2.4. If p is analytic in D, p(0) = 1, and Re p(z) > 1/2 in D then for
any function F , analytic in D, the function p ? F takes values in the convex hull
of the image of D under F .

The assertion of Lemma 2.4 readily follows by using Herglotz’ representation
theorem for analytic functions with positive real part (see also [17]). An important
subclass of A is described in the following classical result of Fejér [3] which we
state as a lemma.

Lemma 2.5. [3, 16] Assume B0 = 1, and Bn ≥ 0 for n ≥ 1, such that {Bn} is
a convex decreasing sequence, i.e., 0 ≥ Bn+1 − Bn ≥ Bn − Bn−1 for all n ≥ 1.
Then Re {

∑∞
n=0Bnz

n} > 1/2 for all z ∈ D.

Using this lemma, we prove the following result.

Lemma 2.6. Let hb(z) = 1+bz+
∑∞
n=2 bnz

n be an analytic function on D, where
b ∈ (1/2, 1] and bn for n ≥ 2 is defined as in Theorem 1.3. If a > 0 and c are
related by the condition (1.5) then Rehb(z) > 1/2 in D.

Proof. Observe that b0 = 1, b1 = b, and bn > 0 for all n ≥ 2. By Lemma 2.5,
it suffices to show that {bn} is a convex decreasing sequence; that is, we need to
show that

(i) bn ≥ bn+1 for all n ≥ 1
(ii) b0 − b ≥ b− b2 ≥ 0
(iii) b3 − 2b2 + b1 ≥ 0
(iv) bn+1 − 2bn + bn−1 ≥ 0 for n ≥ 3.

The condition (ii) holds if and only if 2b− 1 ≤ b2 ≤ b. This gives the inequality

a/b2 ≤ c ≤ a/(2b− 1)2

which holds by (1.5). The condition (i) is equivalent to

(a)n−1

(c)n−1(n− 1)!
≥ (a)n

(c)nn!
, i.e. n ≥ a+ n− 1

c+ n− 1
for n ≥ 1

which is clearly true for any a > 0 and c ≥ a. Thus, we see that (i) and (ii) hold
under the hypothesis, namely the condition (1.5). The condition (iii) is equivalent
to

(2.3)

√
a(a+ 1)
2c(c+ 1)

− 2
√
a

c
+ b ≥ 0.
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Because c ≥ a/b2, it follows easily that

a+ 1
c+ 1

≥ αa
c
, α =

a+ 1
b2 + a

.

In view of this simple observation, the inequality (2.3) holds whenever√
a

c

√
α

2
+ b

√
c

a
≥ 2.

Setting x =
√
c/a, and then solving the resulting equation one obtains

c ≥ a

b2

1 +

√√√√1−

√
(a+ 1)b2

2(a+ b2)


2

which holds by the hypothesis.
Finally, it remains to verify the condition (iv). A simplification shows that the

inequality (iv) is equivalent to√
(a+ n− 1)(a+ n)

(c+ n− 1)(c+ n)n(n+ 1)
− 2

√
a+ n− 1

(c+ n− 1)n
+ 1 ≥ 0 for n ≥ 2

which is same as√
(c+ n− 1)(c+ n)n(n+ 1)− 2

√
(a+ n− 1)(c+ n)(n+ 1)

+
√

(a+ n)(a+ n− 1) ≥ 0 for n ≥ 2.(2.4)

For n ≥ 2 (as the hypothesis implies that c ≥ 2a+ 1) the inequality (2.4) trivially
holds because

n(c+ n− 1) ≥ n(2a+ n) = (n− 2)2 + 2a(n− 2) + 4(a+ n− 1) ≥ 4(a+ n− 1)

is satisfied for all n ≥ 2. The desired conclusion follows. �

Remark 2.7. Clearly, we could relax the second condition on c, namely c ≥
2a + 1. A relaxed condition is not so important for the purpose of deriving
Corollary 1.4 and so we do not pay attention to this. �

If we apply Lemma 2.5 with B0 = 1 = B1, then the {Bn} is a convex decreasing
sequence if and only if Bn = 1 for all n. This means that the corresponding
function in the conclusion of the lemma turned out to be z/(1 − z). Thus, by
relaxing the hypothesis, we obtain the following lemma which can be used to
derive some other result.
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Lemma 2.8. Let h(z) = 1 +
∑∞
n=1 bnz

n be an analytic function on D, where bn
is defined as in Theorem 1.3. If a > 0 and

(2.5) c ≥ max

2a+ 1,

(
1 +

√
1− 1√

2

)2

a


then Reh(z) > 0 in D.

Proof. Observe that b1 = b0 = 1 and bn > 0 for all n, and so Reh(z) > 0 holds
in D if and only if

Re

(
1 +

∞∑
n=1

bn
2
zn

)
>

1
2

for all z ∈ D.

By Lemma 2.5, it suffices to show that {Bn} (B0 = 1, Bn = bn/2) is a convex
decreasing sequences; that is, we need to show that

(i) bn ≥ bn+1 for all n ≥ 1

(ii) b0 −
b1
2
≥ b1

2
− b2

2
≥ 0

(iii) bn+1 − 2bn + bn−1 ≥ 0 for n ≥ 2.

The condition (ii) holds trivially, because b2 =
√
a/c ≤ 1. As in the proof of

Lemma 2.6, the condition (i) clearly holds as the condition on c and a implies
that c > a. Thus, it remains to verify the condition (iii). However, from the proof
of Lemma 2.6, it suffices to verify the condition (iii) only for n = 2, as the same
has already been verified for all n ≥ 3 (because c ≥ 2a + 1). Thus, it suffices
to check this inequality only for the case n = 2. For n = 2, the inequality (iii)
reduces to (2.3) with b = 1 and so we get the condition

c ≥

(
1 +

√
1− 1√

2

)2

a.

The desired conclusion follows. �

3. Proofs of Theorems 1.1, 1.3, 1.7 and 1.10

3.1. Proof of Theorem 1.1 . Let p(z) = Φ(a; c; ρz) − 1, ρ > 0. Then p(z)
is analytic in D with p(0) = 0. Since the function w(z) = Φ(a; c; z) satisfies the
differential equation (1.1) and w(ρz) = p(z) + 1, it can be easily seen that p(z)
satisfies the second order differential equation

z2p′′(z) + (c− ρz)zp′(z)− aρz(p(z) + 1) = 0.
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If we let ψ(r, s, t; z) = t + (c − ρz)s − aρz(r + 1) and Ω = {0}, then the last
equation may be written as

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω.

We will use Lemma 2.1 to prove that |p(z)| < M , where

M = ρ|a|/(Re c− ρ(|a|+ 1)).

For this, it suffices to show that ψ(Meiθ,Keiθ, L; z) /∈ Ω, whenever K ≥ M ,
Re {Le−iθ} ≥ 0, z ∈ D and θ is real. We have that

|ψ(Meiθ,Keiθ, L; z)| = |Le−iθ + (c− ρz)K − aρzM − aρze−iθ|
≥ Re {Le−iθ}+ Re (Kc− ρ(K + aM)z)− ρRe (aze−iθ)

> Re {Le−iθ}+KRe c− ρK(1 + |a|)− ρ|a|
≥ K(Re c− ρ(1 + |a|))− ρ|a|
≥ M(Re c− ρ(1 + |a|))− ρ|a| = 0,

because −Re ((K + aM)z) > −|K + aM | ≥ −K − |a|M ≥ −K − |a|K and
Re (aze−iθ) < |a|. In the last stage of the chain of inequalities, we have used the
definition of M . Thus, we have shown that

ψ(Meiθ,Keiθ, L; z) /∈ Ω = {0},

whenever K ≥M , Re {Le−iθ} ≥ 0, z ∈ D and θ is real. �

3.2. Proof of Theorem 1.3 . Let f ∈ S. Then we have z/f(z) 6= 0 in D and
hence has the form

(3.3) f(z) =
z

1 +
∑∞
n=1 dnz

n
, z ∈ D.

Next, we recall the well-known Area Theorem [5, Theorem 11 on p.193 of Vol. 2]

(3.4)
∞∑
n=2

(n− 1)|dn|2 ≤ 1.

Observe that b1 = b, bn > 0 for all n ≥ 2. Also, we note that f ′′(0)/2 = −d1 and

z

Hf (z)
= 1 +

∞∑
n=1

bndnz
n.

Now, we apply Lemma 2.2(1) and for this we need to show that
∞∑
n=2

(n− 1)|bndn| ≤ 1.
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By Theorem 1.1, we have (because by hypothesis a and c are positive, and also,
c ≥ 2a+ 1 (> a+ 1))

(3.5) 1 < Φ(a+ 1; c+ 1; 1) ≤ 1 +
a+ 1

c− a− 1
=

c

c− a− 1

and using this, we see that

∞∑
n=2

(n− 1)|bn|2 =
∞∑
n=2

(n− 1)
(a)n−1

(c)n−1(n− 1)!

=
∞∑
n=1

n
(a)n

(c)nn!

=
a

c

∞∑
n=1

(a+ 1)n−1

(c+ 1)n−1(n− 1)!

=
a

c
Φ(a+ 1; c+ 1; 1)

≤ a

c− a− 1
, by (3.5).

In view of this and (3.4), it follows that

∞∑
n=2

(n− 1)|bndn| =
∞∑
n=2

(√
n− 1|bn|

) (√
n− 1|dn|

)
≤

( ∞∑
n=2

(n− 1)|bn|2
)1/2( ∞∑

n=2

(n− 1)|dn|2
)1/2

≤
√

a

c− a− 1
=: λ.

Thus, Hf ∈ U(λ) by Lemma 2.2(1). Since λ ≤ 1 whenever a > 0 and c ≥ 2a+ 1,
it follows that Hf belongs to U and hence, to S. For the starlikeness condition,
by Lemma 2.2(1), it is enough to observe that λ ≤ 1 − |d1| holds by hypothesis.
�

3.6. Proof of Corollary 1.4 . Let f ∈ U with f ′′(0) = 0. Then, it is
well-known that (see [12]) Re (f(z)/z) > 1/2 in D so that∣∣∣∣ z

f(z)
− 1
∣∣∣∣ < 1 for D.
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By Lemma 2.2 and the hypothesis, we obtain that Rehb(z) > 1/2 in D. In view
of this observation, Lemma 2.4 implies that∣∣∣∣ z

f(z)
? hb(z)− 1

∣∣∣∣ < 1 for D

and so (z/f(z)) ? hb(z) 6= 0 in D. Finally, the desired conclusion follows from
Theorem 1.3. �

3.7. Proof of Theorem 1.7 . Set Φ(z) = Φ(a; c; z). Then ρ = 1 in Theorem
1.1 shows that if Re c ≥ 2|a|+ 1 then one has

(3.8) |Φ(z)− 1| < |a|
Re c− (|a|+ 1)

≤ 1, z ∈ D

and therefore, Re Φ(z) > 0 in D, by the hypothesis.
We want to prove that∣∣∣∣∣(zΦ(z))′

(
z

zΦ(z)

)2

− 1

∣∣∣∣∣ < 1 for every z ∈ D.

For this, we begin by setting

(zΦ(z))′
(

1
Φ(z)

)2

− 1 = p(z).

Then p(z) is analytic in D and p(0) = 0 = p′(0). Also,

zΦ′(z) = (p(z) + 1)Φ2(z)− Φ(z)

z2Φ′′(z) = zp′(z)Φ2(z) + 2(p(z) + 1)2Φ3(z)− 4(p(z) + 1)Φ2(z) + 2Φ(z).

Since the function Φ satisfies the differential equation (1.1), in terms of p(z), we
see that p(z) satisfies the equation

Ψ(p(z), zp′(z); z) = 0

where

Ψ(r, s; z) = s+ 2(r + 1)2Φ(z) + (c− 4− z)(r + 1) + (2− c+ z − az) 1
Φ(z)

.

We claim that |p(z)| < 1. In order to prove this, we apply Lemma 2.1 with
Ω = {0}, n = 2 and q(z) = z. Thus, by Lemma 2.1, it suffices to show that

Ψ(eiθ,Keiθ; z) /∈ Ω,

whenever K ≥ 2, z ∈ D and θ is real. It is a simple exercise to see that

Ψ(eiθ,Keiθ; z) = eiθA−B
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where

A = K + 8 cos2(θ/2)Φ(z) + (c− 4− z)

B = 2 + az + ((c− 2)− (1− a)z)
(

1
Φ(z)

− 1
)
.

Next, as Re Φ(z) > 0 in D, we observe that

|A| ≥ ReA = K + 8 cos2(θ/2)Re Φ(z) + (Re c− 4− Re z)

> 2 + (Re c− 4− 1) = Re c− 3.

Thus, if we can prove that |B| < Re c − 3 under the hypotheses of the theorem,
then we get Ψ(eiθ,Keiθ; z) 6= 0, whenever K ≥ 2, z ∈ D and θ is real, and
so the proof will be completed, that is |p(z)| < 1 in D. In order to prove that
|B| < Re c− 3, we need the following observation. It is easy to see that for r < 1,
|w − 1| < r holds if and only if∣∣∣∣ 1

w
− 1

1− r2

∣∣∣∣ < r

1− r2
.

In particular, |w − 1| < r implies that∣∣∣∣ 1
w
− 1
∣∣∣∣ < r

1− r
.

With r = |a|/(Re c − (|a| + 1)), (3.8) takes the form |Φ(z) − 1| < r and so, it
follows that ∣∣∣∣ 1

Φ(z)
− 1
∣∣∣∣ < r

1− r
=

|a|
Re c− (2|a|+ 1)

.

We observe that by the hypothesis Re c > 2|a|+ 1. Using the last inequality, we
obtain that

|B| ≤ |2 + az|+ |c− 2 + (1− a)z|
∣∣∣∣ 1
Φ(z)

− 1
∣∣∣∣

< |a|+ 2 + (|c− 2|+ |1− a|) |a|
Re c− (2|a|+ 1)

and so |B| < Re c− 3 holds provided

|a|+ 2 + (|c− 2|+ |1− a|) |a|
Re c− (2|a|+ 1)

≤ Re c− 3.

This gives exactly the condition (1.6) stated in the theorem. Thus, |p(z)| < 1 in
D and hence, zΦ(a; c; z) belongs to U . �
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3.9. Proof of Theorem 1.10 . Consider hb(z) = 1 + bz +
∑∞
n=2 bnz

n which
is defined as in Theorem 1.3, where

bn =

√
(a)n−1

(c)n−1(n− 1)!
(n ≥ 2).

By the hypothesis, Lemma 2.6 gives Rehb(z) > 1/2 whereas Lemma 2.8 shows
that Reh1(z) > 0 in D. By a little manipulation we then get

(hb ? h1)(z) = 1 + (b− 1)z + zΦ(a; c; z).

As an application of Lemma 2.4, it follows that Re (hb ?h1)(z) > 0 in D. In terms
of the subordination, the last fact may be reformulated as

1 + (b− 1)z + zΦ(a; c; z) ≺ 1 + z

1− z
, z ∈ D

and desired result follows. �
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