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A CLASS OF UNIVALENT FUNCTIONS DEFINED

BY A DIFFERENTIAL INEQUALITY

Milutin Obradović and Saminathan Ponnusamy*

Abstract

Let A be the class of analytic functions in the unit disk D with the normalization

f ð0Þ ¼ f 0ð0Þ � 1 ¼ 0. For l > 0, denote by MðlÞ the class of functions f A A which

satisfy the condition

z2
z

f ðzÞ

� �00
þ f 0ðzÞ z

f ðzÞ

� �2
� 1

�����
�����a l; z A D:

We show that functions in Mð1Þ are univalent in D and we present one parameter

family of functions in Mð1Þ that are also starlike in D. In addition to certain inclusion

results, we also present characterization formula, necessary and su‰cient coe‰cient

conditions for functions in MðlÞ, and a radius property of Mð1Þ.

1. Introduction and main results

Let H be the class of analytic functions in the unit disk D :¼ fz A C :
jzj < 1g, mapping D into the complex plane C and A be the class of functions
f ðzÞ ¼ zþ a2z

2 þ a3z
3 þ � � � in H. Let S denote the class of functions f in A

such that f is univalent in D. For l > 0, a function f A A is said to belong to
the class UðlÞ if

f 0ðzÞ z

f ðzÞ

� �2
� 1

�����
�����a l; z A D:

Denote by PðlÞ, the subclass of A, consisting of functions f for which

z

f ðzÞ

� �00����
����a 2l; z A D:
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Set Uð1Þ :¼ U and Pð1Þ :¼ P, see [4, 9]. We have the strict inclusion PW
UWS (see [1, 4, 10] for a proof ). Many properties of the classes UðlÞ and
PðlÞ have been studied extensively in [5, 6, 7, 8, 9]. More generally

PðlÞWUðlÞWS for 0 < la 1

and for a proof of this inclusion, we refer to [5]. Also, it is well-known that
there are only nine functions in S having integral coe‰cients in the power series
expansions of f A S (see [3]). That is, if we set SZ ¼ f f A S : an A Zg, then

SZ ¼ z;
z

ð1G zÞ2
;

z

1G z
;

z

1G z2
;

z

1G zþ z2

( )
:

Further, it is easy to see that the corresponding g A SZ have the property that

g 0ðzÞ z

gðzÞ

� �2
� 1 A f0;�z2; 0;Hz2;�z2g and z2

z

gðzÞ

� �00
A f0; 2z2; 0;H2z2; 2z2g;

respectively. Consequently, we obtain the interesting fact that each function in
SZ belongs to UVP. Finally, we observe that

z2
z

gðzÞ

� �00
þ g 0ðzÞ z

gðzÞ

� �2
� 1 A f0; z2; 0;Hz2; z2g:

In view of this observation, we introduce the following:

Definition 1. For l > 0, a function f A A is said to belong to the class
MðlÞ if jMf ðzÞja l for z A D, where

Mf ðzÞ ¼ z2
z

f ðzÞ

� �00
þ f 0ðzÞ z

f ðzÞ

� �2
� 1:ð1Þ

Also, denote the class Mð1Þ by M.

Now, we state our main results and the proofs of these will be given in
Section 3.

Theorem 1 (Inclusion property). For 0 < la 1, we have the strict inclusion
MðlÞWUðlÞVPðlÞWS. In particular, MWUVP ¼ PWS.

From the earlier discussion and Theorem 1, we easily see that

SZ WMWPWUWS

and it is worth recalling that the Koebe function belongs to M.

Example 1. Consider the function f defined by

z

f ðzÞ ¼ 1þ 1

2
zþ l

2
z3
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where 0 < la 1: Then

z

f ðzÞ

����
����b 1� 1

2
jzj � ðl=2Þjzj3 > 1� l

2
b 0

and so z=f ðzÞ0 0 in D whenever 0 < la 1. Further

f 0ðzÞ z

f ðzÞ

� �2
� 1 ¼ �lz3 and Mf ðzÞ ¼ 2lz3

so that there exists a function f A UðlÞ such that f B MðlÞ. Also, for each m
with jmja 1=2, it is easy to see that the function f defined by

f ðzÞ ¼ z

1þ mzþ 1
2 z

3

belongs UnM.

Theorem 2 (Su‰ciency coe‰cient condition). Let fðzÞ ¼ 1þ
Py

n¼1 bnz
n be

a non-vanishing analytic function in D that satisfy the coe‰cient condition

Xy
n¼2

ðn� 1Þ2jbnja l:ð2Þ

Then the function f defined by f ðzÞ ¼ z=fðzÞ is in MðlÞ.

For example, according to (2) with l ¼ 1, each function in SZ belongs to M.
Let S� denote the class of univalent functions in f A S such that the range

f ðDÞ is a starlike domain (with respect to the origin). Analytically, f A S� if
and only if Reðzf 0ðzÞ=f ðzÞÞ > 0 in D.

It is easy to see that each g A SZ is starlike in D. Also, it has been
shown that for arbitrarily small values of l we have UðlÞQS�. Indeed,
Fournier and Ponnusamy [2, Theorem 3] obtained that every function f ðzÞ ¼
zþ

Py
n¼2 anð f Þzn A A satisfying

f 0ðzÞ z

f ðzÞ

� �2
� 1

�����
�����<

�ja2ð f Þj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ja2ð f Þj2

q
2

; jzj < 1;

belongs to S�. Moreover, there exists a non-starlike function f A U such that

0 <
�ja2ð f Þj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ja2ð f Þj2

q
2

< sup
jzj<1

f 0ðzÞ z

f ðzÞ

� �2
� 1

�����
�����a 1� ja2ð f Þj:

In particular, UQS�. Moreover, Theorem 1 shows that MWU and therefore,
it is natural to ask whether the class M is included in S�. This remains an open
question.
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If f and g are analytic functions on D with f ðzÞ ¼
Py

n¼0 anz
n and gðzÞ ¼Py

n¼0 bnz
n, then the convolution (Hadamard product) of f and g, denoted by

f � g, is an analytic function on D given by

ð f � gÞðzÞ ¼
Xy
n¼0

anbnz
n; z A D:

Although U is not included in M, in the following result, we show that the class
U can be used to construct functions belonging to M.

Theorem 3 (Multiplier theorem). Let f A Uðl1Þ and g A Uðl2Þ have the form

z

f ðzÞ ¼ 1þ b1zþ b2z
2 þ � � � and

z

gðzÞ ¼ 1þ c1zþ c2z
2 þ � � �

and such that
z

f ðzÞ �
z

gðzÞ 0 0 on D. Then the function H defined by

HðzÞ ¼ z

ðz=f ðzÞÞ � ðz=gðzÞÞ
is in the class MðlÞ, where l ¼ l1l2. In particular, if f ; g A U then H A M.

Corollary 1 (Necessary coe‰cient condition). Let f A M of the form

z

f ðzÞ ¼ 1þ b1zþ b2z
2 þ � � � :

Then we have

Xy
n¼2

ðn� 1Þ4jbnj2 a 1:

At this place it is appropriate to remind the reader of the fact that the

inequality
Py

n¼2ðn� 1Þjbnj2 a 1 follows merely from the condition f A S for

the expansion
z

f ðzÞ ¼ 1þ b1zþ b2z
2 þ � � � : This result is known as the Prawitz

theorem which is indeed an immediate consequence of Gronwall’s area theorem.
Thus, the necessary condition given in Corollary 1 is much stronger than this
result.

Theorem 4 (Characterization theorem). Every f A MðlÞ has the represen-
tation

z

f ðzÞ ¼ 1� f 00ð0Þ
2

zþ l

ð1
0

wðtzÞ
t2

logð1=tÞ dt;

for some w : D ! D with wð0Þ ¼ w 0ð0Þ ¼ 0.
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Let F and G be two subclasses of A. If for every f A F, r�1f ðrzÞ A G for
ra r0, and r0 is the maximum value for which this holds, then we say that r0 is
the G-radius in F. There are many results of this type in the theory of univalent
functions, see [8] and the references therein.

Because MWU, it is natural to investigate the M-radius in U.

Theorem 5 (Radii property). If f A U and gðzÞ ¼ 1

r
f ðrzÞ, then g A M

for 0 < ra r0, where r0A0:62977 is the unique positive root of the equation
2r6 � 2r4 þ 3r2 � 1 ¼ 0.

2. Preliminary lemmas

Let Pn denote the class of functions p in H such that pðkÞð0Þ ¼ 0 for
k ¼ 0; 1; 2; . . . ; n, where pð0Þð0Þ ¼ pð0Þ. We set

Bn ¼ fw A H : jwðzÞja 1;wðkÞð0Þ ¼ 0 for k ¼ 0; 1; . . . ; ng:

Lemma 1. Suppose that p A Pn, l > 0 and a is a complex number such that
Reð1=ð1� aÞÞ > �n. If p satisfies the condition

jð1� aÞzp 0ðzÞ þ apðzÞja l; z A Dð3Þ
then

jpðzÞja ljzjnþ1

j1� ajðnþReð1=ð1� aÞÞÞ ; z A D:

Proof. First, we rewrite (3) as

ð1� aÞzp 0ðzÞ þ apðzÞ ¼ lwðzÞ;
where w A Bn. Now, by integration, we get

pðzÞ ¼ l

1� a

ð1
0

tða=ð1�aÞÞ�1wðtzÞ dt:

Because jwðzÞja jzjnþ1 for z A D by Schwarz’ lemma, we obtain that

jpðzÞja l

j1� aj
jzjnþ1

nþ 1þReða=ð1� aÞÞ

 !
; z A D

and the desired conclusion follows. r

Corollary 2. Suppose that p A Pn, l > 0 and a0 1 is a real number such
that nþ 1=ð1� aÞ > 0. Then

ð1� aÞzp 0ðzÞ þ apðzÞj ja l ) jpðzÞja lð1� aÞ
j1� ajðnð1� aÞ þ 1Þð4Þ

for z A D.
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Suppose that 00 a < 1. Then (4) becomes

1

a
� 1

� �
zp 0ðzÞ þ pðzÞ

����
����a l

jaj ) jpðzÞja l

nð1� aÞ þ 1Þ ; z A D:

Now, if we allow a ! �y, then the last relation gives that

�zp 0ðzÞ þ pðzÞj ja 0 ) jpðzÞja 0; z A D

so that pðzÞ ¼ 0 is the only solution which satisfies the above implication. Now,
we state an improved version of it.

Lemma 2. Suppose that p A Pn ðnb 1Þ satisfies the condition

j�zp 0ðzÞ þ pðzÞja l; z A Dð5Þ
for some l > 0. Then we have

jpðzÞja ljzjnþ1

n
and jzp 0ðzÞja ljzjnþ1 1þ 1

n

� �
; z A D:

Proof. The condition (5) implies that

�zp 0ðzÞ þ pðzÞ ¼ lwðzÞ
where w A Bn. It follows easily that

pðzÞ ¼ �l

ð1
0

t�2wðtzÞ dt and �zp 0ðzÞ ¼ lwðzÞ þ l

ð 1
0

t�2wðtzÞ dt:

Because jwðzÞja jzjnþ1 for z A D, by Schwarz’ lemma, the desired conclusion
follows from the last two formulas. r

We state the above lemmas in a general form in order to apply them for
functions with missing coe‰cients. However, for our application the case n ¼ 1
su‰ces. Setting n ¼ 1 in Lemma 2, we have

Corollary 3. Suppose that p is analytic in D, pð0Þ ¼ p 0ð0Þ ¼ 0 and
satisfies the condition

�zp 0ðzÞ þ pðzÞj ja l; z A Dð6Þ
for some l > 0. Then we have

jpðzÞja ljzj2 and jzp 0ðzÞja 2ljzj2; z A D:

3. Proofs

Proof of Theorem 1. Set

pðzÞ ¼ z

f ðzÞ

� �2
f 0ðzÞ � 1 ¼ �z

z

f ðzÞ

� �0
þ z

f ðzÞ � 1:ð7Þ
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Then p is analytic in D, pð0Þ ¼ p 0ð0Þ ¼ 0,

�zp 0ðzÞ ¼ z2
z

f ðzÞ

� �00
and �zp 0ðzÞ þ pðzÞ ¼ Mf ðzÞ;ð8Þ

where Mf is defined by (1). Now, suppose that f A MðlÞ. Then, we obtain
that

j�zp 0ðzÞ þ pðzÞja l; z A D:

By Corollary 3, it follows that

jpðzÞj ¼ z

f ðzÞ

� �2
f 0ðzÞ � 1

�����
�����a ljzj2 and jzp 0ðzÞj ¼ z2

z

f ðzÞ

� �00����
����a 2ljzj2; z A D

and therefore, f A UðlÞVPðlÞ. r

Proof of Theorem 2. Let f be given by f ðzÞ ¼ z=fðzÞ, where fðzÞ0 0 in
D. Then the power series representation of f gives

z

f ðzÞ ¼ 1þ
Xy
n¼1

bnz
n:

By (7) and (8), it follows easily that

Mf ðzÞ ¼
Xy
n¼2

ðn� 1Þ2bnzn:

Thus, using the coe‰cient condition (2), we deduce that

Mf ðzÞ
�� ��a Xy

n¼2

ðn� 1Þ2jbnj jzjn a
Xy
n¼2

ðn� 1Þ2jbnja l

and therefore, f A MðlÞ. r

Proof of Theorem 3. Suppose that f A Uðl1Þ and g A Uðl2Þ. By hypoth-

eses,
z

HðzÞ 0 0 for z A D, and f and g have the power series representation of

the form

z

f ðzÞ ¼ 1þ
Xy
n¼1

bnz
n and

z

gðzÞ ¼ 1þ
Xy
n¼1

cnz
n;

respectively. As f A Uðl1Þ, we have

�z
z

f ðzÞ

� �0
þ z

f ðzÞ � 1

����
����¼ Xy

n¼2

ðn� 1Þbnzn
�����

�����a l1:
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Therefore, with z ¼ reiy for r A ð0; 1Þ and 0a ya 2p, the last inequality gives

Xy
n¼2

ðn� 1Þ2jbnj2r2n ¼
1

2p

ð 2p
0

Xy
n¼2

ðn� 1Þbnzn
�����

�����
2

dya l21 :

Allowing r ! 1�, we obtain the inequality

Xy
n¼2

ðn� 1Þ2jbnj2 a l21 :

Similarly, as g A Uðl2Þ, we have

Xy
n¼2

ðn� 1Þ2jcnj2 a l22 :

Now, since

z

f ðzÞ �
z

gðzÞ ¼ 1þ b1c1zþ b2c2z
2 þ � � �

and

Xy
n¼2

ðn� 1Þ2jbnj jcnja
Xy
n¼2

ðn� 1Þ2jbnj2
 !1=2 Xy

n¼2

ðn� 1Þ2jcnj2
 !1=2

a l1l2;

by (2), we conclude that H A MðlÞ, l ¼ l1l2. r

Proof of Corollary 1. As in the proof of Theorems 2 and 3, we see that

Mf ðzÞ ¼
Xy
n¼2

ðn� 1Þ2bnzn

and therefore, we easily have the desired necessary condition. r

Proof of Theorem 4. Let f A MðlÞ. By assumption,

Mf ðzÞ ¼ lwðzÞ
for some w A B1. Let fðzÞ ¼ 1þ b1zþ b2z

z þ � � � denote z=f ðzÞ. Then

Mf ðzÞ ¼
Xy
n¼2

ðn� 1Þ2bnzn ¼ lwðzÞ

which leads to

fðzÞ � 1� b1z ¼
Xy
n¼2

bnz
n ¼ lz Li2ðzÞ � wðzÞ;
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where

Li2ðzÞ ¼
Xy
n¼1

zn

n2

is the dilogarithm. By using the well-known representation

Li2ðzÞ ¼ z

ð1
0

logð1=tÞ
1� tz

dt;

we obtain

fðzÞ ¼ 1þ b1zþ lwðzÞ � z2
ð1
0

logð1=tÞ
1� tz

dt

¼ 1þ b1zþ l

ð1
0

wðzÞ � z2

1� tz
logð1=tÞ dt

¼ 1þ b1zþ l

ð1
0

wðtzÞ
t2

logð1=tÞ dt:

Since b1 ¼ � f 00ð0Þ=2, the desired representation follows. r

Proof of Theorem 5. Let f A U. Then, because f is univalent, f has the
form

f ðzÞ ¼ z

1þ
Py

n¼1 bnz
n
; z A D:ð9Þ

Since f A U, we have (see the proof of Theorem 3)

Xy
n¼2

ðn� 1Þ2jbnj2 a 1:ð10Þ

We need to show that
1

r
f ðrzÞ A M for 0 < ra r0 where r0A0:62977 is the root

of the equation r4ð1þ r2Þ ¼ ð1� r2Þ3 lying in the interval ð0; 1Þ.
Using (9), for 0 < ra 1, we can write

z

1

r
f ðrzÞ

¼ 1þ
Xy
n¼1

ðbnrnÞzn:

According to Theorem 2, it su‰ces to show that

Xy
n¼2

ðn� 1Þ2jbnrnja 1

for 0 < ra r0.
Now, by the Cauchy-Schwarz inequality and (10),
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Xy
n¼2

ðn� 1Þ2jbnjrn a
Xy
n¼2

ðn� 1Þ2jbnj2
 !1=2 Xy

n¼2

ðn� 1Þ2r2n
 !1=2

a
Xy
n¼2

ðn� 1Þ2r2n
 !1=2

¼ r4ð1þ r2Þ
ð1� r2Þ3

 !1=2
:

In particular, for 0 < ra r0, the last expression is less than or equal to 1. The
proof is complete. r
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