
ON CERTAIN SUBCLASSES OF UNIVALENT
FUNCTIONS AND RADIUS PROPERTIES
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Let S denote the class of normalized univalent functions f in the unit disk ∆.
One of the problems addressed in this paper is that of the F-radius in G when
F ,G ⊂ S, namely the maximum value of r0 such that r−1f(rz) ∈ G for all f ∈ F
and 0 < r ≤ r0. The investigations are concerned primarily with the classes U
and P(2) consisting of univalent functions satisfying∣∣∣∣∣f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ 1 and

∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ 2,

respectively, for all |z| < 1. Similar radius properties are also obtained for a
geometrically motivated subclass Sp ⊂ S. Several new sufficient conditions for f
to be in the class U are also presented.
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1. INTRODUCTION AND PRELIMINARIES

Denote by A the class of all functions f , normalized by f(0) = f ′(0) −
1 = 0, that are analytic in the unit disk ∆ = {z ∈ C : |z| < 1}, and
by S the subclass of univalent functions in ∆. Denote by S∗ the subclass
consisting of functions f in S that are starlike (with respect to origin), i.e.,
tw ∈ f(∆) whenever t ∈ [0, 1] and w ∈ f(∆). Analytically, f ∈ S∗ if and only
if Re (zf ′(z)/f(z)) > 0 in ∆. A function f ∈ A is said to belong to the class
U if ∣∣∣∣∣f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ 1, z ∈ ∆.

In [6], the authors introduced a subclass P(2) of U , consisting of functions f
for which ∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ 2, z ∈ ∆.
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We have the strict inclusion P(2) ( U ( S (see [1, 6, 10] for a proof). An
interesting fact is that each function in

SZ =
{

z,
z

(1± z)2
,

z

1± z
,

z

1± z2
,

z

1± z + z2

}
belongs to U . Also, it is well-known that these are the only functions in S
having integral coefficients in the power series expansions of f ∈ S (see [2]).
From the analytic characterization of starlike functions, it is a simple exercise
to see that SZ ⊂ S∗.

Further work on the classes U and P(2), including some interesting gen-
eralizations of these classes, may be found in [7, 9, 11]. A function f ∈ S∗ is
said to be in T ∗ if it can be expressed as

f(z) = z −
∞∑

k=2

akz
k,

where ak ≥ 0 for k = 2, 3, . . .. Functions of this form are discussed in de-
tail by Silverman [13, 14]. The work of Silverman led to a large number of
investigations for univalent functions of the above form.

In this paper we shall be mainly concerned with functions f ∈ A of
the form

(1) f(z) =
z

1 +
∞∑

n=1
bnzn

, z ∈ ∆.

The class of functions f of this form for which bn ≥ 0 is especially interesting
and deserves a separate discussion. We remark that if f ∈ S then z/f(z) is
nonvanishing in the unit disk ∆. Hence it can be represented as Taylor series
of the form

z

f(z)
= 1 +

∞∑
n=1

bnzn, z ∈ ∆.

The above representation is convenient for our investigation.
Now, we introduce a subclass Sp of starlike functions, namely,

Sp =
{

f ∈ S∗ :
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ Re

zf ′(z)
f(z)

, z ∈ ∆
}

.

Geometrically, f ∈ Sp if and only if the domain values of zf ′(z)/f(z), z ∈ ∆,
is the parabolic region (Im w)2 ≤ 2 Re w− 1. It is well-known [12, Theorem 2]
that f(z) = z + anzn is in Sp if and only if (2n− 1)|an| ≤ 1.

Let F and G be two subclasses of A. If for every f ∈ F , r−1f(rz) ∈ G
for r ≤ r0, and r0 is the maximum value for which this holds, then we say that



3 Univalent functions and radius properties 319

r0 is the G-radius in F . There are many results of this type in the theory of
univalent functions. For example, the Sp-radius in S∗ was found by Rønning
in [12] to be 1/3. Moreover, the class Sp and its associated class of uniformly
convex functions, introduced by Goodman [4, 5], have been investigated in
[12]. We recall here the following result.

Theorem A [12, Theorem 4]. If f ∈ S then 1
rf(rz) ∈ Sp for 0 < r ≤

0.33217 . . ..

The paper is organized as follows. We investigate the P(2)-radius in F ,
where F is the subclasses of U consisting of functions f ∈ U of the form (1)

that satisfies either the condition
∞∑

n=2
(n−1)|bn| ≤ 1 (see Theorem 1) or bn ≥ 0

(see Corollary 1). In Theorem 2 we obtain a necessary coefficient condition
for a function f of the form (1) with bn ≥ 0 to be in Sp, while in Theorem 3
we obtain a sufficient coefficient condition for a nonvanishing analytic function
z/f(z) of the form (1) (where bn ∈ C) to be in Sp. In Theorem 4 we derive the
value of the S-radius in Sp. In Theorems 5 and 6 we establish new necessary
and sufficient conditions for a function to belong to the class U . Finally, in
Corollary 2 we show that T ∗ ⊂ U , which is somewhat surprising.

2. LEMMAS

For the proof of our results we need the following result (see [3, Theo-
rem 11 on p. 193 of Vol. 2]) which reveals the importance of the area theorem
in the theory of univalent functions.

Lemma 1. Let µ > 0 and f ∈ S be of the form (z/f(z))µ = 1+
∞∑

n=1
bnzn.

Then we have
∞∑

n=1
(n− µ)|bn|2 ≤ µ.

We also have

Lemma 2 ([9]). Let φ(z) = 1 +
∞∑

n=1
bnzn be a non-vanishing analytic

function in ∆ and f(z) = z/φ(z). Then

(a) f ∈ U if
∞∑

n=2
(n− 1)|bn| ≤ 1;

(b) f ∈ P(2) if
∞∑

n=2
n(n− 1)|bn| ≤ 2.
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3. MAIN RESULTS

It is easy to see that the rational function f(z) = z/(1+Az3) belongs to
U if and only if |A| ≤ 1/2. Further, for |A| = 1/2 we have

|(z/f(z))′′| = |6Az| ≤ 3|z| ≤ 2

provided |z| ≤ 2/3. It seems reasonable to expect that the P(2)-radius in U
is at least 2/3, and we formulate our first result.

Theorem 1. If f ∈ U is of the form (1) such that
∞∑

n=2
(n − 1)|bn| ≤ 1,

then 1
rf(rz) ∈ P(2) for 0 < r ≤ 2/3; and 2/3 is the largest number with this

property, especially in the class for which b1 = b2 = 0.

Proof. Let f ∈ U be of the form (1). We need to show that 1
rf(rz) ∈ P(2)

for 0 < r ≤ 2/3. Using (1), for 0 < r ≤ 1 we can write

z
1
rf(rz)

= 1 +
∞∑

n=1

(bnrn)zn.

According to Lemma 2(b), it suffices to show that
∞∑

n=2

n(n− 1)|bn|rn ≤ 2

for 0 < r ≤ 2/3. It is easy to see by induction that nrn ≤ 3r for all 0 <
r ≤ 2/3 and for n ≥ 2. In view of this observation, and the assumption that
∞∑

n=2
(n− 1)|bn| ≤ 1, we obtain

∞∑
n=2

n(n− 1)|bn|rn ≤ 3r ≤ 2 for r ≤ 2/3.

Hence, by Lemma 2(b), 1
rf(rz) ∈ P(2) for 0 < r ≤ 2/3.

To prove the sharpness, we consider fθ(z) = z/(1 + eiθz3/2). Then we
observe that fθ ∈ U , but it does not belongs to P(2). We see that 1

rfθ(rz) ∈
P(2) for 0 < r ≤ 2/3 and r = 2/3 is the largest value with the desired
property. �

An interesting consequence of Theorem 1 is stated later in Corollary 1.

Theorem 2. If a function f of the form (1) with bn ≥ 0 is in Sp, then

(2)
∞∑

n=1

(2n− 1)bn ≤ 1.



5 Univalent functions and radius properties 321

Proof. Let f ∈ Sp. Then

(3) z

(
z

f(z)

)′
=

z

f(z)
−
(

z

f(z)

)2

f ′(z).

Therefore, as f ∈ Sp is of the form (1), we have

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ Re

(
zf ′(z)
f(z)

)
⇔

∣∣∣∣∣∣∣∣∣
−z

(
z

f(z)

)′
z

f(z)

∣∣∣∣∣∣∣∣∣ ≤ Re

z

f(z)
− z

(
z

f(z)

)′
z

f(z)

⇔

∣∣∣∣∣∣∣∣
−

∞∑
n=1

nbnzn

1 +
∞∑

n=1
bnzn

∣∣∣∣∣∣∣∣ ≤ Re

1−

∞∑
n=1

nbnzn

1 +
∞∑

n=1
bnzn

 .

If z ∈ ∆ is real and tends to 1− through reals, then from the last inequality
we have

∞∑
n=1

nbn

1 +
∞∑

n=1
bn

≤ Re

1−

∞∑
n=1

nbn

1 +
∞∑

n=1
bn

 ,

from which we obtain the desired inequality
∞∑

n=1
(2n− 1)bn ≤ 1. �

Remark 1. Condition (2) for functions of the form (1) with nonnegative
coefficients bn is not sufficient for the corresponding f to be in the class Sp.
As an example, consider the function f(z) = z/(1 + z). It is easy to see that
the condition for the class Sp, namely,∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ Re

zf ′(z)
f(z)

,

does not hold for all z ∈ ∆, for example at the boundary point z = (−1+i)/
√

2,
hence at some points in ∆.

Remark 2. Let 0 < λ < 1 and f(z) = z − λzm, where m ≥ 2. Then

z

f(z)
=

1
1− λzm−1

= 1 +
∞∑

k=1

λkzk(m−1),
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which is nonvanishing in the unit disk. It follows from the previous theorem
that if f ∈ Sp, the coefficient must satisfy the condition

∞∑
k=1

[2k(m− 1)− 1]λk ≤ 1,

which simplifies to λ(2m−1) ≤ 1. Thus, a necessary condition for f to belong
to Sp is 0 ≤ λ ≤ 1/(2m− 1). It is a simple exercise to see that this condition
also is a sufficient condition for f ∈ Sp (see also [12, Theorem 2]). Thus,
the upper bound for λ cannot be improved. This observation shows that the
constant 1 on the right hand side of inequality (2) cannot be replaced by a
larger constant. In this sense, condition (2) is sharp.

Theorem 3. Let f(z) be a nonvanishing analytic function in 0 < |z| < 1
of the form (1). Then the condition

(4)
∞∑

n=1

(2n + 1)|bn| ≤ 1

is sufficient for f to belong to the class Sp.

Proof. As in the proof of Theorem 2, we notice that

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ Re

(
zf ′(z)
f(z)

)
⇔

∣∣∣∣∣∣∣∣−
∞∑

n=1
nbnzn

1 +
∞∑

n=1
bnzn

∣∣∣∣∣∣∣∣ ≤ Re

1−

∞∑
n=1

nbnzn

1 +
∞∑

n=1
bnzn

 .

Thus, to show that f is in Sp, it suffices to show that the quotient

−

∞∑
n=1

nbnzn

1 +
∞∑

n=1
bnzn

lies in the parabolic region (Im w)2 ≤ 1 + 2 Re w. Geometric considerations
show that this condition holds if

(5)

∣∣∣∣∣∣∣∣
∞∑

n=1
nbnzn

1 +
∞∑

n=1
bnzn

∣∣∣∣∣∣∣∣ ≤
1
2
, z ∈ ∆.

From condition (4) we obtain that
∞∑

n=1
(2n + 1)|bn| |z|n ≤ 1 and so

∞∑
n=1

n|bn| |z|n ≤
1
2

(
1−

∞∑
n=1

|bn| |z|n
)

.
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Finally, we find that∣∣∣∣∣∣∣∣
∞∑

n=1
nbnzn

1 +
∞∑

n=1
bnzn

∣∣∣∣∣∣∣∣ ≤
1
2

1−
∞∑

n=1
|bn| |z|n

1−
∞∑

n=1
|bn| |z|n

=
1
2
.

This means that inequality (5) holds and, therefore, f ∈ Sp. �

Theorem 4. If f ∈ S is given by (1), then 1
rf(rz) ∈ Sp for 0 < r ≤

r0, where r0, which depends on the second coefficient of f , is the root of the
equation

(6)
4

(1− r2)2
+

4
1− r2

− (8 + 12r2)− 9r2 ln(1− r2) = (1− (3/2)|f ′′(0)|r)2.

Proof. Let f ∈ S be given by (1). Then z/f(z) is nonvanishing and for
0 < r ≤ 1 we have

z
1
rf(rz)

= 1 + (b1r)z + (b2r
2)z2 + · · · (b1 = −f ′′(0)/2),

and if

(7)
∞∑

n=1

(2n + 1)|bn|rn ≤ 1

for some r, then 1
rf(rz) ∈ Sp by Theorem 3. By Lemma 1 with µ = 1, we have

(8)
∞∑

n=2

(n− 1)|bn|2 ≤ 1.

Now, by the Cauchy-Schwarz inequality and (8),
∞∑

n=2

(2n + 1)|bn|rn =
∞∑

n=2

√
n− 1|bn|

2n + 1√
n− 1

rn

≤

( ∞∑
n=2

(n− 1)|bn|2
) 1

2
( ∞∑

n=2

(2n + 1)2

n− 1
r2n

) 1
2

≤

( ∞∑
n=2

(2n + 1)2

n− 1
r2n

) 1
2

=
(

16r4 − 12r6

(1− r2)2
− 9r2 ln(1− r2)

) 1
2

.

In particular, for 0 < r ≤ r0, the last expression is less than or equal to
1− 3|b1|r. Therefore, (7) holds, concluding the proof. �
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Remark 3. One can easily show that equation (6) has a unique solution
for 0 < r ≤ 1 and |b1| ≤ 1/3. Indeed, let

G(r) =
4

(1− r2)2
+

4
1− r2

− (8 + 12r2)− 9r2 ln(1− r2)− (1− 3|b1|r)2

and 1− r2 = x. Now, for 0 ≤ x < 1 we consider the new function

H(x) =
4
x2

+
4
x

+ 12x− 20− 9(1− x) ln x− (1− 3|b1|
√

1− x)2.

For this function, we see that H(x) → +∞ when x → 0+, H(1) = −1, and

H ′(x) = − 8
x3
− 4

x2
+ 12− 9

(
− lnx +

1− x

x

)
−
(
1− 3|b1|

√
1− x

) 6|b1|√
1− x

= −8
(

1−x3

x3

)
− 4

(
1−x2

x2

)
+ 9 ln x− 9

(
1−x

x

)
− (1− 3|b1|

√
1− x)

6|b1|√
1−x

,

which is negative for 0 < x < 1 while |b1| ≤ 1/3, showing that equation (6)
has a unique solution in the interval (0, 1).

Also, in Theorem 4, we have actually obtained F-radius in S, where F
is the subclass of Sp consisting of functions f given by (1) with coefficients

satisfying the condition
∞∑

n=1
(2n + 1)|bn| ≤ 1.

Remark 4. For f ′′(0) = 0 in Theorem 4, we have r0 = 0.30066 . . ., and
the result is the best possible, the extremal function being of the form

z

f(z)
= 1 +

∞∑
n=2

2n + 1
n− 1

rn
0 zn.

To see this, for |ζ| < 1 we have

r0ζ

f(r0ζ)
= 1 +

∞∑
n=2

bnζn,

where

bn =
2n + 1
n− 1

r2n
0

and
∞∑

n=1

(2n + 1)|bn| =
∞∑

n=2

(2n + 1)2

n− 1
r2n
0 = 1,

by the definition of r0 from (6). This means that 1
rf(rz) belongs to Sp for

0 < r ≤ r0. Moreover, for |z| = r > r0 we have
∞∑

n=1
(2n+1)|bn| > 1. Therefore,
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f is extremal for the class F of functions f given by (1) with coefficients

satisfying the condition
∞∑

n=1
(2n + 1)|bn| ≤ 1. In this sense, the result is sharp.

On the other hand, the function f is univalent because it can be easily
seen that f ∈ U . Indeed, we have

∞∑
n=2

(n− 1)|bn| − 1 =
∞∑

n=2

(2n + 1)rn
0 − 1 =

2r0

(1− r0)2
− 2r0 +

r2
0

1− r0
− 1

= −(1− 3r0)[r0(1− r0) + 1]
(1− r0)2

< 0.

According to Lemma 2(a), f ∈ U , hence f is univalent. Finally, we only need
to prove that the function

z

f(z)
= 1 +

∞∑
n=2

2n + 1
n− 1

rn
0 zn = 1 + 2

(r0z)2

1− r0z
− 3r0z log(1− r0z)

has no zeros in the unit disk. This is easy because

Re
(

z

f(z)

)
= 1−

∞∑
n=2

2n + 1
n− 1

rn
0 ≥ 1−

∞∑
n=2

(2n + 1)rn
0 > 0.

Thus, we have established that r0 in Theorem 4 is the best possible radius
when f ′′(0) = 0. In other words, if F is the subclass of functions f ∈ S of the
form (1) such that f ′′(0) = 0, then 1

rf(rz) belongs to Sp for 0 < r ≤ r0, where
r0 is the largest value with the desired property.

It is known that U ( S. In [8], the authors have shown that the U-radius
in the class S is 1/

√
2. Our next result is simple but is surprising as it identifies

an important subclass of S which lies in U . We remark that a function f ∈ U
does not necessarily imply that Re(f ′(z)) > 0 throughout |z| < 1, see [7].

Theorem 5. If f is given by (1) with bn ≥ 0 and such that Re(f ′(z)) > 0
for z ∈ ∆, then f ∈ U .

Proof. Remark that if f ∈ A satisfies Re(f ′(z)) > 0 for z ∈ ∆, then f
must be univalent in ∆ (see [3]). Also, notice that

Re(f ′(z)) > 0 ⇔ Re

z

f(z)
− z

(
z

f(z)

)′
(

z

f(z)

)2 > 0 ⇔ Re
1−

∞∑
n=2

(n− 1)bnzn(
1 +

∞∑
n=1

bnzn

)2 > 0.
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For z → 1− along the positive real axis, the last inequality above becomes

Re
1−

∞∑
n=2

(n− 1)bn(
1 +

∞∑
n=1

bn

)2 ≥ 0,

which gives
∞∑

n=2
(n− 1)bn ≤ 1 and so f ∈ U , by Lemma 2(a). �

Theorem 6. A function f of the form (1) with bn ≥ 0 and z/f(z) 6= 0
in ∆, is in U if and only if

(9)
∞∑

n=2

(n− 1)bn ≤ 1.

Proof. On account of Lemma 2(a), it suffices to prove the necessary part.
To do this, we let f ∈ U of the form (1). This means that∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ =
∣∣∣∣ z

f(z)
− z

(
z

f(z)

)′
− 1
∣∣∣∣ =

∣∣∣∣∣
∞∑

n=2

(n− 1)bnzn

∣∣∣∣∣ < 1.

Choosing values of z on the real axis and then letting z → 1− through real
values, we obtain the coefficient condition (9). �

For example, by (9), the functions

z

(1 + z)2
,

z

1 + z
,

z

1 + z2
and

z

1 + z + z2

are in U .
As an immediate consequence of Theorems 1 and 6, we have the following

result.

Corollary 1. If f ∈ U is of the form (1) such that bn ≥ 0, then
1
rf(rz) ∈ P(2) for 0 < r ≤ 2/3; and 2/3 is the largest number with this
property, at least when b1 = 0 = b2.

We next show that a certain class of functions in S∗ is in U , which is
again a surprising simple result. Using this result, we can generate functions
in S∗ that are also in U .

Theorem 7. If f ∈ S∗ is of the form (1) with bn ≥ 0, then the coefficient
inequality (9) holds.
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Proof. Suppose that f ∈ S∗ is of the form (1) with bn ≥ 0. We have

Re
(

zf ′(z)
f(z)

)
> 0 ⇔

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ < ∣∣∣∣zf ′(z)

f(z)
+ 1
∣∣∣∣

⇔

∣∣∣∣∣∣∣∣∣
−z

(
z

f(z)

)′
2

z

f(z)
− z

(
z

f(z)

)′
∣∣∣∣∣∣∣∣∣ < 1 ⇔

∣∣∣∣∣∣∣∣
−

∞∑
n=1

nbnzn

2 + b1z −
∞∑

n=3
(n− 2)bnzn

∣∣∣∣∣∣∣∣ < 1.

For z → 1− through real values, from the last inequality we obtain that
∞∑

n=1
nbn

2 + b1 −
∞∑

n=3
(n− 2)bn

≤ 1,

which is equivalent to (9). Therefore, f ∈ U . �

Remark 5. Although condition (9) will be a useful necessary condition
for a rational function f of the form (1) (with bn ≥ 0) to be starlike, it is not
a sufficient condition for the starlikeness for functions f ∈ U . To prove this,
we consider the function

f1(z) =
z

1 + 1
2z + 1

2z3
.

By Theorem 6, f1 ∈ U . On the other hand, it is easy to see that

zf ′1(z)
f1(z)

=
1− z3

1 + 1
2z + 1

2z3

and at the boundary point z0 = (−1 + i)/
√

2, we have

z0f
′
1(z0)

f1(z0)
=

2− 2
√

2
3

+
1− 2

√
2

3
i,

which implies that Re {z0f
′
1(z0)/f1(z0)} < 0. Consequently, there are points

in the unit disk |z| < 1 for which Re {zf ′1(z)/f1(z)} < 0, which shows that the
function f1 is not starlike in ∆.

Corollary 2. If f(z) = z −
∞∑

n=2
anzn is in S∗, where an ≥ 0 for n ≥ 2,

then f ∈ U .

Proof. Let f ∈ S∗. Then z/f(z) is nonvanishing in the unit disk. So,
z/f(z) can be expressed as

z

f(z)
=

1
1− a2z − a3z2 − · · ·

= 1 + b1z + b2z
2 + · · · ,



328 M. Obradović and S. Ponnusamy 12

where bn ≥ 0 for all n ∈ N. Then, by Theorem 7, the inequality

∞∑
n=2

(n− 1)bn ≤ 1

holds. Hence, by Theorem 6, f ∈ U . �

Corollary 2 is especially helpful in obtaining functions that are both
starlike as well as in U , as there are numerous results concerning starlike
functions with negative coefficients. For example, fm(z) = z− zm/m is in S∗,
hence in U . Since f(z) = z −

∞∑
n=2

|an|zn is in S∗ if and only if
∞∑

n=2
n|an| ≤ 1

(see [13, Theorem 2]), this result can be used to generate functions f ∈ U that
are not starlike.
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