Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application February 25-27, 2011
(Department of Mathematics, University of Jammu)

On the class \mathcal{U}

M. Obradović and S. Ponnusamy

Abstract

In this mini survey article, we present important properties of the class \mathcal{U} of analytic functions f in the unit disk $|z|<1$ which satisfy the condition $$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1, \quad|z|<1
$$

Our special emphasis is to list down few important and basic results such as characterization and necessary and sufficient coefficient conditions for functions to be in \mathcal{U}.

Keywords. Univalent, starlike, close-to-convex, and convex mappings.
2010 MSC. 30C45.

1. Introduction and preliminaries about \mathcal{U}

Let \mathcal{A} denote the class of all functions f analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}$: $|z|<1\}$, with the normalization $f(0)=0$ and $f^{\prime}(0)=1$. The article concerns the class \mathcal{U} of all functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|U_{f}(z)\right|<1, \quad z \in \mathbb{D}
$$

where

$$
\begin{equation*}
U_{f}(z)=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1 \tag{1.1}
\end{equation*}
$$

According to Aksentév's theorem [1] (see also [16]) each functions in \mathcal{U} belongs to \mathcal{S}. Here \mathcal{S} denotes the class of all normalized univalent analytic functions in \mathbb{D} which is indeed the main object in the theory of univalent functions. We observe that mappings $f \in \mathcal{S}$ can be associated with the mappings $F \in \Sigma$, namely univalent functions F of the form,

$$
F(\zeta)=\zeta+\sum_{n=0}^{\infty} c_{n} \zeta^{-n}, \quad|\zeta|>1
$$

which satisfies the condition $F(\zeta) \neq 0$ for $|\zeta|>1$, by the correspondence

$$
F(\zeta)=\frac{1}{f(1 / \zeta)}, \quad|\zeta|>1
$$

Using the change of variable $\zeta=1 / z$, the association $f(z)=1 / F(1 / z)$ quickly yields the formula

$$
F^{\prime}(\zeta)-1=U_{f}(z)
$$

where U_{f} is defined by (1.1). Some facts about the class \mathcal{U} may now be recalled. Each function in

$$
\mathcal{S}_{\mathbb{Z}}=\left\{z, \frac{z}{(1 \pm z)^{2}}, \frac{z}{1 \pm z}, \frac{z}{1 \pm z^{2}}, \frac{z}{1 \pm z+z^{2}}\right\}
$$

belongs to \mathcal{U}. Also, it is well-known that functions in $\mathcal{S}_{\mathbb{Z}}$ are the only functions in \mathcal{S} having integral coefficients in the power series expansions of $f \in \mathcal{S}$ (see [5]). From the geometric characterization of starlike functions (with respect to the origin), it is a simple exercise to see that $\mathcal{S}_{\mathbb{Z}} \subset \mathcal{S}^{*}$. Here $\mathcal{S}^{*} \subset \mathcal{S}$ denotes the class of all starlike (univalent) functions in \mathbb{D} and every $f \in \mathcal{S}^{*}$ is characterized by the inequality $[3,6]$

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{D} .
$$

A function $f \in \mathcal{S}$ is said to belong to the class \mathcal{C} of convex functions (i.e. $f(\mathbb{D})$ is a convex domain) if and only if $z f^{\prime} \in \mathcal{S}^{*}$. It is worth pointing out that the Koebe function $k(z)=z /(1-z)^{2}$ belongs $\mathcal{U} \cap \mathcal{S}^{*}$. Also, the analytic characterization of starlike functions shows that $\mathcal{S}_{\mathbb{Z}} \subset \mathcal{S}^{*}$. We remark that functions in $\mathcal{S}_{\mathbb{Z}}$ are extremal for certain geometric subclasses of \mathcal{S}. In particular, it is natural to ask whether \mathcal{U} is included in \mathcal{S}^{*}. In fact, \mathcal{U} is not a subset of \mathcal{S}^{*} as the function

$$
f_{1}(z)=\frac{z}{1+\frac{1}{2} z+\frac{1}{2} z^{3}}
$$

demonstrates. It is easy to see that $f_{1} \in \mathcal{U}$. On the other hand, for this function, we have

$$
\frac{z f_{1}^{\prime}(z)}{f_{1}(z)}=\frac{1-z^{3}}{1+\frac{1}{2} z+\frac{1}{2} z^{3}}
$$

and at the boundary point $z_{0}=(-1+i) / \sqrt{2},\left|z_{0}\right|=1$, we obtain that

$$
\frac{z_{0} f_{1}^{\prime}\left(z_{0}\right)}{f_{1}\left(z_{0}\right)}=\frac{2-2 \sqrt{2}}{3}+\frac{1-2 \sqrt{2}}{3} i
$$

which gives that $\operatorname{Re}\left\{z_{0} f_{1}^{\prime}\left(z_{0}\right) / f_{1}\left(z_{0}\right)\right\}<0$. Consequently, there are points in the unit disk $|z|<1$ for which $\operatorname{Re}\left\{z f_{1}^{\prime}(z) / f_{1}(z)\right\}<0$ showing that the function f_{1}
is not starlike in \mathbb{D}. More generally, the function (see [11])

$$
f(z)=\frac{z}{1+i b z+\left(e^{2 i \beta} / 2\right) z^{3}}
$$

belongs \mathcal{U}, but is not in \mathcal{S}^{*} when $0<b \leq 1 / 2$ and $0<\beta<\arctan (2 b)$, because

$$
\left.\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|_{z=1}=\frac{[\sin \beta-2 b \cos \beta] \sin \beta}{\left|1+i b+\left(e^{2 i \beta} / 2\right)\right|^{2}}<0
$$

2. Basic Properties of the class \mathcal{U}

Theorem 2.1. (Characterization for $\mathcal{U})$ Every $f \in \mathcal{U}$ has the representation

$$
\frac{z}{f(z)}=1-a_{2} z-z \int_{0}^{z} \frac{\omega(t)}{t^{2}} d t, a_{2}=a_{2}(f)=\frac{f^{\prime \prime}(0)}{2}
$$

where $\omega \in \mathcal{B}_{1}$, the class of analytic functions in the unit disk \mathbb{D} such $\omega(0)=$ $\omega^{\prime}(0)=0$ and $|\omega(z)|<1$ for $z \in \mathbb{D}$.

Proof. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ in \mathcal{U}. Then one has

$$
\frac{f(z)}{z} \neq 0 \text { and }\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)=1+\left(a_{3}-a_{2}^{2}\right) z^{2}+\cdots, \quad z \in \mathbb{D}
$$

which may be written as

$$
\begin{equation*}
-z\left(\frac{z}{f(z)}\right)^{\prime}+\frac{z}{f(z)}=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)=1+\omega(z), \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

with $\omega \in \mathcal{B}_{1}$. Also, by the Schwarz lemma, $|\omega(z)| \leq|z|^{2}, z \in \mathbb{D}$. From the previous relation, we obtain

$$
\left(\frac{1}{f(z)}-\frac{1}{z}\right)^{\prime}=-\frac{\omega(z)}{z^{2}}
$$

and, since

$$
\left.\left(\frac{1}{f(z)}-\frac{1}{z}\right)\right|_{z=0}=-a_{2}
$$

by integration we get

$$
\frac{1}{f(z)}-\frac{1}{z}-\left(-a_{2}\right)=-\int_{0}^{z} \frac{\omega(t)}{t^{2}} d t
$$

The desired representation follows.

This representation together with many others which follow from this led to a number of recent investigations, see for example $[9,11,12,13,15]$. However, because $\omega \in \mathcal{B}_{1}$, the Schwarz lemma gives $|\omega(z)| \leq|z|^{2}$ in \mathbb{D}. Consequently, we have

$$
\begin{equation*}
\left|\frac{z}{f(z)}+a_{2} z-1\right| \leq|z|^{2}, \quad z \in \mathbb{D} \tag{2.3}
\end{equation*}
$$

We observe that if z is fixed $(0<|z|<1)$, then this inequality determines the range of the functional

$$
\frac{z}{f(z)}+a_{2} z
$$

in the class \mathcal{U}. In particular, if $a_{2}=0$ then by a computation (2.3) gives that

$$
\left|\frac{f(z)}{z}-\frac{1}{1-|z|^{4}}\right| \leq \frac{|z|^{2}}{1-|z|^{4}}, \quad z \in \mathbb{D}
$$

so that, for every $f \in \mathcal{U}$ with $f^{\prime \prime}(0)=0$, we have

$$
\frac{|z|}{1+|z|^{2}} \leq|f(z)| \leq \frac{|z|}{1-|z|^{2}}, \quad z \in \mathbb{D}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right) \geq \frac{1}{1+|z|^{2}}>\frac{1}{2}, \quad z \in \mathbb{D} \tag{2.4}
\end{equation*}
$$

We now formulate
Corollary 2.5. Let $f \in \mathcal{U}$. Then one has
(a) $\left|\frac{z}{f(z)}-1\right| \leq|z|\left(\left|a_{2}\right|+|z|\right), z \in \mathbb{D}$
(b) $\operatorname{Re}\left(\frac{f(z)}{z}\right)>0$ for $|z|<\frac{2}{\sqrt{4+\left|a_{2}\right|}+\left|a_{2}\right|}$
(c) $\operatorname{Re}\left(\frac{f(z)}{z}\right)>\frac{1}{2}$ in \mathbb{D} if $f^{\prime \prime}(0)=0$.
2.1. Interesting subclass of \mathcal{U}. Investigation on various subclasses of \mathcal{S} has a long history and continues to occupy a prominent place in function theory. In [7], the authors introduced a subclass $\mathcal{P}(2)$ of \mathcal{U}, consisting of functions f for which

$$
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq 2, \quad z \in \mathbb{D} .
$$

We have the following strict inclusion (see [7]).
Theorem 2.6. $\mathcal{P}(2) \subset \mathcal{U}$.

Proof. Let $f \in \mathcal{P}(2)$ and $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$. We may introduce

$$
p(z)=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1=-z\left(\frac{z}{f(z)}\right)^{\prime}+\frac{z}{f(z)}-1
$$

so that

$$
p(z)=\left(a_{3}-a_{2}^{2}\right) z^{2}+\cdots, \quad z \in \mathbb{D}
$$

Also, we observe that $p(0)=p^{\prime}(0)=0$, and

$$
z p^{\prime}(z)=-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime}
$$

By assumption, $\left|z p^{\prime}(z)\right|<2$ in \mathbb{D} which by a well-known subordination relation gives that $|p(z)|<1, z \in \mathbb{D}$. That is, $f \in \mathcal{U}$.

Further work on the classes \mathcal{U} and $\mathcal{P}(2)$, including some interesting generalizations of these classes, may be found in $[9,17]$. We remark that the constant 2 in the inclusion result of Theorem 2.6 is the best possible. For this, we consider the function

$$
f(z)=\frac{z}{(1+z)^{2+\epsilon}}, \epsilon>0
$$

Then we observe that

$$
\left(\frac{z}{f(z)}\right)^{\prime \prime}=(2+\epsilon)(1+\epsilon)(1+z)^{\epsilon} \text { and } f^{\prime}(z)=\frac{1-(1+\epsilon) z}{(1+z)^{3+\epsilon}}
$$

from which we obtain that $f^{\prime}(1 /(1+\epsilon))=0$ and therefore, the function f is not univalent in \mathbb{D}.
2.2. Condition for functions to be in \mathcal{U}. One of the sufficient conditions for a function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ to be in \mathcal{S}^{*} is that $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1$. Moreover, this coefficient condition is also sufficient for f to belong to \mathcal{R}, where \mathcal{R} denotes the class of normalized analytic functions f in \mathbb{D} satisfying the condition

$$
\left|f^{\prime}(z)-1\right|<1 \text { in } \mathbb{D}
$$

It is worth pointing out that the convex class \mathcal{C} neither contained in \mathcal{R} nor contains \mathcal{R}. In spite of the fact that neither \mathcal{S}^{*} is included in \mathcal{U} nor includes \mathcal{U}, we have the following interesting result (see also [4]).
Theorem 2.7. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ such that $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1$. Then $f \in \mathcal{U}$. The result is sharp.

Proof. Under the assumption, we find that

$$
\begin{aligned}
\left|f^{\prime}(z)-\left(\frac{f(z)}{z}\right)^{2}\right| & =\left|1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}-\left(1+\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{2}\right| \\
& =\left|\sum_{n=2}^{\infty}(n-2) a_{n} z^{n-1}-\left(\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{2}\right| \\
& =|z|^{2}\left|\sum_{n=3}^{\infty}(n-2) a_{n} z^{n-3}-\left(\sum_{n=2}^{\infty} a_{n} z^{n-2}\right)^{2}\right|
\end{aligned}
$$

and therefore,

$$
\begin{aligned}
\left|f^{\prime}(z)-\left(\frac{f(z)}{z}\right)^{2}\right| & <\sum_{n=2}^{\infty}(n-2)\left|a_{n}\right|+\left(\sum_{n=2}^{\infty}\left|a_{n}\right|\right)^{2} \\
& \leq 1-2 \sum_{n=2}^{\infty}\left|a_{n}\right|+\left(\sum_{n=2}^{\infty}\left|a_{n}\right|\right)^{2} \\
& \leq\left(1-\sum_{n=2}^{\infty}\left|a_{n}\right|\right)^{2} \\
& \leq\left|\frac{f(z)}{z}\right|^{2}
\end{aligned}
$$

from which we easily obtain that $f \in \mathcal{U}$.
To see that the constant bound 1 in the coefficient estimate cannot be replaced by $1+\epsilon, \epsilon>0$, we consider the function

$$
f(z)=z+\frac{1+\epsilon}{n} z^{n}(n \geq 2) .
$$

We observe that $f^{\prime}(z)=1+(1+\epsilon) z^{n-1}$ has a zero in \mathbb{D} because $\epsilon>0$. Thus, the result is sharp.
2.3. Functions in \mathcal{U} of special form. In this section we focus our attention for analytic functions f in \mathbb{D} of the form

$$
\begin{equation*}
f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}} . \tag{2.8}
\end{equation*}
$$

We remark that if $f \in \mathcal{S}$ then $z / f(z)$ is nonvanishing in the unit disk \mathbb{D} and hence, can be represented as Taylor's series of the form (2.8) which is convenient
for our investigation. Now, we recall that if $f \in \mathcal{S}$ and has the above form, then from the well-known Area Theorem [6, Theorem 11 on p. 193 of Vol. 2] we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2} \leq 1 \tag{2.9}
\end{equation*}
$$

But that condition is not sufficient for the univalence of an analytic function f of the form (2.8) (see Theorem 2.13 below). In the next theorem we present a sufficient condition for the univalence in terms of the coefficients b_{n} of analytic functions f of the form (2.8).

Theorem 2.10. (Sufficient coefficient condition for \mathcal{U}) Let $f \in \mathcal{A}$ have the form (2.8). If

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| \leq 1
$$

then $f \in \mathcal{U}$ and the constant 1 is the best possible in a sense: if

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|=1+\varepsilon,
$$

for some $\varepsilon>0$, then there exists an f such that f is not univalent in \mathbb{D}.
Proof. The first part of the statements of the theorem follows from

$$
\begin{aligned}
\mid U_{f}(z \mid & =\left|-z\left(\frac{z}{f(z)}\right)^{\prime}+\frac{z}{f(z)}-1\right| \\
& =\left|-\sum_{n=1}^{\infty}(n-1) b_{n} z^{n}\right| \\
& \leq \sum_{n=1}^{\infty}(n-1)\left|b_{n}\right| \leq 1 .
\end{aligned}
$$

In order to prove the sharpness part of the theorem, we consider the function $f(z)=z-q z^{2}$, where $q=\frac{\sqrt{1+\varepsilon}}{1+\sqrt{1+\varepsilon}}, \varepsilon>0$, so that $\frac{1}{2}<q<1$. Then, we have

$$
\frac{z}{f(z)}=\frac{1}{1-q z}=1+\sum_{n=1}^{\infty} q^{n} z^{n}
$$

and

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|=\sum_{n=2}^{\infty}(n-1) q^{n}=\left(\frac{q}{1-q}\right)^{2}=1+\varepsilon
$$

Also, we see that $f^{\prime}(z)=1-2 q z$ and therefore, $f^{\prime}\left(\frac{1}{2 q}\right)=0$ showing that f is not univalent in the unit disk \mathbb{D}.

The coefficient condition (2.10) is only a sufficient condition for f to be in the class \mathcal{U}. In fact it can be easily seen that the condition (2.10) is not a necessary condition for the corresponding function to be in that class. For instance, if f is given by

$$
\frac{z}{f(z)}=1+\frac{1}{3} z^{2}+\frac{\sqrt{5}}{6} i z^{3}+\frac{1}{9} z^{4}
$$

then on one hand we have

$$
\left|U_{f}(z)\right|=\frac{1}{3}\left|z^{2}\right|\left|1+\sqrt{5} i z+z^{2}\right|<1
$$

and on the other hand,

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|=\frac{1}{3}+\frac{\sqrt{5}}{3}+\frac{1}{3}>1
$$

Theorem 2.11. (Necessary coefficient condition for \mathcal{U}) Let $f \in \mathcal{U}$ have the form (2.8). Then

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)^{2}\left|b_{n}\right|^{2} \leq 1 \tag{2.12}
\end{equation*}
$$

In particular, we have $\left|b_{1}\right| \leq 2$ and $\left|b_{n}\right| \leq \frac{1}{n-1}$ for $n \geq 2$. The results are sharp.
Proof. Recall that $f \in \mathcal{U}$ if and only if

$$
\left|U_{f}(z)\right|=\left|\frac{z}{f(z)}-z\left(\frac{z}{f(z)}\right)^{\prime}-1\right|=\left|\sum_{n=2}^{\infty}(n-1) b_{n} z^{n}\right|<1
$$

We note that $g(z)=\sum_{n=2}^{\infty}(n-1) b_{n} z^{n}$ is analytic in \mathbb{D} and therefore, with $z=r e^{i \theta}$, we have

$$
\sum_{n=2}^{\infty}(n-1)^{2}\left|b_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{2} d \theta<1
$$

so that, as $r \rightarrow 1^{-}$, we obtain the desired inequality.
Because $b_{1}=-f^{\prime \prime}(0) / 2$, the Bieberbach inequality gives that $\left|b_{1}\right| \leq 2$ and fact that the Koebe function $k(z)=z /(1-z)^{2}$ belongs to \mathcal{U} shows that the result is the best possible. Further, the inequality (2.12) implies that for $n \geq 2$ we have that $\left|b_{n}\right| \leq \frac{1}{n-1}$. The functions $s_{n}(z)$, for $n \geq 2$, defined by

$$
s_{n}(z)=\frac{(n-1) z}{z^{n}+n-1}, \quad \text { i.e. } \quad \frac{z}{s_{n}(z)}=1+\frac{z^{n}}{n-1}
$$

also belong to the class \mathcal{U} showing that the result is sharp.

We observe that the necessary coefficient condition (2.12) for the class \mathcal{U} is stronger than that for the class \mathcal{S}, namely the inequality (2.9).
Theorem 2.13. Let $f \in \mathcal{A}$ and have the form (2.8) satisfying the condition

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2} \leq 1
$$

Then f is univalent in the disk $|z|<\frac{1}{\sqrt{2}}$ and the result is the best possible.
Proof. Consider the function $g(z)=\frac{1}{r} f(r z)$, where $0<r \leq 1$. Then

$$
\frac{z}{g(z)}=1+\sum_{n=1}^{\infty} b_{n} r^{n}
$$

Because

$$
\begin{aligned}
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| r^{n} & =\sum_{n=2}^{\infty} \sqrt{n-1}\left|b_{n}\right| \sqrt{n-1} r^{n} \\
& \leq\left(\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=2}^{\infty}(n-1) r^{2 n}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=2}^{\infty}(n-1) r^{2 n}\right)^{\frac{1}{2}}=\frac{r^{2}}{1-r^{2}} \leq 1
\end{aligned}
$$

for $0<r \leq \frac{1}{\sqrt{2}}$, it follows easily that g is in the class \mathcal{U}. In particular $f(z)$ is univalent in the disk $|z|<\frac{1}{\sqrt{2}}$.

For the function $f_{0}(z)=z-\frac{1}{\sqrt{2}} z^{2}$ we have

$$
\frac{z}{f(z)}=\frac{1}{1-\frac{1}{\sqrt{2}} z}=1+\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n} z^{n}
$$

and

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2}=\sum_{n=2}^{\infty}(n-1)\left(\frac{1}{2}\right)^{n}=1
$$

On the other hand $\operatorname{Re} f_{0}^{\prime}(z)=\operatorname{Re}(1-\sqrt{2} z)>0$ for $|z|<\frac{1}{\sqrt{2}}$ and $f_{0}^{\prime}\left(\frac{1}{\sqrt{2}}\right)=0$, which implies that $f_{0}(z)$ is not univalent in a larger disk.

Theorem 2.14. Let $f \in \mathcal{A}$ and have the form (2.8) satisfying the condition

$$
\sum_{n=2}^{\infty}(n-1)^{2}\left|b_{n}\right|^{2} \leq 1
$$

Then f is univalent in the disk $|z|<\sqrt{\frac{\sqrt{5}-1}{2}}$ and the result is the best possible.
Proof. As in the proof of Theorem 2.13, it suffices to observe that

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| r^{n} \leq\left(\sum_{n=2}^{\infty}(n-1)^{2}\left|b_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=2}^{\infty} r^{2 n}\right)^{\frac{1}{2}} \leq \frac{r^{2}}{\sqrt{1-r^{2}}} \leq 1
$$

whenever $r^{4}+r^{2}-1 \leq 0$, that is if $0<r \leq r_{0}=\sqrt{\frac{\sqrt{5}-1}{2}} \approx 0.78615$. It means that the function g defined by $g(z)=\frac{1}{r} f(r z)$ is in the class \mathcal{U} and hence, $f(z)$ is univalent in the disk $|z|<r_{0}=\sqrt{\frac{\sqrt{5}-1}{2}}$.

For the function $f_{0}(z)$ defined by

$$
\frac{z}{f_{0}(z)}=1+\sum_{n=2}^{\infty} \frac{r_{0}^{n}}{n-1} z^{n}=1-r_{0} z \log \left(1-r_{0} z\right)
$$

we have that $\operatorname{Re} f_{0}(z)>0$ in \mathbb{D} so that $f \in \mathcal{A}$ and

$$
\sum_{n=2}^{\infty}(n-1)^{2}\left|b_{n}\right|^{2}=\sum_{n=2}^{\infty}(n-1)^{2} \frac{r_{0}^{2 n}}{(n-1)^{2}}=1
$$

On the other hand side for $|z|<r_{0}$ we find that

$$
\left|\left(\frac{z}{f_{0}(z)}\right)^{2} f_{0}^{\prime}(z)-1\right|=\left|\frac{-r_{0}^{2} z^{2}}{1-r_{0} z}\right|<\frac{r_{0}^{4}}{1-r_{0}^{2}}=1
$$

while for $r_{0} \leq z=r<1$:

$$
\left|\left(\frac{z}{f_{0}(z)}\right)^{2} f_{0}^{\prime}(z)-1\right|_{z=r}=\frac{r^{4}}{1-r^{2}} \geq 1
$$

It means that $g_{0}(z)=\frac{1}{r} f_{0}(r z)$ is in the class \mathcal{U} for $r \leq r_{0}$, but not in a larger value of r, and hence, f is univalent in the disk $|z|<r_{0}$, but not in a larger disk. Moreover, a computation gives

$$
f_{0}^{\prime}(z)=\frac{1-r_{0} z-r_{0}^{2} z^{2}}{\left(1-r_{0} z\right)\left(1-r_{0} z \log \left(1-r_{0} z\right)\right)^{2}}
$$

and therefore, $f_{0}^{\prime}\left(r_{0}\right)=0$. Thus, f cannot be univalent in any disk larger than the disk $|z|<r_{0}$.

3. Function in \mathcal{U} in some special situation

The class of functions $f \in \mathcal{A}$ of the form (2.8) for which $b_{n} \geq 0$ for all $n \geq 2$ is especially interesting and deserves a separate discussion (see [12]).

Theorem 3.1. Let $f \in \mathcal{A}$ have the form (2.8) with $b_{n} \geq 0$ for all $n \geq 2$. Then we have the following equivalence:
(a) $f \in \mathcal{S}$
(b) $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ for $z \in \mathbb{D}$
(c) $\sum_{n=2}^{\infty}(n-1) b_{n} \leq 1$
(d) $f \in \mathcal{U}$.

Proof. (a) \Rightarrow (b): Let $f \in \mathcal{S}$ be of the form (2.8) with $b_{n} \geq 0$ for all $n \geq 2$. Then, $f^{\prime}(z) \neq 0$ and $f(z) / z \neq 0$ in \mathbb{D}.
(b) $\Rightarrow(\mathrm{c})$: From the representation of f and (2.2) we quickly see that for $z \in \mathbb{D}$,

$$
\left(\frac{r z}{f(r z)}\right)^{2} f^{\prime}(r z)=1-\sum_{n=2}^{\infty}(n-1) b_{n} r^{n} z^{n}
$$

from which, as $z / f(z) \neq 0$, it follows that $f^{\prime}(r z) \neq 0$ is equivalent to

$$
1-\sum_{n=2}^{\infty}(n-1) b_{n} r^{n} z^{n} \neq 0
$$

We claim that $\sum_{n=2}^{\infty}(n-1) b_{n} \leq 1$. Suppose on the contrary that $\sum_{n=2}^{\infty}(n-1) b_{n}>$ 1. Then, on the one hand, there exists a positive integer m such that

$$
\sum_{n=2}^{m}(n-1) b_{n}>1
$$

and so there exists an r_{0} with $0<r_{0}<1$ and

$$
\sum_{n=2}^{m}(n-1) b_{n} r_{0}^{n}>1
$$

On the other hand, as $b_{n} \geq 0$ for $n \geq 2$, we have that

$$
\left(\frac{r_{0}}{f\left(r_{0}\right)}\right)^{2} f^{\prime}\left(r_{0}\right)=1-\sum_{n=2}^{\infty}(n-1) b_{n} r_{0}^{n} \leq 1-\sum_{n=2}^{m}(n-1) b_{n} r_{0}^{n}<0
$$

and, since $f^{\prime}(r)$ is a continuous function of r with $f^{\prime}(0)=1$ and $f^{\prime}\left(r_{0}\right)<0$, there exists an $r_{1}\left(0<r_{1}<r_{0}<1\right)$ such that $f^{\prime}\left(r_{1}\right)=0$. This is a contradiction. Consequently, we must have

$$
\sum_{n=2}^{\infty}(n-1) b_{n} \leq 1
$$

(c) \Rightarrow (d): Suppose that $\sum_{n=2}^{\infty}(n-1) b_{n} \leq 1$. Then, by Theorem 2.10, it follows that $f \in \mathcal{U}$.
(d) $\Rightarrow(\mathrm{a}): \mathcal{U} \subset \mathcal{S}$ is a well-known fact.

The condition Theorem 3.1(c) may be used to conclude quickly that the functions

$$
\frac{z}{(1+z)^{2}}, \frac{z}{1+z}, \frac{z}{1+z^{2}}, \quad \text { and } \frac{z}{1+z+z^{2}}
$$

are in \mathcal{U}.
Corollary 3.2. If f is of the form (2.8) with $b_{n} \geq 0$ for all $n \geq 2$ and such that $\operatorname{Re}\left(f^{\prime}(z)\right)>0$ for $z \in \mathbb{D}$, then $f \in \mathcal{U}$.

Proof. The condition $\operatorname{Re}\left(f^{\prime}(z)\right)>0$ for $z \in \mathbb{D}$ implies that $f \in \mathcal{S}$. The conclusion follows from Theorem 3.1 (see also Theorem 3.1).

Corollary 3.3. If $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ is in \mathcal{S}^{*}, where $a_{n} \geq 0$ for $n \geq 2$, then $f \in \mathcal{U}$.

Proof. Let $f \in \mathcal{S}^{*}$. Then $z / f(z)$ can be expressed as

$$
\frac{z}{f(z)}=\frac{1}{1-a_{2} z-a_{3} z^{2}-\cdots}=1+b_{1} z+b_{2} z^{2}+\cdots
$$

where $b_{n} \geq 0$ for all $n \in \mathcal{N}$. Then, by Theorem 3.1, the inequality

$$
\sum_{n=2}^{\infty}(n-1) b_{n} \leq 1
$$

holds and hence, by Theorem 2.10, $f \in \mathcal{U}$.
Corollary 3.3 especially helpful in obtaining functions that are in $\mathcal{S}^{*} \cap \mathcal{U}$, as there are numerous results concerning starlike functions with negative coefficients. For example, $f_{m}(z)=z-z^{m} / m$ is in \mathcal{S}^{*} and hence in \mathcal{U}. Since $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ is in \mathcal{S}^{*} if and only if $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1$ (see [18, Theorem 2]), this result can be used to generate functions $f \in \mathcal{U}$ that are not starlike.

Example 3.4. Let

$$
f(z)=\frac{z}{(1+z)^{2}}, g(z)=\frac{z}{(1-z)^{2}} \text { and } F(z)=\frac{z f(z)}{g(z)} .
$$

Then

$$
\frac{z}{F(z)}=\frac{(1+z)^{2}}{(1-z)^{2}}=\left(1+2 z+z^{2}\right)\left(1+2 z+3 z^{2}+\cdot\right)=1+4 z+4 \sum_{n=2}^{\infty} n z^{n}
$$

so that

$$
\frac{r z}{F(r z)}=1+4 r z+4 \sum_{n=2}^{\infty} n r^{n} z^{n}
$$

for $0<r<1$. By Theorem 3.1, this function F is univalent if and only if r satisfies the inequality

$$
4 \sum_{n=2}^{\infty}(n-1) n r^{n} \leq 1
$$

This gives the condition

$$
\frac{8 r^{2}}{(1-r)^{3}} \leq 1, \text { i.e. } 3 r+5 r^{2}+r^{3}-1 \leq 0
$$

which implies that $0<r \leq r_{0} \approx 0.23607$.
3.1. Radius property of univalent functions. If for every $f \in \mathcal{S}$ the function $\frac{1}{r} f(r z) \in \mathcal{U}$ for $0<r \leq r_{0}$, and r_{0} is the largest number for which this hold, then we say that r_{0} is the \mathcal{U} radius (or the radius of \mathcal{U}-property) in the class \mathcal{S}. In this case, we may conveniently write $r_{0}=r_{\mathcal{U}}(\mathcal{S})$.
Theorem 3.5. $r_{\mathcal{U}}(\mathcal{S})=\frac{1}{\sqrt{2}}$.
Proof. Let $f \in \mathcal{S}$. Then every such an f has the form

$$
\frac{z}{f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

Then, by (2.9), we obtain that

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2} \leq 1
$$

The desired conclusion clearly follows from Theorem 2.13. Moreover, to see that the number $\frac{1}{\sqrt{2}}$ is the best possible, we consider the function

$$
f(z)=\frac{z\left(1-\frac{1}{\sqrt{2}} z\right)}{1-z^{2}}
$$

If we put $z=\rho e^{i \theta} \in \mathbb{D}$, then we have

$$
\operatorname{Re}\left(\left(1-z^{2}\right) f^{\prime}(z)\right)=\frac{\left(1-\rho^{2}\right)\left(1+\rho^{2}-\sqrt{2} \rho \cos \theta\right)}{\left|1-\rho^{2} e^{i 2 \theta}\right|^{2}}>0
$$

for $0 \leq \rho<1$. Thus, f is close-to-convex in \mathbb{D} and therefore, $f \in \mathcal{S}$. Next, we note that

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|=\left|\frac{z}{\sqrt{2}-z}\right|^{2}
$$

is less than 1 for $|z|<\frac{1}{\sqrt{2}}$, equal to 1 for $z=\frac{1}{\sqrt{2}}$ and bigger than 1 for $\frac{1}{\sqrt{2}}<z=$ $r<1$. The sharpness part follows.

Remark 3.6. In later articles, the authors (see also [4] for many related results) considered the class $\mathcal{U}(\lambda)$ defined by the condition

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<\lambda, \quad z \in \mathbb{D}
$$

and find that $r_{\mathcal{U}(\lambda)}(\mathcal{S})=\sqrt{\frac{\lambda}{1+\lambda}}$.

3.2. Convolution properties with \mathcal{U}.

Theorem 3.7. Let $f, g \in \mathcal{S}$ with the representations

$$
\frac{z}{f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n}, \quad \frac{z}{g(z)}=1+\sum_{n=1}^{\infty} c_{n} z^{n} .
$$

If

$$
\Phi(z)=\frac{z}{f(z)} * \frac{z}{g(z)}=1+\sum_{n=1}^{\infty} b_{n} c_{n} z^{n} \neq 0
$$

for every $z \in \mathbb{D}$, then

$$
F(z)=\frac{z}{\Phi(z)} \in \mathcal{U}
$$

and, in particular, F is univalent in \mathbb{D}.
Proof. For $f, g \in \mathcal{S}$ with their representations we have that

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2} \leq 1 \text { and } \sum_{n=2}^{\infty}(n-1)\left|c_{n}\right|^{2} \leq 1
$$

By assumption

$$
\Phi(z)=\frac{z}{f(z)} * \frac{z}{g(z)}=1+\sum_{n=1}^{\infty} b_{n} c_{n} z^{n} \neq 0
$$

and therefore, the function F is analytic in \mathbb{D}. By the classical Cauchy-Schwarz inequality, we conclude that

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n} c_{n}\right| \leq\left(\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=2}^{\infty}(n-1)\left|c_{n}\right|^{2}\right)^{\frac{1}{2}} \leq 1,
$$

which, by Theorem $2.10, F \in \mathcal{U}$.
Further results on convolution may be obtained from [2, 14].

References

[1] L. A. Aksentév, Sufficient conditions for univalence of regular functions (Russian), Izv. Vysš. Učebn. Zaved. Matematika 1958(4)(1958), 3-7.
[2] R. W. Barnard, S. Naik, M. Obradović and S. Ponnusamy, Two parameter families of close-to-convex functions and convolution theorems, Analysis, 24(2004), 71-94.
[3] P.L. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
[4] R. Fournier and S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52(1)(2007), 1-8.
[5] B. Friedman, Two theorems on schlicht functions, Duke Math. J. 13(1946), 171-177
[6] A.W. Goodman, Univalent functions, Vols. 1-2, Mariner, Tampa, Florida, 1983.
[7] M. Nunokawa, M. Obradović, and S. Owa, One criterion for univalency, Proc. Amer. Math. Soc. 106(1989), 1035-1037.
[8] M. Obradović, N. N. Pascu and I. Radomir, A class of univalent functions, Math. Japonica, 44(3)(1996), 565-568.
[9] M.Obradović and S. Ponnusamy, New criteria and distortion theorems for univalent functions, Complex Variables, 44(2001), 173-191.
[10] M. Obradović and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis 25(2005), 183-188.
[11] M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions, J. Math. Anal. and Appl. 336(2007), 758-767.
[12] M. Obradović and S. Ponnusamy, Coefficient characterization for certain classes of univalent functions, Bulletin Belgian Math. Soc.-Simon Stevin 16(2009), 251-263.
[13] M. Obradović and S. Ponnusamy, On certain subclasses of univalent functions and radius properties, Rev. Roumanie Math. Pures Appl. 54(4)(2009), 317-329.
[14] M. Obradović and S. Ponnusamy, Univalency and convolution results associated with confluent hypergeometric functions, Houston J. Math. 35(4)(2009), 1313-1328.
[15] M. Obradović, S. Ponnusamy, V. Singh and P. Vasundhra, Univalency, starlikesess and convexity applied to certain classes of rational functions, Analysis (Munich) $22(3)(2002), 225-242$.
[16] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(1972), 392-394.
[17] S. Ponnusamy and P. Vasundhra, Criteria for univalence, starlikeness and convexity, Ann. Polon. Math. 85(2005), 121-133.
[18] H. Silverman, Univalent functions with negative coefficicents, Proc. Amer. Math. Soc. 51(1975), 109-116.
M. Obradović

E-MAIL: obrad@grf.bg.ac.rs
Address:
M. Obradović,

Department of Mathematics,
Faculty of Civil Engineering,
University of Belgrade,
Bulevar Kralja Aleksandra 73, 11000,
Belgrade, Serbia.
S. Ponnusamy E-maIL: samy@iitm.ac.in

Address:
S. Ponnusamy,

Department of Mathematics,
Indian Institute of Technology Madras,
Chennai-600 036, India.

