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On the class U
M. Obradović and S. Ponnusamy

Abstract. In this mini survey article, we present important properties of
the class U of analytic functions f in the unit disk |z| < 1 which satisfy the
condition ∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < 1, |z| < 1.

Our special emphasis is to list down few important and basic results such as
characterization and necessary and sufficient coefficient conditions for func-
tions to be in U .
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1. Introduction and preliminaries about U
Let A denote the class of all functions f analytic in the unit disk D = {z ∈ C :

|z| < 1}, with the normalization f(0) = 0 and f ′(0) = 1. The article concerns
the class U of all functions f ∈ A satisfying the condition

|Uf (z)| < 1, z ∈ D,

where

(1.1) Uf (z) =

(
z

f(z)

)2

f ′(z)− 1.

According to Aksentév’s theorem [1] (see also [16]) each functions in U belongs
to S. Here S denotes the class of all normalized univalent analytic functions
in D which is indeed the main object in the theory of univalent functions. We
observe that mappings f ∈ S can be associated with the mappings F ∈ Σ,
namely univalent functions F of the form,

F (ζ) = ζ +
∞∑

n=0

cnζ
−n, |ζ| > 1,
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which satisfies the condition F (ζ) 6= 0 for |ζ| > 1, by the correspondence

F (ζ) =
1

f(1/ζ)
, |ζ| > 1.

Using the change of variable ζ = 1/z, the association f(z) = 1/F (1/z) quickly
yields the formula

F ′(ζ)− 1 = Uf (z),

where Uf is defined by (1.1). Some facts about the class U may now be recalled.
Each function in

SZ =

{
z,

z

(1± z)2
,

z

1± z
,

z

1± z2
,

z

1± z + z2

}

belongs to U . Also, it is well-known that functions in SZ are the only functions
in S having integral coefficients in the power series expansions of f ∈ S (see
[5]). From the geometric characterization of starlike functions (with respect to
the origin) , it is a simple exercise to see that SZ ⊂ S∗. Here S∗ ⊂ S denotes the
class of all starlike (univalent) functions in D and every f ∈ S∗ is characterized
by the inequality [3, 6]

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D.

A function f ∈ S is said to belong to the class C of convex functions (i.e. f(D) is
a convex domain) if and only if zf ′ ∈ S∗. It is worth pointing out that the Koebe
function k(z) = z/(1 − z)2 belongs U ∩ S∗. Also, the analytic characterization
of starlike functions shows that SZ ⊂ S∗. We remark that functions in SZ are
extremal for certain geometric subclasses of S. In particular, it is natural to ask
whether U is included in S∗. In fact, U is not a subset of S∗ as the function

f1(z) =
z

1 + 1
2
z + 1

2
z3

demonstrates. It is easy to see that f1 ∈ U . On the other hand, for this function,
we have

zf ′1(z)

f1(z)
=

1− z3

1 + 1
2
z + 1

2
z3

and at the boundary point z0 = (−1 + i)/
√

2, |z0| = 1, we obtain that

z0f
′
1(z0)

f1(z0)
=

2− 2
√

2

3
+

1− 2
√

2

3
i

which gives that Re {z0f
′
1(z0)/f1(z0)} < 0. Consequently, there are points in the

unit disk |z| < 1 for which Re {zf ′1(z)/f1(z)} < 0 showing that the function f1
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is not starlike in D. More generally, the function (see [11])

f(z) =
z

1 + ibz + (e2iβ/2)z3

belongs U , but is not in S∗ when 0 < b ≤ 1/2 and 0 < β < arctan(2b), because

Re

(
zf ′(z)

f(z)

)∣∣∣∣
z=1

=
[sin β − 2b cos β] sin β

|1 + ib + (e2iβ/2)|2 < 0.

2. Basic Properties of the class U
Theorem 2.1. (Characterization for U) Every f ∈ U has the representation

z

f(z)
= 1− a2z − z

∫ z

0

ω(t)

t2
dt, a2 = a2(f) =

f ′′(0)

2
,

where ω ∈ B1, the class of analytic functions in the unit disk D such ω(0) =
ω′(0) = 0 and |ω(z)| < 1 for z ∈ D.

Proof. Let f(z) = z +
∑∞

k=2 akz
k in U . Then one has

f(z)

z
6= 0 and

(
z

f(z)

)2

f ′(z) = 1 + (a3 − a2
2)z

2 + · · · , z ∈ D,

which may be written as

(2.2) −z

(
z

f(z)

)′
+

z

f(z)
=

(
z

f(z)

)2

f ′(z) = 1 + ω(z), z ∈ D,

with ω ∈ B1. Also, by the Schwarz lemma, |ω(z)| ≤ |z|2, z ∈ D. From the
previous relation, we obtain

(
1

f(z)
− 1

z

)′
= −ω(z)

z2
,

and, since (
1

f(z)
− 1

z

)∣∣∣∣
z=0

= −a2,

by integration we get

1

f(z)
− 1

z
− (−a2) = −

∫ z

0

ω(t)

t2
dt.

The desired representation follows.
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This representation together with many others which follow from this led to
a number of recent investigations, see for example [9, 11, 12, 13, 15]. However,
because ω ∈ B1, the Schwarz lemma gives |ω(z)| ≤ |z|2 in D. Consequently, we
have

(2.3)

∣∣∣∣
z

f(z)
+ a2z − 1

∣∣∣∣ ≤ |z|2, z ∈ D.

We observe that if z is fixed (0 < |z| < 1), then this inequality determines the
range of the functional

z

f(z)
+ a2z

in the class U . In particular, if a2 = 0 then by a computation (2.3) gives that∣∣∣∣
f(z)

z
− 1

1− |z|4
∣∣∣∣ ≤

|z|2
1− |z|4 , z ∈ D

so that, for every f ∈ U with f ′′(0) = 0, we have

|z|
1 + |z|2 ≤ |f(z)| ≤ |z|

1− |z|2 , z ∈ D

and

(2.4) Re

(
f(z)

z

)
≥ 1

1 + |z|2 >
1

2
, z ∈ D.

We now formulate

Corollary 2.5. Let f ∈ U . Then one has

(a)

∣∣∣∣
z

f(z)
− 1

∣∣∣∣ ≤ |z|(|a2|+ |z|), z ∈ D

(b) Re

(
f(z)

z

)
> 0 for |z| < 2√

4 + |a2|+ |a2|
(c) Re

(
f(z)

z

)
>

1

2
in D if f ′′(0) = 0.

2.1. Interesting subclass of U . Investigation on various subclasses of S has
a long history and continues to occupy a prominent place in function theory. In
[7], the authors introduced a subclass P(2) of U , consisting of functions f for
which ∣∣∣∣

(
z

f(z)

)′′∣∣∣∣ ≤ 2, z ∈ D.

We have the following strict inclusion (see [7]).

Theorem 2.6. P(2) ⊂ U .
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Proof. Let f ∈ P(2) and f(z) = z +
∑∞

k=2 akz
k. We may introduce

p(z) =

(
z

f(z)

)2

f ′(z)− 1 = −z

(
z

f(z)

)′
+

z

f(z)
− 1

so that

p(z) = (a3 − a2
2)z

2 + · · · , z ∈ D,

Also, we observe that p(0) = p′(0) = 0, and

zp′(z) = −z2

(
z

f(z)

)′′
.

By assumption, |zp′(z)| < 2 in D which by a well-known subordination relation
gives that |p(z)| < 1, z ∈ D. That is, f ∈ U .

Further work on the classes U and P(2), including some interesting general-
izations of these classes, may be found in [9, 17]. We remark that the constant 2
in the inclusion result of Theorem 2.6 is the best possible. For this, we consider
the function

f(z) =
z

(1 + z)2+ε
, ε > 0.

Then we observe that
(

z

f(z)

)′′
= (2 + ε)(1 + ε)(1 + z)ε and f ′(z) =

1− (1 + ε)z

(1 + z)3+ε

from which we obtain that f ′(1/(1 + ε)) = 0 and therefore, the function f is not
univalent in D.

2.2. Condition for functions to be in U . One of the sufficient conditions for
a function f(z) = z +

∑∞
n=2 anz

n to be in S∗ is that
∑∞

n=2 n|an| ≤ 1. Moreover,
this coefficient condition is also sufficient for f to belong to R, where R denotes
the class of normalized analytic functions f in D satisfying the condition

|f ′(z)− 1| < 1 in D.

It is worth pointing out that the convex class C neither contained in R nor
contains R. In spite of the fact that neither S∗ is included in U nor includes U ,
we have the following interesting result (see also [4]).

Theorem 2.7. Let f(z) = z +
∑∞

n=2 anz
n such that

∑∞
n=2 n|an| ≤ 1. Then

f ∈ U . The result is sharp.
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Proof. Under the assumption, we find that
∣∣∣∣∣f
′(z)−

(
f(z)

z

)2
∣∣∣∣∣ =

∣∣∣∣∣∣
1 +

∞∑
n=2

nanzn−1 −
(

1 +
∞∑

n=2

anzn−1

)2
∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑
n=2

(n− 2)anz
n−1 −

( ∞∑
n=2

anzn−1

)2
∣∣∣∣∣∣

= |z|2
∣∣∣∣∣∣

∞∑
n=3

(n− 2)anz
n−3 −

( ∞∑
n=2

anzn−2

)2
∣∣∣∣∣∣

and therefore,
∣∣∣∣∣f
′(z)−

(
f(z)

z

)2
∣∣∣∣∣ <

∞∑
n=2

(n− 2)|an|+
( ∞∑

n=2

|an|
)2

≤ 1− 2
∞∑

n=2

|an|+
( ∞∑

n=2

|an|
)2

≤
(

1−
∞∑

n=2

|an|
)2

≤
∣∣∣∣
f(z)

z

∣∣∣∣
2

from which we easily obtain that f ∈ U .

To see that the constant bound 1 in the coefficient estimate cannot be replaced
by 1 + ε, ε > 0, we consider the function

f(z) = z +
1 + ε

n
zn (n ≥ 2).

We observe that f ′(z) = 1 + (1 + ε)zn−1 has a zero in D because ε > 0. Thus,
the result is sharp.

2.3. Functions in U of special form. In this section we focus our attention
for analytic functions f in D of the form

(2.8) f(z) =
z

1 +
∑∞

n=1 bnzn
.

We remark that if f ∈ S then z/f(z) is nonvanishing in the unit disk D and
hence, can be represented as Taylor’s series of the form (2.8) which is convenient
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for our investigation. Now, we recall that if f ∈ S and has the above form, then
from the well-known Area Theorem [6, Theorem 11 on p.193 of Vol. 2] we have

(2.9)
∞∑

n=2

(n− 1)|bn|2 ≤ 1

But that condition is not sufficient for the univalence of an analytic function f
of the form (2.8) (see Theorem 2.13 below). In the next theorem we present a
sufficient condition for the univalence in terms of the coefficients bn of analytic
functions f of the form (2.8).

Theorem 2.10. (Sufficient coefficient condition for U) Let f ∈ A have the
form (2.8). If

∞∑
n=2

(n− 1)|bn| ≤ 1,

then f ∈ U and the constant 1 is the best possible in a sense: if
∞∑

n=2

(n− 1)|bn| = 1 + ε,

for some ε > 0, then there exists an f such that f is not univalent in D.

Proof. The first part of the statements of the theorem follows from

|Uf (z| =

∣∣∣∣−z

(
z

f(z)

)′
+

z

f(z)
− 1

∣∣∣∣

=

∣∣∣∣∣−
∞∑

n=1

(n− 1)bnz
n

∣∣∣∣∣

≤
∞∑

n=1

(n− 1)|bn| ≤ 1.

In order to prove the sharpness part of the theorem, we consider the function

f(z) = z − qz2, where q =
√

1+ε
1+
√

1+ε
, ε > 0, so that 1

2
< q < 1. Then, we have

z

f(z)
=

1

1− qz
= 1 +

∞∑
n=1

qnzn

and ∞∑
n=2

(n− 1)|bn| =
∞∑

n=2

(n− 1)qn =

(
q

1− q

)2

= 1 + ε.

Also, we see that f ′(z) = 1− 2qz and therefore, f ′( 1
2q

) = 0 showing that f is not

univalent in the unit disk D.
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The coefficient condition (2.10) is only a sufficient condition for f to be in the
class U . In fact it can be easily seen that the condition (2.10) is not a necessary
condition for the corresponding function to be in that class. For instance, if f is
given by

z

f(z)
= 1 +

1

3
z2 +

√
5

6
iz3 +

1

9
z4

then on one hand we have

|Uf (z)| = 1

3
|z2| |1 +

√
5iz + z2| < 1,

and on the other hand,
∞∑

n=2

(n− 1)|bn| = 1

3
+

√
5

3
+

1

3
> 1.

Theorem 2.11. (Necessary coefficient condition for U) Let f ∈ U have
the form (2.8). Then

(2.12)
∞∑

n=2

(n− 1)2|bn|2 ≤ 1.

In particular, we have |b1| ≤ 2 and |bn| ≤ 1
n−1

for n ≥ 2. The results are sharp.

Proof. Recall that f ∈ U if and only if

|Uf (z)| =
∣∣∣∣

z

f(z)
− z

(
z

f(z)

)′
− 1

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=2

(n− 1)bnz
n

∣∣∣∣∣ < 1.

We note that g(z) =
∑∞

n=2(n − 1)bnzn is analytic in D and therefore, with
z = reiθ, we have

∞∑
n=2

(n− 1)2|bn|2r2n =
1

2π

∫ 2π

0

∣∣g(reiθ)
∣∣2 dθ < 1

so that, as r → 1−, we obtain the desired inequality.

Because b1 = −f ′′(0)/2, the Bieberbach inequality gives that |b1| ≤ 2 and fact
that the Koebe function k(z) = z/(1− z)2 belongs to U shows that the result is
the best possible. Further, the inequality (2.12) implies that for n ≥ 2 we have
that |bn| ≤ 1

n−1
. The functions sn(z), for n ≥ 2, defined by

sn(z) =
(n− 1)z

zn + n− 1
, i.e.

z

sn(z)
= 1 +

zn

n− 1
,

also belong to the class U showing that the result is sharp.
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We observe that the necessary coefficient condition (2.12) for the class U is
stronger than that for the class S, namely the inequality (2.9).

Theorem 2.13. Let f ∈ A and have the form (2.8) satisfying the condition
∞∑

n=2

(n− 1)|bn|2 ≤ 1.

Then f is univalent in the disk |z| < 1√
2

and the result is the best possible.

Proof. Consider the function g(z) = 1
r
f(rz), where 0 < r ≤ 1. Then

z

g(z)
= 1 +

∞∑
n=1

bnr
n.

Because
∞∑

n=2

(n− 1)|bn|rn =
∞∑

n=2

√
n− 1|bn|

√
n− 1rn

≤
( ∞∑

n=2

(n− 1)|bn|2
) 1

2
( ∞∑

n=2

(n− 1)r2n

) 1
2

≤
( ∞∑

n=2

(n− 1)r2n

) 1
2

=
r2

1− r2
≤ 1

for 0 < r ≤ 1√
2
, it follows easily that g is in the class U . In particular f(z) is

univalent in the disk |z| < 1√
2
.

For the function f0(z) = z − 1√
2
z2 we have

z

f(z)
=

1

1− 1√
2
z

= 1 +
∞∑

n=1

(
1√
2

)n

zn

and ∞∑
n=2

(n− 1)|bn|2 =
∞∑

n=2

(n− 1)

(
1

2

)n

= 1.

On the other hand Re f ′0(z) = Re (1 − √2z) > 0 for |z| < 1√
2

and f ′0(
1√
2
) = 0,

which implies that f0(z) is not univalent in a larger disk.

Theorem 2.14. Let f ∈ A and have the form (2.8) satisfying the condition
∞∑

n=2

(n− 1)2|bn|2 ≤ 1.
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Then f is univalent in the disk |z| <
√√

5−1
2

and the result is the best possible.

Proof. As in the proof of Theorem 2.13, it suffices to observe that

∞∑
n=2

(n− 1)|bn|rn ≤
( ∞∑

n=2

(n− 1)2|bn|2
) 1

2
( ∞∑

n=2

r2n

) 1
2

≤ r2

√
1− r2

≤ 1

whenever r4 + r2 − 1 ≤ 0, that is if 0 < r ≤ r0 =
√√

5−1
2

≈ 0.78615. It means

that the function g defined by g(z) = 1
r
f(rz) is in the class U and hence, f(z) is

univalent in the disk |z| < r0 =
√√

5−1
2

.

For the function f0(z) defined by

z

f0(z)
= 1 +

∞∑
n=2

rn
0

n− 1
zn = 1− r0z log(1− r0z)

we have that Re f0(z) > 0 in D so that f ∈ A and

∞∑
n=2

(n− 1)2|bn|2 =
∞∑

n=2

(n− 1)2 r2n
0

(n− 1)2
= 1.

On the other hand side for |z| < r0 we find that
∣∣∣∣∣
(

z

f0(z)

)2

f ′0(z)− 1

∣∣∣∣∣ =

∣∣∣∣
−r2

0z
2

1− r0z

∣∣∣∣ <
r4
0

1− r2
0

= 1,

while for r0 ≤ z = r < 1:
∣∣∣∣∣
(

z

f0(z)

)2

f ′0(z)− 1

∣∣∣∣∣
z=r

=
r4

1− r2
≥ 1.

It means that g0(z) = 1
r
f0(rz) is in the class U for r ≤ r0, but not in a larger

value of r, and hence, f is univalent in the disk |z| < r0, but not in a larger disk.
Moreover, a computation gives

f ′0(z) =
1− r0z − r2

0z
2

(1− r0z)(1− r0zlog(1− r0z))2

and therefore, f ′0(r0) = 0. Thus, f cannot be univalent in any disk larger than
the disk |z| < r0.
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3. Function in U in some special situation

The class of functions f ∈ A of the form (2.8) for which bn ≥ 0 for all n ≥ 2
is especially interesting and deserves a separate discussion (see [12]).

Theorem 3.1. Let f ∈ A have the form (2.8) with bn ≥ 0 for all n ≥ 2. Then
we have the following equivalence:

(a) f ∈ S
(b)

f(z)f ′(z)

z
6= 0 for z ∈ D

(c)
∞∑

n=2

(n− 1)bn ≤ 1

(d) f ∈ U .

Proof. (a) ⇒ (b): Let f ∈ S be of the form (2.8) with bn ≥ 0 for all n ≥ 2.
Then, f ′(z) 6= 0 and f(z)/z 6= 0 in D.

(b) ⇒ (c): From the representation of f and (2.2) we quickly see that for
z ∈ D, (

rz

f(rz)

)2

f ′(rz) = 1−
∞∑

n=2

(n− 1)bnr
nzn

from which, as z/f(z) 6= 0, it follows that f ′(rz) 6= 0 is equivalent to

1−
∞∑

n=2

(n− 1)bnr
nzn 6= 0.

We claim that
∑∞

n=2(n−1)bn ≤ 1. Suppose on the contrary that
∑∞

n=2(n−1)bn >
1. Then, on the one hand, there exists a positive integer m such that

m∑
n=2

(n− 1)bn > 1

and so there exists an r0 with 0 < r0 < 1 and

m∑
n=2

(n− 1)bnr
n
0 > 1.

On the other hand, as bn ≥ 0 for n ≥ 2, we have that
(

r0

f(r0)

)2

f ′(r0) = 1−
∞∑

n=2

(n− 1)bnrn
0 ≤ 1−

m∑
n=2

(n− 1)bnrn
0 < 0



12 M. Obradović and S. Ponnusamy NSAA 2011

and, since f ′(r) is a continuous function of r with f ′(0) = 1 and f ′(r0) < 0, there
exists an r1 (0 < r1 < r0 < 1) such that f ′(r1) = 0. This is a contradiction.
Consequently, we must have

∞∑
n=2

(n− 1)bn ≤ 1.

(c) ⇒ (d): Suppose that
∑∞

n=2(n − 1)bn ≤ 1. Then, by Theorem 2.10, it
follows that f ∈ U .

(d) ⇒ (a): U ⊂ S is a well-known fact.

The condition Theorem 3.1(c) may be used to conclude quickly that the func-
tions

z

(1 + z)2
,

z

1 + z
,

z

1 + z2
, and

z

1 + z + z2

are in U .

Corollary 3.2. If f is of the form (2.8) with bn ≥ 0 for all n ≥ 2 and such that
Re (f ′(z)) > 0 for z ∈ D, then f ∈ U .

Proof. The condition Re (f ′(z)) > 0 for z ∈ D implies that f ∈ S. The conclu-
sion follows from Theorem 3.1 (see also Theorem 3.1).

Corollary 3.3. If f(z) = z −∑∞
n=2 anz

n is in S∗, where an ≥ 0 for n ≥ 2, then
f ∈ U .

Proof. Let f ∈ S∗. Then z/f(z) can be expressed as

z

f(z)
=

1

1− a2z − a3z2 − · · · = 1 + b1z + b2z
2 + · · · ,

where bn ≥ 0 for all n ∈ N . Then, by Theorem 3.1, the inequality

∞∑
n=2

(n− 1)bn ≤ 1

holds and hence, by Theorem 2.10, f ∈ U .

Corollary 3.3 especially helpful in obtaining functions that are in S∗ ∩ U ,
as there are numerous results concerning starlike functions with negative co-
efficients. For example, fm(z) = z − zm/m is in S∗ and hence in U . Since
f(z) = z −∑∞

n=2 |an|zn is in S∗ if and only if
∑∞

n=2 n|an| ≤ 1 (see [18, Theorem
2]), this result can be used to generate functions f ∈ U that are not starlike.
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Example 3.4. Let

f(z) =
z

(1 + z)2
, g(z) =

z

(1− z)2
and F (z) =

zf(z)

g(z)
.

Then

z

F (z)
=

(1 + z)2

(1− z)2
= (1 + 2z + z2)(1 + 2z + 3z2 + ·) = 1 + 4z + 4

∞∑
n=2

nzn

so that
rz

F (rz)
= 1 + 4rz + 4

∞∑
n=2

nrnzn

for 0 < r < 1. By Theorem 3.1, this function F is univalent if and only if r
satisfies the inequality

4
∞∑

n=2

(n− 1)nrn ≤ 1,

This gives the condition

8r2

(1− r)3
≤ 1, i.e. 3r + 5r2 + r3 − 1 ≤ 0,

which implies that 0 < r ≤ r0 ≈ 0.23607.

3.1. Radius property of univalent functions. If for every f ∈ S the func-
tion 1

r
f(rz) ∈ U for 0 < r ≤ r0, and r0 is the largest number for which this hold,

then we say that r0 is the U radius (or the radius of U -property) in the class S.
In this case, we may conveniently write r0 = rU(S).

Theorem 3.5. rU(S)= 1√
2
.

Proof. Let f ∈ S. Then every such an f has the form

z

f(z)
= 1 +

∞∑
n=1

bnz
n.

Then, by (2.9), we obtain that
∞∑

n=2

(n− 1)|bn|2 ≤ 1.

The desired conclusion clearly follows from Theorem 2.13. Moreover, to see that
the number 1√

2
is the best possible, we consider the function

f(z) =
z(1− 1√

2
z)

1− z2
.
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If we put z = ρeiθ ∈ D, then we have

Re ((1− z2)f ′(z)) =
(1− ρ2)(1 + ρ2 −√2ρ cos θ)

|1− ρ2ei2θ|2 > 0

for 0 ≤ ρ < 1. Thus, f is close-to-convex in D and therefore, f ∈ S. Next, we
note that ∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ =

∣∣∣∣
z√

2− z

∣∣∣∣
2

is less than 1 for |z| < 1√
2
, equal to 1 for z = 1√

2
and bigger than 1 for 1√

2
< z =

r < 1. The sharpness part follows.

Remark 3.6. In later articles, the authors (see also [4] for many related results)
considered the class U(λ) defined by the condition∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ D.

and find that rU(λ)(S)=
√

λ
1+λ

.

3.2. Convolution properties with U .

Theorem 3.7. Let f, g ∈ S with the representations

z

f(z)
= 1 +

∞∑
n=1

bnz
n,

z

g(z)
= 1 +

∞∑
n=1

cnzn.

If

Φ(z) =
z

f(z)
∗ z

g(z)
= 1 +

∞∑
n=1

bncnz
n 6= 0

for every z ∈ D, then

F (z) =
z

Φ(z)
∈ U

and, in particular, F is univalent in D.

Proof. For f, g ∈ S with their representations we have that
∞∑

n=2

(n− 1)|bn|2 ≤ 1 and
∞∑

n=2

(n− 1)|cn|2 ≤ 1.

By assumption

Φ(z) =
z

f(z)
∗ z

g(z)
= 1 +

∞∑
n=1

bncnzn 6= 0,
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and therefore, the function F is analytic in D. By the classical Cauchy-Schwarz
inequality, we conclude that

∞∑
n=2

(n− 1)|bncn| ≤
( ∞∑

n=2

(n− 1)|bn|2
) 1

2
( ∞∑

n=2

(n− 1)|cn|2
) 1

2

≤ 1,

which, by Theorem 2.10 , F ∈ U .

Further results on convolution may be obtained from [2, 14].
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[14] M. Obradović and S. Ponnusamy, Univalency and convolution results associated with
confluent hypergeometric functions, Houston J. Math. 35(4)(2009), 1313–1328.
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M. Obradović E-mail: obrad@grf.bg.ac.rs
Address:
M. Obradović,
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