
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Applied Mathematics Letters 25 (2012) 1373–1378

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On a class of univalent functions
M. Obradović a, S. Ponnusamy b,∗

a Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
b Department of Mathematics, Indian Institute of Technology Madras, Chennai–600 036, India

a r t i c l e i n f o

Article history:
Received 15 March 2010
Received in revised form 4 June 2011
Accepted 2 December 2011

Keywords:
Coefficient inequality
Analytic
Hadamard convolution
Univalent and starlike functions

a b s t r a c t

Let A be the class of analytic functions in the unit disk D with the normalization f (0) =

f ′(0) − 1 = 0. Denote by N the class of functions f ∈ A which satisfy the condition−z3


z
f (z)

′′′

+ f ′(z)


z
f (z)

2

− 1

 ≤ 1, z ∈ D.

We show that functions in N are univalent in D but not necessarily starlike. Also, we
present the characterization formula, necessary and sufficient coefficient conditions for
functions to be in the class N .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let H be the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1} and A be the class of functions f (z) =

z + a2z2 + a3z3 + · · · in H . Let S denote the class of functions f in A such that f is univalent in D. We consider

U =


f ∈ A :

f ′(z)


z
f (z)

2

− 1

 ≤ 1, z ∈ D



P =


f ∈ A :

 z
f (z)

′′
 ≤ 2, z ∈ D


, and

M =

f ∈ A : |Mf (z)| ≤ 1, z ∈ D


,

where

Mf (z) = z2


z
f (z)

′′

+ f ′(z)


z
f (z)

2

− 1.

Recently, the authors [1] have studied the class M, and obtained the strict inclusion
M ( P ( U ( S.

Many properties of the classes U, P and M and their generalizations have been studied extensively in [2–5,1]. Also, it is
well-known that (see [6]) if we set SZ = {f ∈ S : an ∈ Z}, then

SZ =


z,

z
(1 ± z)2

,
z

1 ± z
,

z
1 ± z2

,
z

1 ± z + z2


.

Further, it has been verified that SZ ( U ∩ P ∩ M (see [1, Theorem1]).
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In this article, we consider the class N of functions f ∈ A which satisfy the condition |Nf (z)| ≤ 1 for z ∈ D, where

Nf (z) = −z3


z
f (z)

′′′

+ f ′(z)


z
f (z)

2

− 1. (1)

We show that the class N possesses many interesting properties.
First, we observe that it is a simple exercise to see that SZ ( N and so, we have the interesting strict inclusion

SZ ( U ∩ P ∩ M ∩ N . It is worth remembering that the Koebe function belongs to the class N and therefore, is of
our interest in this paper.

Now, we state our main results and the proofs of these will be given in Section 3.

Theorem 1 (Inclusion Property). We have the strict inclusion N ( M ∩ U = M.

Example 1. Consider the function f defined by

z
f (z)

= 1 +
1
2
z +

λ

2
z3,

where 0 < λ ≤ 1. Then we see that z/f (z) ≠ 0 in D. Further

f ′(z)


z
f (z)

2

− 1 = −λz3, Mf (z) = 2λz3, and Nf (z) = −4λz3.

Thus, if 1/2 < λ ≤ 1, then we see that f ∈ U whereas f ∉ M and f ∉ N . Thus, there exists a function f ∈ U such that f is
neither in N nor in M.

Theorem 2 (Sufficiency Coefficient Condition). Let φ(z) = 1+


∞

n=1 bnz
n be a non-vanishing analytic function in D and that it

satisfies the coefficient condition

∞
n=2

(n − 1)3|bn| ≤ 1. (2)

Then the function f defined by f (z) = z/φ(z) is in N .

For example, according to (2), each function in SZ belongs to N .
Let S∗ denote the class of univalent functions in f ∈ S such that the range f (D) is a starlike domain (with respect

to the origin). Analytically, f ∈ S∗ if and only if Re(zf ′(z)/f (z)) > 0 in D. As N ( M, it is natural to ask whether the
class N is included in S∗. Our computation leads to the following conjecture, although we are not able to prove it for the
moment.

Conjecture 1. Neither the class M nor the class N is included in S∗.

If f and g are analytic functions on D with f (z) =


∞

n=0 anz
n and g(z) =


∞

n=0 bnz
n, then the convolution (Hadamard

product) of f and g , denoted by f ∗ g , is an analytic function on D given by

(f ∗ g)(z) =

∞
n=0

anbnzn, z ∈ D.

Although U is neither included in N nor in M, in the following result, we show that the classes U and M can be used to
extract functions to belong to N .

Theorem 3 (Multiplier Theorem). Let f ∈ U and g ∈ M have the form

z
f (z)

= 1 + b1z + b2z2 + · · · and
z

g(z)
= 1 + c1z + c2z2 + · · · (3)

and such that z
f (z) ∗

z
g(z) ≠ 0 on D. Then the function H defined by

H(z) =
z

(z/f (z)) ∗ (z/g(z))

is in the class N . More generally, if f ∈ U and g ∈ P , then H ∈ N . In particular, if f , g ∈ M then H ∈ N .

Corollary 1 (Necessary Coefficient Condition). Let f ∈ N and have the form (3). Then we have
∞
n=2

(n − 1)6|bn|2 ≤ 1.
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Proof. As in the proofs of Theorems 2 and 3, we see that

Nf (z) = −

∞
n=2

(n − 1)3bnzn,

where Nf (z) is defined by (1), and therefore, we easily have the desired necessary condition. �

Theorem 4 (Characterization Theorem). Every f ∈ N has the representation

z
f (z)

= 1 −
f ′′(0)
2

z +

 1

0

(log(1/t))2

t2
w(tz)dt,

for some w : D → D with w(0) = w′(0) = 0.

2. Preliminary lemmas

Let Pn denote the class of functions p in H such that p(k)(0) = 0 for k = 0, 1, 2, . . . , n, where p(0)(0) = p(0). With
w(0)(z) = w(z), we set

Bn = {w ∈ H : |w(z)| ≤ 1, w(k)(0) = 0 for k = 0, 1, . . . , n}.

Lemma 1. Let p ∈ P1. If p satisfies the conditionp(z) + (γ − 2
√

γ )zp′(z) + γ z2p′′(z)
 ≤ 1, z ∈ D, (4)

for some γ > 1/4, then we have the following:

(i) |p(z)| ≤
|z|2

(2
√

γ−1)2
, z ∈ D,

(ii) | − zp′(z) + p(z)| ≤


1

√
γ (2

√
γ−1) +

1 −
1

√
γ

 1
(2

√
γ−1)2


|z|2, z ∈ D.

In particular,p(z) − zp′(z) + z2p′′(z)
 ≤ 1 H⇒ |p(z)| ≤ |z|2 and | − zp′(z) + p(z)| ≤ |z|2. (5)

Proof. First, we rewrite (4) as

p(z) + (γ − 2
√

γ )zp′(z) + γ z2p′′(z) = w(z), (6)

where w ∈ B1. Now, we let

p(z) =

∞
k=2

pkzk and w(z) =

∞
k=2

wkzk.

A comparison of the coefficients of zk on both sides in (6) gives that

pk =
wk

(k
√

γ − 1)2
for k ≥ 2. (7)

Using this, we see that

p(z) =
1
γ

∞
k=2

wk

(k − (1/
√

γ ))2
zk.

Now, we recall that (see for example [7])
∞
k=1

1
(k + a)2

zk = z
 1

0

ta log(1/t)
1 − tz

dt for a > −1

from which we easily obtain that
∞
k=2

1
(k + a)2

zk = z2
 1

0

ta+1 log(1/t)
1 − tz

dt for a > −2.
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Using this observation, it follows that for γ > 1/4

p(z) =
1
γ

w(z) ∗

∞
k=2

1
(k − (1/

√
γ ))2

zk

=
1
γ

w(z) ∗ z2
 1

0

t1−(1/
√

γ ) log(1/t)
1 − tz

dt

=
1
γ

 1

0
t−1−(1/

√
γ ) log(1/t)w(tz) dt.

As w ∈ B1, Schwarz’ lemma gives that |w(z)| ≤ |z|2 in D, and therefore, we conclude that

|p(z)| ≤
1
γ

|z|2
 1

0
t1−(1/

√
γ ) log(1/t) dt

=
1
γ

|z|2
1

(2 − (1/
√

γ ))2
=

|z|2

(2
√

γ − 1)2

and the conclusion (i) follows.
For the proof of (ii), by (7), we can easily deduce that

−zp′(z) + p(z) = −
1
γ

∞
k=2

(k − 1)wk

(k − (1/
√

γ ))2
zk

= −
1
γ


∞
k=2

wk

k − (1/
√

γ )
zk +


1

√
γ

− 1
 ∞

k=2

wk

(k − (1/
√

γ ))2
zk


= −
1
γ

 1

0
t−1−(1/

√
γ )w(tz) dt −


1

√
γ

− 1


1
γ

 1

0
t−1−(1/

√
γ ) log(1/t)w(tz) dt.

Again as |w(z)| ≤ |z|2 in D, we obtain that

| − zp′(z) + p(z)| ≤
|z|2

γ (2 − (1/
√

γ ))
+

1 −
1

√
γ

 |z|2

γ (2 − (1/
√

γ ))2

and the conclusion (ii) follows. �

3. Proofs

Proof of Theorem 1. Let f ∈ N and set

p(z) =


z

f (z)

2

f ′(z) − 1 = −z


z
f (z)

′

+
z

f (z)
− 1.

Then p is analytic in D, p(0) = p′(0) = 0,

p(z) − zp′(z) + z2p′′(z) = Nf (z) and − zp′(z) + p(z) = Mf (z),

where Nf is defined by (1) and

Mf (z) = z2


z
f (z)

′′

+ f ′(z)


z
f (z)

2

− 1.

Now, as f ∈ N , we obtain that

|p(z) − zp′(z) + z2p′′(z)| ≤ 1, z ∈ D.

If we apply Lemma 1 with γ = 1, namely, the implication (5), it follows that

|p(z)| ≤ |z|2 and | − zp′(z) + p(z)| ≤ |z|2, z ∈ D

and therefore, f ∈ U and f ∈ M. It has been shown in [1, Theorem 1] that M ( U and so, M ∩ U = M. �

Proof of Theorem 2. Let f be given by f (z) = z/φ(z), where φ(z) ≠ 0 in D and φ(z) = 1 +


∞

n=1 bnz
n. Since

−z


z
f (z)

′

+
z

f (z)
=


z

f (z)

2

f ′(z),
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we have

Nf (z) = −z3


z
f (z)

′′′

−


z

f (z)

′

+
z

f (z)
− 1 = −

∞
n=2

(n − 1)3bnzn.

Thus, using the coefficient condition (2), we deduce thatNf (z)
 ≤

∞
n=2

(n − 1)3|bn| |z|n ≤

∞
n=2

(n − 1)3|bn| ≤ 1

and therefore, f ∈ N . �

Proof of Theorem 3. Suppose that f ∈ U and g ∈ M. By hypotheses, z
H(z) ≠ 0 for z ∈ D. Using the power series

representation of f , we obtain that−z


z
f (z)

′

+
z

f (z)
− 1

 =

 ∞
n=2

(n − 1)bnzn
 ≤ 1.

Therefore, as in [1], we let z = reiθ for r ∈ (0, 1) and 0 ≤ θ ≤ 2π so that the last inequality gives

∞
n=2

(n − 1)2|bn|2r2n =
1
2π

 2π

0

 ∞
n=2

(n − 1)bnzn

2

dθ ≤ 1.

Allowing r → 1−, we obtain the inequality

∞
n=2

(n − 1)2|bn|2 ≤ 1. (8)

Similarly, as g ∈ M, the power series representation of g gives

Mg(z) =

∞
n=2

(n − 1)2cnzn

and so, as above, one has

∞
n=2

(n − 1)4|cn|2 ≤ 1. (9)

Now, since
z

f (z)
∗

z
g(z)

= 1 + b1c1z + b2c2z2 + · · · .

Eqs. (8) and (9) give

∞
n=2

(n − 1)3|bn| |cn| ≤


∞
n=2

(n − 1)2|bn|2
1/2 

∞
n=2

(n − 1)4|cn|2
1/2

≤ 1.

Finally, by (2), we conclude that H ∈ N . �

Proof of Theorem 4. Let f ∈ N with a2 = f ′′(0)/2. If we let f (z) = z + a2z2 + a3z3 + · · ·, then z/f (z) takes the form
z

f (z)
= 1 − a2z − (a3 − a22)z

2
− (a4 − 2a2a3 + a32)z

3
+ · · · .

Now, we find that

Nf (z) = −(a3 − a22)z
2
− 4(a4 − 2a2a3 + a32)z

3
+ · · · = w(z)

where w ∈ B1. Also, we see that

Nf (z) = p(z) − zp′(z) + z2p′′(z) = w(z) (10)

with

p(z) = −z


z
f (z)

′

+
z

f (z)
.
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Wemay now set w(z) =


∞

k=2 wkzk. From the proof of Lemma 1, it follows from (10) that

p(z) =

∞
k=2

wk

(k − 1)2
zk =

 1

0
t−2 log(1/t)w(tz) dt.

Then the last two relations give (for example using the comparison of the coefficients)

z
f (z)

= 1 − a2z +

∞
k=2

wk

(k − 1)3
zk

= 1 − a2z + w(z) ∗

∞
k=1

zk+1

k3

= 1 − a2z + w(z) ∗ z2
 1

0

(log(1/t))2

1 − tz
dt (see [7])

= 1 − a2z +

 1

0

(log(1/t))2

t2
w(tz) dt

and the desired representation follows. �
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