Product of univalent functions

Milutin Obradović ${ }^{\text {a }}$, Saminathan Ponnusamy ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
${ }^{\mathrm{b}}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

ARTICLE INFO

Article history:

Received 15 November 2011
Received in revised form 18 January 2012
Accepted 2 September 2012

Keywords:

Coefficient inequality
Area theorem
Radius of univalency
Analytic
Univalent
Starlike functions

Abstract

Let s denote the class of functions f analytic and univalent in the unit disk $|z|<1$ normalized such that $f(0)=0=f^{\prime}(0)-1$. In this article the authors discuss the radius of univalence of $F(z)=g(z) h(z) / z$ when g and h belong to certain subsets of δ. The paper concludes with the following conjecture. If g, $h \in s$, then F is univalent for $|z|<1 / 3$ and the number $1 / 3$ cannot improved. The conjecture is shown to be true for some subclasses of δ, e.g. the class of starlike functions, and the class U consisting of functions $f \in \mathcal{A}$ satisfying the functional inequality

$$
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{2}-1\right|<1, \quad|z|<1 .
$$

Some other related results are also presented.
© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In what follows, $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ the open unit disk in the complex plane \mathbb{C}. We denote by \mathscr{H} the space of all functions which are analytic in \mathbb{D}. Here we think of \mathscr{H} as a topological vector space endowed with the topology of uniform convergence over compact subsets of \mathbb{D}. Let \mathcal{A} denote the family of all functions $f \in \mathscr{H}$ and normalized by the conditions $f(0)=$ $0=f^{\prime}(0)-1$, and set

$$
s=\{f \in \mathscr{A}: f \text { is univalent in } \mathbb{D}\}
$$

A function $f \in s$ is called starlike (with respect to 0), denoted by $f \in s^{*}$, if $t w \in f(\mathbb{D})$ whenever $w \in f(\mathbb{D})$ and $t \in[0,1]$. A function $f \in \delta$ that maps the unit disk \mathbb{D} onto a convex domain is called a convex function. Let \mathcal{K} denote the class of all functions $f \in \&$ that are convex. A function $f \in \&$ is said to belong to the class $s^{*}(\alpha)$, called starlike functions of order α, if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \mathbb{D}
$$

for some α with $0 \leq \alpha<1$. It is well-known that $s^{*}(0) \equiv s^{*}$. Quite a number of results are known for functions from the class δ and its subclasses such as $\delta^{*}(\alpha)$ and \mathcal{K} (see [1,2]). Let $\mathcal{U}(\lambda)$ denote the set of all $f \in \mathcal{A}$ in \mathbb{D} satisfying the condition $[3,4]$

$$
\begin{equation*}
\left|U_{f}(z)\right|<\lambda, \quad U_{f}(z)=f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{2}-1 \quad \text { for } z \in \mathbb{D} \tag{1}
\end{equation*}
$$

[^0]for some $\lambda \in(0,1]$. It is well-known that $U:=U(1)$ is included in s, see [5]. It is interesting to observe that the Koebe function belongs to U although functions in U are not necessarily starlike in \mathbb{D} (see for example [4,6]). Moreover, since $\mathcal{U}(\lambda) \subset U$ for $\lambda \in(0,1]$, functions in $\mathcal{U}(\lambda)$ are univalent in \mathbb{D} whenever $\lambda \in(0,1]$. Set
$$
\mathcal{U}_{2}(\lambda)=\left\{f \in U(\lambda): f^{\prime \prime}(0)=0\right\}
$$

For convenience, we let $\mathcal{U}_{2}=\mathcal{U}_{2}(1)$. It is known that functions in \mathcal{U}_{2} are included in the class $\mathcal{P}(1 / 2)$, where

$$
\mathcal{P}(1 / 2)=\{f \in \mathcal{A}: \operatorname{Re}(f(z) / z)>1 / 2 \text { for } z \in \mathbb{D}\}
$$

We remark that $\mathcal{K} \subset \mathscr{P}(1 / 2)$.
 the whole unit disk \mathbb{D}. In other words, this is equivalent to saying that g defined by $g(z)=r^{-1} f(r z)$ belongs to U, when f belongs to U in the disk $|z|<r$. A similar convention will be followed when we say $f \in U_{2}(\lambda)$ (resp. $f \in \delta^{*}(\alpha)$ or $f \in f$) in the disk $|z|<r$. In recent years, the class \mathcal{U} and its association with a number of subclasses of s together with certain integral transformations have been studied in detail (see [3,4,7-9]).

In this paper the following problem is considered: For $g \in \mathcal{F}_{1} \subset \&$ and $h \in \mathcal{F}_{2} \subset \&$, consider the function F defined by

$$
\begin{equation*}
F(z)=\frac{g(z) h(z)}{z}, \quad z \in \mathbb{D} . \tag{2}
\end{equation*}
$$

For suitable choices of \mathcal{F}_{1} and \mathcal{F}_{2}, we determine r so that F is starlike of order γ (resp. $F \in \mathcal{U}$ and $F \in \rho$) in the disk $|z|<r$. Two sharp results are proved (see Theorems 1 and 2). For a non-sharp case (see Theorem 3), we propose a conjecture at the end.

Theorem 1. Let $g \in s^{*}(\alpha)$ and $h \in s^{*}(\beta)$, where $0 \leq \alpha+\beta<1$. Then the function F defined by (2) is starlike of order γ in the disk $|z|<r_{\gamma}^{*}=\frac{1-\gamma}{\gamma+3-2(\alpha+\beta)}$. The result is sharp.
Proof. Assume that $g \in s^{*}(\alpha)$ and $h \in s^{*}(\beta)$. Then

$$
\frac{z g^{\prime}(z)}{g(z)} \prec \frac{1+(1-2 \alpha) z}{1-z}, \quad z \in \mathbb{D}
$$

By the subordination principle, it follows that

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \frac{1-(1-2 \alpha) r}{1+r}, \quad|z|=r
$$

A similar inequality holds for h. By the assumptions on g and h, we deduce that $F(z) / z \neq 0$ in \mathbb{D}. From (2), we have

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{h(z)}-1
$$

and so, for $|z|=r$

$$
\begin{aligned}
\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} & =\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}+\operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}-1 \\
& \geq \frac{1-(1-2 \alpha) r}{1+r}+\frac{1-(1-2 \beta) r}{1+r}-1 \\
& =\frac{1-(3-2(\alpha+\beta)) r}{1+r} \\
& >\gamma \quad \text { for } 0<r=|z|<\frac{1-\gamma}{\gamma+3-2(\alpha+\beta)}
\end{aligned}
$$

To prove sharpness, we consider

$$
g(z)=\frac{z}{(1-z)^{2(1-\alpha)}} \quad \text { and } \quad h(z)=\frac{z}{(1-z)^{2(1-\beta)}}
$$

Then

$$
F(z)=\frac{z}{(1-z)^{4-2(\alpha+\beta)}} \quad \text { and } \quad F^{\prime}(z)=\frac{1+(3-2(\alpha+\beta)) z}{(1-z)^{5-2(\alpha+\beta)}}
$$

so that $F^{\prime}(z)=0$ at $z=-1 /(3-2(\alpha+\beta))$ and $z / F(z) \neq 0$ in \mathbb{D}. Hence F is locally univalent in $|z|<r_{0}^{*}=1 /(3-2(\alpha+\beta))$ and not in any larger disk. Moreover,

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{1+(3-2(\alpha+\beta)) z}{1-z}
$$

showing that

$$
\left.\frac{z F^{\prime}(z)}{F(z)}\right|_{z=-r}=\frac{1-(3-2(\alpha+\beta)) r}{1+r} \leq \gamma
$$

if $r_{\gamma}^{*} \leq r<1$. Thus, F is starlike of order γ in $|z|<r_{\gamma}^{*}$, but not in a larger disk. Hence the radius of starlikeness of order γ is sharp.

Corollary 1. Let $g \in s^{*}(\alpha)$ and $h \in s^{*}(\beta)$. Then the function F defined by (2) belongs to $s^{*}(\gamma)$, where $\gamma=\alpha+\beta-1$ with $0 \leq \gamma<1$. In particular, $F \in s^{*}$ whenever $g \in \delta^{*}(\alpha)$ and $h \in 8^{*}(1-\alpha)$. The implication is sharp.

The case $\alpha=\beta=1 / 2$ in Corollary 1 gives that $F \in \delta^{*}$ whenever $g, h \in \delta^{*}(1 / 2)$. Moreover the case $\alpha=\beta=\gamma=0$ in Theorem 1 gives the following

Corollary 2. Let $g, h \in s^{*}$. Then the function F defined by (2) is starlike in the disk $|z|<\frac{1}{3}$. The result is sharp.
We recall that $U \subsetneq s$. Using the power series method, the present authors in [4] considered the following question: Given a univalent function f, is it possible to generate functions in U or in s^{*} ? Usually the method of convolution provides an affirmative answer to such problems. In our next result and corollaries, we actually provide another multiplier method to obtain functions in \mathcal{U}. These results may be considered as a counterpart of Corollary 2 for the class \mathcal{U}.

Theorem 2. Suppose that $g, h \in \mathcal{U}$. Then the function F defined by (2) belongs to U in the disk $|z|<\frac{1}{3}$. The result is sharp.
Proof. Suppose that $g \in \mathcal{U}$. Then, using the notation of (1), we can write

$$
\begin{equation*}
-z\left(\frac{z}{g(z)}\right)^{\prime}+\frac{z}{g(z)}-1=U_{g}(z)=w(z) \tag{3}
\end{equation*}
$$

where $w: \mathbb{D} \rightarrow \mathbb{D}$ is analytic in $\mathbb{D}, w(0)=w^{\prime}(0)=0$. We observe from the classical Schwarz lemma that $|w(z)| \leq|z|^{2}$. From (3), it follows easily that

$$
\frac{z}{g(z)}=1-b_{2} z-\int_{0}^{1} \frac{w(t z)}{t^{2}} d t, \quad b_{2}=\frac{g^{\prime \prime}(0)}{2!}
$$

so that

$$
\begin{equation*}
\left|\left(\frac{z}{g(z)}\right)^{2} g^{\prime}(z)-1\right| \leq|z|^{2} \quad \text { and } \quad\left|\frac{z}{g(z)}-1\right| \leq\left|b_{2}\right||z|+|z|^{2} \tag{4}
\end{equation*}
$$

A similar conclusion holds when $h \in \mathcal{U}$. That is,

$$
\begin{equation*}
\left|\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right| \leq|z|^{2} \quad \text { and } \quad\left|\frac{z}{h(z)}-1\right| \leq\left|c_{2}\right||z|+|z|^{2} \tag{5}
\end{equation*}
$$

where $c_{2}=h^{\prime \prime}(0) / 2$. Since the functions $g, h \in U$ are univalent, from the definition of $F, F(z) / z \neq 0$ in \mathbb{D} and

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{h(z)}-1
$$

and so, we obtain

$$
\left(\frac{z}{F(z)}\right)^{2} F^{\prime}(z)-1=\frac{z g^{\prime}(z)}{g(z)} \frac{z^{2}}{g(z) h(z)}+\frac{z h^{\prime}(z)}{h(z)} \frac{z^{2}}{g(z) h(z)}-\frac{z^{2}}{g(z) h(z)}-1
$$

and thus, the last expression can be rewritten as

$$
U_{F}(z)=\left(\left(\frac{z}{g(z)}\right)^{2} g^{\prime}(z)-1\right) \frac{z}{h(z)}+\left(\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right) \frac{z}{g(z)}-\left(\frac{z}{g(z)}-1\right)\left(\frac{z}{h(z)}-1\right)
$$

We want to determine the disk $|z|<r$ on which the condition $\left|U_{F}(z)\right| \leq 1$ holds. Now, we see that $\left|U_{F}(z)\right| \leq 1$ holds in the disk $|z|<r$ if the inequality

$$
\begin{equation*}
\left|\left(\frac{z}{g(z)}\right)^{2} g^{\prime}(z)-1\right|\left|\frac{z}{h(z)}\right|+\left|\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right|\left|\frac{z}{g(z)}\right|+\left|\frac{z}{g(z)}-1\right|\left|\frac{z}{h(z)}-1\right| \leq 1 \tag{6}
\end{equation*}
$$

holds in the disk $|z|<r$. As functions in U are univalent, the Bieberbach estimate for the second coefficient of the univalent function g gives that $\left|b_{2}\right| \leq 2$ (cf. [1,2]). Similarly, $\left|c_{2}\right| \leq 2$ as $h \in \mathcal{U}$. Using these conditions and (4) and (5), we see that the inequality (6) holds, if

$$
3|z|^{4}+8|z|^{3}+6|z|^{2}=(1+|z|)^{3}(3|z|-1)+1 \leq 1
$$

Thus, the function F is in the class \mathcal{U} in the disk $|z|<1 / 3$.
In order to prove sharpness, we consider $g(z)=h(z)=z /(1-z)^{2}$. Then $g, h \in U$ and the corresponding F gives that

$$
\left|\left(\frac{z}{F(z)}\right)^{2} F^{\prime}(z)-1\right|=|z|^{2}\left|3 z^{2}-8 z+6\right|
$$

It follows that

$$
\left|\left(\frac{z}{F(z)}\right)^{2} F^{\prime}(z)-1\right|_{z=-r}=(1+r)^{3}(3 r-1)+1 \geq 1
$$

if $\frac{1}{3} \leq r<1$. It is important to point out that $F(z)=g(z) h(z) / z$ is not even univalent in the disk of radius more than $1 / 3$. Thus, the number $1 / 3$ is also sharp for the univalence of F.

In the proof of Theorem 2, we have used the estimate $\left|b_{2}\right| \leq 2$ and $\left|c_{2}\right| \leq 2$. However, there are many interesting situations where $\left|b_{2}\right|$ and $\left|c_{2}\right|$ are smaller than 2. In such cases, Theorem 3 may be stated in an improved form. In fact, in this case F defined by (2) belongs to U in $|z|<r_{0}$ if r_{0} is the smallest positive root of the equation

$$
3|z|^{4}+2\left(\left|b_{2}\right|+\left|c_{2}\right|\right)|z|^{3}+\left(2+\left|b_{2}\right|\left|c_{2}\right|\right)|z|^{2}-1=0
$$

in the unit interval $(0,1)$. In particular, if $g, h \in U_{2}$, then we have $b_{2}=c_{2}=0$ and so we get $r_{0}=\sqrt{3} / 3 \approx 0.57735$ and thus, we obtain that $F \in U_{2}$ in the disk $|z|<\sqrt{3} / 3$. More precisely, we have
Corollary 3. Suppose that $g, h \in U_{2}$. Then the function F defined by (2) belongs to U_{2} in the disk $|z|<\sqrt{3} / 3$.
In fact a slightly general result may now be stated without proof as it follows easily.
Corollary 4. Suppose that $g \in U_{2}(\lambda)$ and $h \in U_{2}\left(\lambda^{\prime}\right)$. Then F defined by (2) belongs to $U_{2}(\mu)$ in the disk $|z|<r$, where

$$
r=\sqrt{\frac{2 \mu}{\lambda+\lambda^{\prime}+\sqrt{\left(\lambda+\lambda^{\prime}\right)^{2}+12 \mu \lambda \lambda^{\prime}}}} .
$$

In particular, by a proper choice of λ^{\prime} in this corollary, we can easily obtain the following
Corollary 5. If $g \in \mathcal{U}_{2}(\lambda)$ and $h \in \mathcal{U}_{2}((1-\lambda) /(1+3 \lambda))$, then F defined by (2) belongs to \mathcal{U}_{2}. In particular, if $g, h \in \mathcal{U}_{2}(1 / 3)$, then $F \in U_{2}$ and hence F is univalent in \mathbb{D}.
For the proof of the next result, we need the following lemma.
Lemma A. Let $\phi(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ be a non-vanishing analytic function on \mathbb{D} and let f be of the form $f(z)=z / \phi(z)$.
(a) If the condition

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| \leq \lambda
$$

holds for some $\lambda \in(0,1]$, then $f \in \mathcal{U}(\lambda)$.
(b) If the condition

$$
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| \leq 1-\left|b_{1}\right|
$$

holds, then $f \in s^{*}$.
The conclusion (a) in Lemma A is from [3,8] whereas (b) is due to Reade et al. [10, Theorem 1].
Theorem 3. Let $g, h \in s$. Then the function F defined by (2) belongs to the class U in the disk $|z|<r_{0}$, where $r_{0} \approx 0.30294$ is the smallest positive root of the equation

$$
6 r^{2}+2(\sqrt{2}+4) r^{3}+\frac{2 r^{4} \sqrt{3-2 r^{2}}}{1-r^{2}}+4 r^{2}\left(\frac{r^{2}\left(6 r^{2}-1-4 r^{4}\right)}{\left(1-r^{2}\right)^{2}}+\log \left(\frac{1}{1-r^{2}}\right)\right)^{\frac{1}{2}}+\frac{r^{4}(3-2 r)}{(1-r)^{2}}-1=0
$$

in the interval $(0,1)$.

Proof. The proof relies on the Area theorem. Let $g, h \in s$. Then, z / g and z / h can be expressed as

$$
\frac{z}{g(z)}=1+b_{1} z+b_{2} z^{2}+\cdots \quad \text { and } \quad \frac{z}{h(z)}=1+c_{1} z+c_{2} z^{2}+\cdots, \quad z \in \mathbb{D}
$$

First, we observe that $b_{1}=-g^{\prime \prime}(0) / 2$ and $c_{1}=-h^{\prime \prime}(0) / 2$. By the Bieberbach theorem, it follows that $\left|b_{1}\right| \leq 2$ and $\left|c_{1}\right| \leq 2$. Moreover, since $g, h \in \ell$, the well-known Area theorem (see [2, Theorem 11 on p. 193 of Vol. 2]) due to Gronwall gives

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right|^{2} \leq 1 \quad \text { and } \quad \sum_{n=2}^{\infty}(n-1)\left|c_{n}\right|^{2} \leq 1 \tag{7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|b_{n}\right|^{2} \leq 1 \quad \text { and } \quad \sum_{n=2}^{\infty}\left|c_{n}\right|^{2} \leq 1 \tag{8}
\end{equation*}
$$

From the definition of F and the power series representations of z / g and z / h, we have

$$
\begin{align*}
\frac{z}{F(z)} & =\left(1+b_{1} z+b_{2} z^{2}+\cdots\right)\left(1+c_{1} z+c_{2} z^{2}+\cdots\right) \\
& =1+\sum_{n=1}^{\infty} B_{n} z^{n} \tag{9}
\end{align*}
$$

Comparison of the coefficients z^{n} on both sides of the last equations gives

$$
B_{n}=\sum_{k=0}^{n} b_{k} c_{n-k}
$$

where $b_{0}=c_{0}=1$. From the last relation and (8), we obtain

$$
\left|B_{2}\right| \leq\left|b_{2}+c_{2}\right|+\left|b_{1}\right|\left|c_{1}\right| \leq\left|b_{2}\right|+\left|c_{2}\right|+\left|b_{1}\right|\left|c_{1}\right| \leq 2+\left|b_{1}\right|\left|c_{1}\right|,
$$

and, since $\left|b_{3}\right| \leq 1 / \sqrt{2}$ and $\left|c_{3}\right| \leq 1 / \sqrt{2}$ by (7), it follows that

$$
\left|B_{3}\right| \leq\left|b_{3}+c_{3}\right|+\left|b_{1} c_{2}+b_{2} c_{1}\right| \leq \sqrt{2}+\left(\left|b_{1}\right|+\left|c_{1}\right|\right)
$$

Finally, for $n \geq 4$ we see that

$$
\begin{align*}
\left|B_{n}\right| & \leq\left|b_{0}\right|\left|c_{n}\right|+\left|b_{1}\right|\left|c_{n-1}\right|+\left|b_{n-1}\right|\left|c_{1}\right|+\left|b_{n}\right|\left|c_{0}\right|+\sum_{k=2}^{n-2}\left|b_{k}\right|\left|c_{n-k}\right| \\
& \leq\left|b_{n}\right|+\left|c_{n}\right|+\left|c_{1}\right|\left|b_{n-1}\right|+\left|b_{1}\right|\left|c_{n-1}\right|+\left(\sum_{k=2}^{n-2}\left|b_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=2}^{n-2}\left|c_{k}\right|^{2}\right)^{1 / 2} \\
& \leq\left|b_{n}\right|+\left|c_{n}\right|+\left|c_{1}\right|\left|b_{n-1}\right|+\left|b_{1}\right|\left|c_{n-1}\right|+1, \quad \text { (by (8)). } \tag{10}
\end{align*}
$$

Here the second inequality is a consequence of Cauchy-Schwarz inequality.
Now, we consider G defined by $G(z)=r^{-1} F(r z)(0<r \leq 1)$ so that, by (9),

$$
\frac{z}{G(z)}=1+\sum_{n=1}^{\infty} B_{n} r^{n} z^{n}
$$

Now we apply Lemma A and show that $G \in U$. Thus, to complete the proof, it suffices to show that

$$
S:=\sum_{n=2}^{\infty}(n-1)\left|B_{n}\right| r^{n}=\left|B_{2}\right| r^{2}+2\left|B_{3}\right| r^{3}+T \leq 1 \quad \text { for } 0<r \leq r_{0}
$$

In view of the inequality (10), we see that

$$
T:=\sum_{n=4}^{\infty}(n-1)\left|B_{n}\right| r^{n} \leq T_{1}+T_{2}+\left|c_{1}\right| T_{3}+\left|b_{1}\right| T_{4}+T_{5}=R
$$

with

$$
\begin{aligned}
& T_{1}=\sum_{n=4}^{\infty}(n-1)\left|b_{n}\right| r^{n}, \quad T_{2}=\sum_{n=4}^{\infty}(n-1)\left|c_{n}\right| r^{n}, \quad T_{3}=\sum_{n=4}^{\infty}(n-1)\left|b_{n-1}\right| r^{n}, \\
& T_{4}=\sum_{n=4}^{\infty}(n-1)\left|c_{n-1}\right| r^{n}, \quad \text { and } \quad T_{5}=\sum_{n=4}^{\infty}(n-1) r^{n}=\frac{r^{4}(3-2 r)}{(1-r)^{2}} .
\end{aligned}
$$

Then an appropriate good upper bound for the sum S is required to complete our investigation. Since

$$
\left|B_{2}\right| r^{2}+2\left|B_{3}\right| r^{3} \leq\left(2+\left|b_{1} c_{1}\right|\right) r^{2}+2\left(\sqrt{2}+\left|b_{1}\right|+\left|c_{1}\right|\right) r^{3}
$$

it follows that

$$
S \leq\left(2+\left|b_{1} c_{1}\right|\right) r^{2}+2\left(\sqrt{2}+\left|b_{1}\right|+\left|c_{1}\right|\right) r^{3}+R
$$

where R is as above. The proof will be completed once we get an upper bound for the sum R. Using the Cauchy-Schwarz inequality and (7), we see that

$$
\begin{aligned}
T_{1} & \leq\left(\sum_{n=4}^{\infty}(n-1)\left|b_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=4}^{\infty}(n-1) r^{2 n}\right)^{\frac{1}{2}} \\
& \left.\leq\left(\sum_{n=4}^{\infty}(n-1) r^{2 n}\right)^{\frac{1}{2}}=\frac{r^{4}}{1-r^{2}} \sqrt{3-2 r^{2}} \quad \text { (by using the sum for } T_{5}\right) .
\end{aligned}
$$

Again, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
T_{3} & =\sum_{n=4}^{\infty} \sqrt{n-2}\left|b_{n-1}\right| \frac{(n-1) r^{n}}{\sqrt{n-2}} \\
& \leq\left(\sum_{n=4}^{\infty}(n-2)\left|b_{n-1}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=4}^{\infty} \frac{(n-1)^{2} r^{2 n}}{n-2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=4}^{\infty} \frac{(n-1)^{2} r^{2 n}}{n-2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{n=4}^{\infty}\left(n+\frac{1}{n-2}\right) r^{2 n}\right)^{\frac{1}{2}} \\
& =r\left(\frac{1}{\left(1-r^{2}\right)^{2}}-1-2 r^{2}-4 r^{4}+r^{2} \log \frac{1}{1-r^{2}}\right)^{\frac{1}{2}} \\
& =r^{2}\left(\frac{r^{2}\left(6 r^{2}-1-4 r^{4}\right)}{\left(1-r^{2}\right)^{2}}+\log \left(\frac{1}{1-r^{2}}\right)\right)^{\frac{1}{2}} .
\end{aligned}
$$

Because of the symmetry in the expression, similar inequalities hold for the sums T_{2} and T_{4}. From the above computations, it follows that $S \leq 1$ if

$$
\left(2+\left|b_{1} c_{1}\right|\right) r^{2}+2\left(\sqrt{2}+\left|b_{1}\right|+\left|c_{1}\right|\right) r^{3}+R \leq 1
$$

The inequality clearly holds whenever

$$
\begin{aligned}
T\left(\left|b_{1}\right|,\left|c_{1}\right|\right):= & \left(2+\left|b_{1} c_{1}\right|\right) r^{2}+2\left(\sqrt{2}+\left|b_{1}\right|+\left|c_{1}\right|\right) r^{3}+\frac{2 r^{4} \sqrt{3-2 r^{2}}}{1-r^{2}} \\
& +\left(\left|b_{1}\right|+\left|c_{1}\right|\right) r^{2}\left(\frac{r^{2}\left(6 r^{2}-1-4 r^{4}\right)}{\left(1-r^{2}\right)^{2}}+\log \left(\frac{1}{1-r^{2}}\right)\right)^{\frac{1}{2}}+\frac{r^{4}(3-2 r)}{(1-r)^{2}} \leq 1
\end{aligned}
$$

Recall that $\left|b_{1}\right| \leq 2$ and $\left|c_{1}\right| \leq 2$ and therefore, for $S \leq 1$, it is clearly sufficient to show that $T(2,2) \leq 1$. Thus, $S \leq 1$ for $0<r \leq r_{0}$, where $r_{0} \approx 0.30294$ is the smallest positive root of the equation $T(2,2)=1$ as in the statement.

Corollary 6. Let $g, h \in \&$ such that $g^{\prime \prime}(0)=0$. Then the function F defined by (2) belongs to the class U in the disk $|z|<r_{0}$, where $r_{0} \approx 0.384622$ is the smallest positive root of the equation

$$
2 r^{2}+2(\sqrt{2}+2) r^{3}+\frac{2 r^{4} \sqrt{3-2 r^{2}}}{1-r^{2}}+2 r^{2}\left(\frac{r^{2}\left(6 r^{2}-1-4 r^{4}\right)}{\left(1-r^{2}\right)^{2}}+\log \left(\frac{1}{1-r^{2}}\right)\right)^{\frac{1}{2}}+\frac{r^{4}(3-2 r)}{(1-r)^{2}}-1=0
$$

in the interval $(0,1)$.
Proof. Following the proof of Theorem 3 and the notation, $S \leq 1$ whenever $T(0,2) \leq 1$. We see that $r_{0} \approx 0.384622$ is the smallest positive root of the equation $T(0,2)=1$ and the proof is complete.

Corollary 7. Let $g, h \in \&$ such that $g^{\prime \prime}(0)=h^{\prime \prime}(0)=0$. Then the function F defined by (2) belongs to the class u in the disk $|z|<r_{0}$, where $r_{0} \approx 0.435895$ is the smallest positive root of the equation

$$
2 r^{2}+2 \sqrt{2} r^{3}+\frac{2 r^{4} \sqrt{3-2 r^{2}}}{1-r^{2}}+\frac{r^{4}(3-2 r)}{(1-r)^{2}}-1=0
$$

in the interval $(0,1)$. Moreover, F is starlike in the disk $|z|<r_{0}$.
Proof. Again, the proof of Theorem 3 shows that $S \leq 1$ whenever $T(0,0) \leq 1$. It follows that $r_{0} \approx 0.43589$ is the smallest positive root of the equation $T(0,0)=1$ and the proof of the first part is complete. Because $g^{\prime \prime}(0)=h^{\prime \prime}(0)=0$, we have $F^{\prime \prime}(0)=0$ and therefore, the starlikeness of F in the disk $|z|<r_{0}$ is a consequence of Lemma $A(b)$.

As in the case of Corollary 2 , the choice $g(z)=h(z)=z /(1-z)^{2}$ supports the following
Conjecture. If $g, h \in \&$, then the function F defined by (2) is univalent in the disk $|z|<\frac{1}{3}$. The number $1 / 3$ cannot be improved since it is attained when both g and h represent the Koebe function $k(z)=z /(1-z)^{2}$.

Also sharp versions of the last two corollaries remain open.

Acknowledgment

The work of the second author was supported by MNZZS Grant, No. ON174017, Serbia.

References

[1] P.L. Duren, Univalent Functions, in: Grundlehren der mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] A.W. Goodman, Univalent Functions, Vols. 1-2, Mariner, Tampa, Florida, 1983.
[3] M. Obradović, S. Ponnusamy, New criteria and distortion theorems for univalent functions, Complex Var. Theory Appl. 44 (2001) 173-191.
[4] M. Obradović, S. Ponnusamy, Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions, J. Math. Anal. Appl. 336 (2007) 758-767.
[5] L.A. Aksentiev, Sufficient conditions for univalence of regular functions, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1958) 3-7. (Russian).
[6] R. Fournier, S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52 (1) (2007) 1-8.
[7] M. Obradović, S. Ponnusamy, On certain subclasses of univalent functions and radius properties, Rev. Roumaine Math. Pures Appl. 54 (4) (2009) 317-329.
[8] M. Obradović, S. Ponnusamy, V. Singh, P. Vasundhra, Univalency, starlikesess and convexity applied to certain classes of rational functions, Analysis (Munich) 22 (3) (2002) 225-242.
[9] M. Obradović, S. Ponnusamy, Coefficient characterization for certain classes of univalent functions, Bull. Belg. Math. Soc. Simon Stevin 16 (2009) 251-263.
[10] M.O. Reade, H. Silverman, P.G. Todorov, On the starlikeness and convexity of a class of analytic functions, Rend. Circ. Mat. Palermo 33 (1984) $265-272$.

[^0]: * Corresponding author. Tel.: +91 44 22574615; fax: +91 4422576615.

 E-mail addresses: obrad@grf.bg.ac.rs (M. Obradović), samy@iitm.ac.in (S. Ponnusamy).
 0895-7177/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.mem.2012.09.004

