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a b s t r a c t

Let S denote the class of functions f analytic and univalent in the unit disk |z| < 1 nor-
malized such that f (0) = 0 = f ′(0) − 1. In this article the authors discuss the radius of
univalence of F(z) = g(z)h(z)/z when g and h belong to certain subsets of S. The paper
concludes with the following conjecture. If g, h ∈ S, then F is univalent for |z| < 1/3 and
the number 1/3 cannot improved. The conjecture is shown to be true for some subclasses
of S, e.g. the class of starlike functions, and the class U consisting of functions f ∈ A satis-
fying the functional inequalityf ′(z)


z

f (z)

2

− 1

 < 1, | z |< 1.

Some other related results are also presented.
© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In what follows, D := {z ∈ C : |z| < 1} the open unit disk in the complex plane C. We denote byH the space of all func-
tions which are analytic in D. Here we think of H as a topological vector space endowed with the topology of uniform con-
vergence over compact subsets ofD. LetA denote the family of all functions f ∈ H and normalized by the conditions f (0) =

0 = f ′(0) − 1, and set

S = {f ∈ A : f is univalent in D}.

A function f ∈ S is called starlike (with respect to 0), denoted by f ∈ S∗, if tw ∈ f (D) whenever w ∈ f (D) and t ∈ [0, 1].
A function f ∈ S that maps the unit disk D onto a convex domain is called a convex function. Let K denote the class of all
functions f ∈ S that are convex. A function f ∈ S is said to belong to the class S∗(α), called starlike functions of order α, if

Re

zf ′(z)
f (z)


> α, z ∈ D,

for some α with 0 ≤ α < 1. It is well-known that S∗(0) ≡ S∗. Quite a number of results are known for functions from the
class S and its subclasses such as S∗(α) and K (see [1,2]). Let U(λ) denote the set of all f ∈ A in D satisfying the condition
[3,4]

|Uf (z)| < λ, Uf (z) = f ′(z)


z
f (z)

2

− 1 for z ∈ D, (1)
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for some λ ∈ (0, 1]. It is well-known that U := U(1) is included in S, see [5]. It is interesting to observe that the Koebe
function belongs to U although functions in U are not necessarily starlike in D (see for example [4,6]). Moreover, since
U(λ) ⊂ U for λ ∈ (0, 1], functions in U(λ) are univalent in D whenever λ ∈ (0, 1]. Set

U2(λ) = {f ∈ U(λ) : f ′′(0) = 0}.

For convenience, we let U2 = U2(1). It is known that functions in U2 are included in the class P (1/2), where

P (1/2) = {f ∈ A : Re (f (z)/z) > 1/2 for z ∈ D} .

We remark that K ⊂ P (1/2).
In the foregoing discussion, we say that f ∈ U(λ) in the disk |z| < r if the inequality in (1) holds for |z| < r instead of

the whole unit disk D. In other words, this is equivalent to saying that g defined by g(z) = r−1f (rz) belongs to U, when f
belongs to U in the disk |z| < r . A similar convention will be followed when we say f ∈ U2(λ) (resp. f ∈ S∗(α) or f ∈ S)
in the disk |z| < r . In recent years, the class U and its association with a number of subclasses of S together with certain
integral transformations have been studied in detail (see [3,4,7–9]).

In this paper the following problem is considered: For g ∈ F1 ⊂ S and h ∈ F2 ⊂ S, consider the function F defined by

F(z) =
g(z)h(z)

z
, z ∈ D. (2)

For suitable choices of F1 and F2, we determine r so that F is starlike of order γ (resp. F ∈ U and F ∈ S) in the disk |z| < r .
Two sharp results are proved (see Theorems 1 and 2). For a non-sharp case (see Theorem 3), we propose a conjecture at the
end.

Theorem 1. Let g ∈ S∗(α) and h ∈ S∗(β), where 0 ≤ α + β < 1. Then the function F defined by (2) is starlike of order γ in
the disk |z| < r∗

γ =
1−γ

γ+3−2(α+β)
. The result is sharp.

Proof. Assume that g ∈ S∗(α) and h ∈ S∗(β). Then

zg ′(z)
g(z)

≺
1 + (1 − 2α)z

1 − z
, z ∈ D.

By the subordination principle, it follows that

Re
zg ′(z)
g(z)

≥
1 − (1 − 2α)r

1 + r
, |z| = r.

A similar inequality holds for h. By the assumptions on g and h, we deduce that F(z)/z ≠ 0 in D. From (2), we have

zF ′(z)
F(z)

=
zg ′(z)
g(z)

+
zh′(z)
h(z)

− 1

and so, for |z| = r

Re
zF ′(z)
F(z)

= Re
zg ′(z)
g(z)

+ Re
zh′(z)
h(z)

− 1

≥
1 − (1 − 2α)r

1 + r
+

1 − (1 − 2β)r
1 + r

− 1

=
1 − (3 − 2(α + β))r

1 + r

> γ for 0 < r = |z| <
1 − γ

γ + 3 − 2(α + β)
.

To prove sharpness, we consider

g(z) =
z

(1 − z)2(1−α)
and h(z) =

z
(1 − z)2(1−β)

.

Then

F(z) =
z

(1 − z)4−2(α+β)
and F ′(z) =

1 + (3 − 2(α + β))z
(1 − z)5−2(α+β)

so that F ′(z) = 0 at z = −1/(3−2(α+β)) and z/F(z) ≠ 0 in D. Hence F is locally univalent in |z| < r∗

0 = 1/(3−2(α+β))
and not in any larger disk. Moreover,

zF ′(z)
F(z)

=
1 + (3 − 2(α + β))z

1 − z
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showing that

zF ′(z)
F(z)


z=−r

=
1 − (3 − 2(α + β))r

1 + r
≤ γ ,

if r∗
γ ≤ r < 1. Thus, F is starlike of order γ in |z| < r∗

γ , but not in a larger disk. Hence the radius of starlikeness of order γ is
sharp. �

Corollary 1. Let g ∈ S∗(α) and h ∈ S∗(β). Then the function F defined by (2) belongs to S∗(γ ), where γ = α + β − 1 with
0 ≤ γ < 1. In particular, F ∈ S∗ whenever g ∈ S∗(α) and h ∈ S∗(1 − α). The implication is sharp.

The case α = β = 1/2 in Corollary 1 gives that F ∈ S∗ whenever g, h ∈ S∗(1/2). Moreover the case α = β = γ = 0 in
Theorem 1 gives the following

Corollary 2. Let g, h ∈ S∗. Then the function F defined by (2) is starlike in the disk |z| < 1
3 . The result is sharp.

We recall that U ( S. Using the power series method, the present authors in [4] considered the following question:
Given a univalent function f , is it possible to generate functions in U or in S∗? Usually the method of convolution provides an
affirmative answer to such problems. In our next result and corollaries, we actually provide another multiplier method to
obtain functions in U. These results may be considered as a counterpart of Corollary 2 for the class U.

Theorem 2. Suppose that g, h ∈ U. Then the function F defined by (2) belongs to U in the disk |z| < 1
3 . The result is sharp.

Proof. Suppose that g ∈ U. Then, using the notation of (1), we can write

−z


z
g(z)

′

+
z

g(z)
− 1 = Ug(z) = w(z) (3)

where w : D → D is analytic in D, w(0) = w′(0) = 0. We observe from the classical Schwarz lemma that |w(z)| ≤ |z|2.
From (3), it follows easily that

z
g(z)

= 1 − b2z −

 1

0

w(tz)
t2

dt, b2 =
g ′′(0)
2!

,

so that


z
g(z)

2

g ′(z) − 1

 ≤ |z|2 and
 z
g(z)

− 1
 ≤ |b2| |z| + |z|2. (4)

A similar conclusion holds when h ∈ U. That is,


z
h(z)

2

h′(z) − 1

 ≤ |z|2 and
 z
h(z)

− 1
 ≤ |c2| |z| + |z|2 (5)

where c2 = h′′(0)/2. Since the functions g, h ∈ U are univalent, from the definition of F , F(z)/z ≠ 0 in D and

zF ′(z)
F(z)

=
zg ′(z)
g(z)

+
zh′(z)
h(z)

− 1

and so, we obtain
z

F(z)

2

F ′(z) − 1 =
zg ′(z)
g(z)

z2

g(z)h(z)
+

zh′(z)
h(z)

z2

g(z)h(z)
−

z2

g(z)h(z)
− 1

and thus, the last expression can be rewritten as

UF (z) =


z

g(z)

2

g ′(z) − 1


z

h(z)
+


z

h(z)

2

h′(z) − 1


z

g(z)
−


z

g(z)
− 1


z

h(z)
− 1


.

Wewant to determine the disk |z| < r on which the condition |UF (z)| ≤ 1 holds. Now, we see that |UF (z)| ≤ 1 holds in the
disk |z| < r if the inequality


z

g(z)

2

g ′(z) − 1


 z
h(z)

+



z
h(z)

2

h′(z) − 1


 z
g(z)

+  z
g(z)

− 1
  z

h(z)
− 1

 ≤ 1 (6)
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holds in the disk |z| < r . As functions in U are univalent, the Bieberbach estimate for the second coefficient of the univalent
function g gives that |b2| ≤ 2 (cf. [1,2]). Similarly, |c2| ≤ 2 as h ∈ U. Using these conditions and (4) and (5), we see that the
inequality (6) holds, if

3|z|4 + 8|z|3 + 6|z|2 = (1 + |z|)3(3|z| − 1) + 1 ≤ 1.

Thus, the function F is in the class U in the disk |z| < 1/3.
In order to prove sharpness, we consider g(z) = h(z) = z/(1 − z)2. Then g, h ∈ U and the corresponding F gives that


z

F(z)

2

F ′(z) − 1

 = |z|2|3z2 − 8z + 6|.

It follows that


z
F(z)

2

F ′(z) − 1


z=−r

= (1 + r)3(3r − 1) + 1 ≥ 1,

if 1
3 ≤ r < 1. It is important to point out that F(z) = g(z)h(z)/z is not even univalent in the disk of radius more than 1/3.

Thus, the number 1/3 is also sharp for the univalence of F . �

In the proof of Theorem 2, we have used the estimate |b2| ≤ 2 and |c2| ≤ 2. However, there are many interesting
situations where |b2| and |c2| are smaller than 2. In such cases, Theorem 3may be stated in an improved form. In fact, in this
case F defined by (2) belongs to U in |z| < r0 if r0 is the smallest positive root of the equation

3|z|4 + 2(|b2| + |c2|)|z|3 + (2 + |b2| |c2|)|z|2 − 1 = 0

in the unit interval (0, 1). In particular, if g, h ∈ U2, then we have b2 = c2 = 0 and so we get r0 =
√
3/3 ≈ 0.57735 and

thus, we obtain that F ∈ U2 in the disk |z| <
√
3/3. More precisely, we have

Corollary 3. Suppose that g, h ∈ U2. Then the function F defined by (2) belongs to U2 in the disk |z| <
√
3/3.

In fact a slightly general result may now be stated without proof as it follows easily.

Corollary 4. Suppose that g ∈ U2(λ) and h ∈ U2(λ
′). Then F defined by (2) belongs to U2(µ) in the disk |z| < r, where

r =


2µ

λ + λ′ +


(λ + λ′)2 + 12µλλ′
.

In particular, by a proper choice of λ′ in this corollary, we can easily obtain the following

Corollary 5. If g ∈ U2(λ) and h ∈ U2((1−λ)/(1+3λ)), then F defined by (2) belongs toU2. In particular, if g, h ∈ U2(1/3),
then F ∈ U2 and hence F is univalent in D.

For the proof of the next result, we need the following lemma.

Lemma A. Let φ(z) = 1 +


∞

n=1 bnz
n be a non-vanishing analytic function on D and let f be of the form f (z) = z/φ(z).

(a) If the condition
∞
n=2

(n − 1)|bn| ≤ λ

holds for some λ ∈ (0, 1], then f ∈ U(λ).
(b) If the condition

∞
n=2

(n − 1)|bn| ≤ 1 − |b1|

holds, then f ∈ S∗.

The conclusion (a) in Lemma A is from [3,8] whereas (b) is due to Reade et al. [10, Theorem 1].

Theorem 3. Let g, h ∈ S. Then the function F defined by (2) belongs to the class U in the disk |z| < r0, where r0 ≈ 0.30294 is
the smallest positive root of the equation

6r2 + 2
√

2 + 4

r3 +

2r4
√
3 − 2r2

1 − r2
+ 4r2


r2(6r2 − 1 − 4r4)

(1 − r2)2
+ log


1

1 − r2

 1
2

+
r4(3 − 2r)
(1 − r)2

− 1 = 0

in the interval (0, 1).
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Proof. The proof relies on the Area theorem. Let g, h ∈ S. Then, z/g and z/h can be expressed as

z
g(z)

= 1 + b1z + b2z2 + · · · and
z

h(z)
= 1 + c1z + c2z2 + · · · , z ∈ D.

First, we observe that b1 = −g ′′(0)/2 and c1 = −h′′(0)/2. By the Bieberbach theorem, it follows that |b1| ≤ 2 and |c1| ≤ 2.
Moreover, since g, h ∈ S, the well-known Area theorem (see [2, Theorem 11 on p. 193 of Vol. 2]) due to Gronwall gives

∞
n=2

(n − 1)|bn|2 ≤ 1 and
∞
n=2

(n − 1)|cn|2 ≤ 1. (7)

In particular,

∞
n=2

|bn|2 ≤ 1 and
∞
n=2

|cn|2 ≤ 1. (8)

From the definition of F and the power series representations of z/g and z/h, we have

z
F(z)

=

1 + b1z + b2z2 + · · ·

 
1 + c1z + c2z2 + · · ·


= 1 +

∞
n=1

Bnzn. (9)

Comparison of the coefficients zn on both sides of the last equations gives

Bn =

n
k=0

bkcn−k

where b0 = c0 = 1. From the last relation and (8), we obtain

|B2| ≤ |b2 + c2| + |b1| |c1| ≤ |b2| + |c2| + |b1| |c1| ≤ 2 + |b1| |c1|,

and, since |b3| ≤ 1/
√
2 and |c3| ≤ 1/

√
2 by (7), it follows that

|B3| ≤ |b3 + c3| + |b1c2 + b2c1| ≤
√
2 + (|b1| + |c1|).

Finally, for n ≥ 4 we see that

|Bn| ≤ |b0| |cn| + |b1| |cn−1| + |bn−1| |c1| + |bn| |c0| +

n−2
k=2

|bk| |cn−k|

≤ |bn| + |cn| + |c1| |bn−1| + |b1| |cn−1| +


n−2
k=2

|bk|2
1/2 n−2

k=2

|ck|2
1/2

≤ |bn| + |cn| + |c1| |bn−1| + |b1| |cn−1| + 1, (by (8)). (10)

Here the second inequality is a consequence of Cauchy–Schwarz inequality.
Now, we consider G defined by G(z) = r−1F(rz) (0 < r ≤ 1) so that, by (9),

z
G(z)

= 1 +

∞
n=1

Bnrnzn.

Now we apply Lemma A and show that G ∈ U. Thus, to complete the proof, it suffices to show that

S :=

∞
n=2

(n − 1)|Bn|rn = |B2|r2 + 2|B3|r3 + T ≤ 1 for 0 < r ≤ r0.

In view of the inequality (10), we see that

T :=

∞
n=4

(n − 1)|Bn|rn ≤ T1 + T2 + |c1|T3 + |b1|T4 + T5 = R
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with

T1 =

∞
n=4

(n − 1)|bn|rn, T2 =

∞
n=4

(n − 1)|cn|rn, T3 =

∞
n=4

(n − 1)|bn−1|rn,

T4 =

∞
n=4

(n − 1)|cn−1|rn, and T5 =

∞
n=4

(n − 1)rn =
r4(3 − 2r)
(1 − r)2

.

Then an appropriate good upper bound for the sum S is required to complete our investigation. Since

|B2|r2 + 2|B3|r3 ≤ (2 + |b1c1|)r2 + 2
√

2 + |b1| + |c1|

r3,

it follows that

S ≤ (2 + |b1c1|)r2 + 2
√

2 + |b1| + |c1|

r3 + R,

where R is as above. The proof will be completed once we get an upper bound for the sum R. Using the Cauchy–Schwarz
inequality and (7), we see that

T1 ≤


∞
n=4

(n − 1)|bn|2
 1

2


∞
n=4

(n − 1)r2n
 1

2

≤


∞
n=4

(n − 1)r2n
 1

2

=
r4

1 − r2

3 − 2r2 (by using the sum for T5).

Again, by the Cauchy–Schwarz inequality,

T3 =

∞
n=4

√
n − 2 |bn−1|

(n − 1)rn
√
n − 2

≤


∞
n=4

(n − 2)|bn−1|
2

 1
2


∞
n=4

(n − 1)2r2n

n − 2

 1
2

≤


∞
n=4

(n − 1)2r2n

n − 2

 1
2

=


∞
n=4


n +

1
n − 2


r2n
 1

2

= r


1
(1 − r2)2

− 1 − 2r2 − 4r4 + r2 log
1

1 − r2

 1
2

= r2

r2(6r2 − 1 − 4r4)

(1 − r2)2
+ log


1

1 − r2

 1
2

.

Because of the symmetry in the expression, similar inequalities hold for the sums T2 and T4. From the above computations,
it follows that S ≤ 1 if

(2 + |b1c1|)r2 + 2
√

2 + |b1| + |c1|

r3 + R ≤ 1.

The inequality clearly holds whenever

T (|b1|, |c1|) := (2 + |b1c1|)r2 + 2
√

2 + |b1| + |c1|

r3 +

2r4
√
3 − 2r2

1 − r2

+ (|b1| + |c1|)r2

r2(6r2 − 1 − 4r4)

(1 − r2)2
+ log


1

1 − r2

 1
2

+
r4(3 − 2r)
(1 − r)2

≤ 1.

Recall that |b1| ≤ 2 and |c1| ≤ 2 and therefore, for S ≤ 1, it is clearly sufficient to show that T (2, 2) ≤ 1. Thus, S ≤ 1 for
0 < r ≤ r0, where r0 ≈ 0.30294 is the smallest positive root of the equation T (2, 2) = 1 as in the statement. �
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Corollary 6. Let g, h ∈ S such that g ′′(0) = 0. Then the function F defined by (2) belongs to the class U in the disk |z| < r0,
where r0 ≈ 0.384622 is the smallest positive root of the equation

2r2 + 2
√

2 + 2

r3 +

2r4
√
3 − 2r2

1 − r2
+ 2r2


r2(6r2 − 1 − 4r4)

(1 − r2)2
+ log


1

1 − r2

 1
2

+
r4(3 − 2r)
(1 − r)2

− 1 = 0

in the interval (0, 1).

Proof. Following the proof of Theorem 3 and the notation, S ≤ 1 whenever T (0, 2) ≤ 1. We see that r0 ≈ 0.384622 is the
smallest positive root of the equation T (0, 2) = 1 and the proof is complete. �

Corollary 7. Let g, h ∈ S such that g ′′(0) = h′′(0) = 0. Then the function F defined by (2) belongs to the class U in the disk
|z| < r0, where r0 ≈ 0.435895 is the smallest positive root of the equation

2r2 + 2
√
2r3 +

2r4
√
3 − 2r2

1 − r2
+

r4(3 − 2r)
(1 − r)2

− 1 = 0

in the interval (0, 1). Moreover, F is starlike in the disk |z| < r0.

Proof. Again, the proof of Theorem 3 shows that S ≤ 1 whenever T (0, 0) ≤ 1. It follows that r0 ≈ 0.43589 is the smallest
positive root of the equation T (0, 0) = 1 and the proof of the first part is complete. Because g ′′(0) = h′′(0) = 0, we have
F ′′(0) = 0 and therefore, the starlikeness of F in the disk |z| < r0 is a consequence of Lemma A(b). �

As in the case of Corollary 2, the choice g(z) = h(z) = z/(1 − z)2 supports the following

Conjecture. If g, h ∈ S, then the function F defined by (2) is univalent in the disk |z| < 1
3 . The number 1/3 cannot be improved

since it is attained when both g and h represent the Koebe function k(z) = z/(1 − z)2.

Also sharp versions of the last two corollaries remain open.
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