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Abstract For an analytic function g defined on the unit disk |z| < 1, let �(r, g)

denote the area of the image of the sub-disk |z| < r under g, where 0 < r ≤ 1. In the
case of the family C consisting of normalized analytic univalent functions f such that
f (D) convex, Yamashita conjectured that

max
f ∈C

�

(
r,

z

f (z)

)
= πr2, for 0 < r ≤ 1.

In this paper, we prove a more general version of this conjecture for the class S�(β)

of starlike functions of order β. As a consequence, Yamashita’s conjecture is true.
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480 M. Obradović et al.

1 Introduction and the Main Results

For an analytic function g defined on the open unit disk D := {z ∈ C : |z| < 1}, we
denote the area of the image of the disk |z| < r under g by �(r, g), where 0 < r ≤ 1.
Thus

�(r, g) =
∫ ∫

|z|<r

|g′(z)|2 dxdy (z = x + iy)

and so, if g(z) = ∑∞
n=0 bnzn then g′(z) = ∑∞

n=1 nbnzn−1 so that

�(r, g) = π

∞∑
n=1

n|bn|2r2n . (1)

We call g a Dirichlet-finite function if �(1, g), the area covered by the mapping
z → g(z) for |z| < 1, is finite. Let A denote the family of all functions f which are
analytic in D and normalized so that f (0) = 0 = f ′(0) − 1. The class S defined by

S = { f ∈ A : f is univalent in D}

has been the central object in the study of geometric function theory. If f ∈ S and

f (z) =
∞∑

n=1

anzn (2)

(a1 = 1), then we may apply the above formula for

f (z)

z
=

∞∑
n=1

anzn−1

(instead of g) and, as a consequence of the de Branges theorem (|an| ≤ n for n ≥ 2),
one quickly gets that (see Yamashita [16])

max
f ∈S

�

(
r,

f (z)

z

)
= π

∞∑
n=1

n(n + 1)2r2n = 2πr2(r2 + 2)

(1 − r2)4 .

For each r , 0 < r < 1, the maximum is attained only for the Koebe function k(z) =
z/(1−z)2 or its rotations e−iθ k(eiθ z). Further with the aid of Gronwall’s area theorem
applied to F(z) = 1/ f (1/z) for |z| > 1 and the fact that |a2| ≤ 2, Yamashita [16]
proved the following theorem.

Theorem A We have

max
f ∈S

�

(
r,

z

f (z)

)
= 2πr2(r2 + 2) for 0 < r ≤ 1.
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A Proof of Yamashita’s Conjecture on Area Integral 481

For each r, 0 < r ≤ 1, the maximum is attained only by the rotations of the Koebe
function k(z).

From Theorem A, it follows that �(1, z/ f (z)) ≤ 6π . This shows that each f ∈ S
is the quotient of z and z/ f (z), each of which is bounded and Dirichlet-finite in D.
We may now compare with the known bound

|z| (1 + |z|)−2 ≤ | f (z)| ≤ |z| (1 − |z|)−2

from which we obtain |z/ f (z)| ≤ 4 in D.
Let C denote the family of convex (univalent) functions f ∈ A, i.e. f ∈ S such

that f (D) convex. For β ∈ [0, 1), let S�(β) denote the usual normalized class of all
(univalent) starlike functions of order β. Analytically, a function f ∈ S is said to
belong to the class S�(β) if f satisfies the condition

Re

(
z f ′(z)
f (z)

)
> β, z ∈ D.

It is wellknown that C � S�(1/2), and S� := S�(0) is the usual class of starlike
functions, i.e. f ∈ S such that f (D) is starlike with respect to the origin. At this point
it is interesting to note that a function belonging to S�(1/2) may not be convex and

univalent in |z| < R for any R >
√

2
√

3 − 3 = 0.68 . . .

Yamashita [16, p. 439] remarked that

max
f ∈C

�

(
r,

f (z)

z

)
= 2πr2

(1 − r)2 for 0 < r ≤ 1.

For each r , 0 < r < 1, the maximum is attained only by the rotations of the function
j (z) = z/(1−z). As a counterpart of Theorem A for the family C of convex functions,
Yamashita [16, p. 439] conjectured that the following result holds.

Conjecture 1 We have

max
f ∈C

�

(
r,

z

f (z)

)
= πr2, for 0 < r ≤ 1,

where the maximum is attained only by the rotations of the function j (z) = z/(1 − z).

We show that this conjecture is true for the larger class consisting of starlike func-
tions of the order 1/2. The proof uses a special case of the following lemma which is
proved in [9]. However, for the convenience of the reader, we present an independent
proof here.

Lemma 1 Let f ∈ S�(β) and let z/ f (z) have the following expansion near z = 0,

z

f (z)
= 1 + b1z + b2z2 + · · · .
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482 M. Obradović et al.

Then the following coefficient inequality holds:

∞∑
n=1

(n − (1 − β))|bn|2 ≤ 1 − β. (3)

Proof Our proof here is indeed a method of Clunie [1] (see also [2,12,13]). Let
g(z) = z/ f (z) and f ∈ S�(β). Since

Re

(
z f ′(z)
f (z)

)
> β, z ∈ D,

and

zg′(z)
g(z)

= 1 − z f ′(z)
f (z)

, z ∈ D,

there exists a function ω : D → D analytic in the unit disk such that

zg′(z)
g(z)

= 2(1 − β)zω(z)

1 + zω(z)
, z ∈ D,

or, equivalently

g′(z) = (
2(1 − β)g(z) − zg′(z)

)
ω(z), z ∈ D.

By Clunie’s method we derive for any n ∈ N the inequality

n−1∑
k=1

|bk |2r2k−2
(

k2 − (k − 2(1 − β))2r2
)

+ |bn|2r2n−2n2 ≤ 4(1 − β)2.

In this formula, we can take r = 1 and allow n → ∞. This gives the desired inequality
(3). 	


We remark that the case β = 0 of Lemma 1 is the well-known Area Theorem (see
[4, Vol. 2, Thm. 11, p. 193]) for functions f ∈ S.

After this paper was accepted, we have observed that Lemma 1 can be obtained
from the work of Pommerenke [10]. Indeed for f ∈ S, we can define the function
F(ζ ) for |ζ | > 1 by

F(ζ ) = 1

f (1/ζ )
= ζ +

∞∑
n=0

bn+1ζ
−n
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A Proof of Yamashita’s Conjecture on Area Integral 483

so that f ∈ S�(β) if and only if Re (ζ F ′(ζ )/F(ζ )) > β for |ζ | > 1 and F(|ζ | > 1)

does not contain the origin. But then the following sharp inequality holds from [10]:

∞∑
n=0

(n + β)|bn+1|2 ≤ 1 − β

which is same as (3).

Theorem 2 We have

max
f ∈S�(1/2)

�

(
r,

z

f (z)

)
= πr2, for 0 < r ≤ 1,

where the maximum is attained by the rotations of the function j (z) = z/(1 − z).

Proof Let f ∈ S�(1/2). Since f is analytic and f (z) �= 0 for z �= 0, we can write f
in the form

z

f (z)
= 1 + b1z + b2z2 + · · · . (4)

Now, by (1) and Lemma 1 with β = 1/2, it follows that

π−1�

(
r,

z

f (z)

)
=

∞∑
n=1

n|bn|2r2n

≤ r2

( ∞∑
n=1

(2n − 1)|bn|2 −
∞∑

n=2

(n − 1)|bn|2
)

≤ r2

(
1 −

∞∑
n=2

(n − 1)|bn|2
)

≤ r2.

The equality holds clearly for j (z) = z/(1 − z) and for the rotations of j (z). 	

This settles the conjecture of Yamashita. In order to state and prove a generalization

of Theorem 2, we consider

fβ(z) = z

(1 − z)2(1−β)
,

where 0 ≤ β < 1. It is easy to see that fβ ∈ S�(β) and fβ is extremal for many
extremal problems for the full class S�(β). We see that

z

fβ(z)
= (1 − z)2(1−β) = F(1, δ; 1; z), δ = −2(1 − β).
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484 M. Obradović et al.

Here F(a, b; c; z) denotes the Gaussian hypergeometric function

F(a, b; c; z) := 1 +
∞∑

k=1

(a)k(b)k

(c)k

zk

k! , z ∈ D,

where (a)k denotes the Pochhammer symbol (a)k := a(a + 1) · · · (a + k − 1) for
k ∈ N. In general, a, b and c are complex numbers with c �= 0,−1,−2, . . . . Note
that if either a = 0 or b = 0, then F(a, b; c; z) = 1. Thus, we see that

�

(
r,

z

fβ(z)

)
= π

∞∑
n=1

n

(
(δ)n

(1)n

)2

r2n

= πδ2r2
∞∑

n=0

(δ + 1)n(δ + 1)n

(2)n(1)n
r2n

= πδ2r2 F
(
δ + 1, δ + 1; 2, r2

)

= 4π(1 − β)2r2 F
(

2β − 1, 2β − 1; 2, r2
)

=: Aβ(r).

Thus, we expect that the following general result is true.

Theorem 3 Let f ∈ S�(β) for some 0 ≤ β < 1. Then we have

max
f ∈S�(β)

�

(
r,

z

f (z)

)
= Aβ(r), for 0 < r ≤ 1, (5)

where the maximum is attained by the rotations of fβ(z) = z/(1 − z)2(1−β).

In Sect. 2, we prove Theorem 3. Since A1/2(r) = πr2, Theorem 2 follows and
hence, another proof of Yamashita’s conjecture. Before we proceed to prove Theorem
3, it is worth mentioning certain basic properties of the functional given by Aβ(r) in
(5), where Aβ(r) = 4π(1 − β)2r2 F(2β − 1, 2β − 1; 2, r2). Note that for r ∈ (0, 1],
we may write

Aβ(r) = 4π(1 − β)2
∞∑

n=1

(
(2β − 1)n−1

(1)n−1

)2 r2n

n
.

Because the series on the right has positive coefficients [except for the case β = 1/2
for which A1/2(r) = πr2], Aβ(r) is an increasing and convex function of the real
variable r , 0 < r ≤ 1. Thus, Aβ(r) ≤ Aβ(1). According to the well-known Gauss
formula

F(a, b; c; 1) = 
(c)
(c − a − b)


(c − a)
(c − b)
< ∞ for c > a + b,
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A Proof of Yamashita’s Conjecture on Area Integral 485

Table 1 Values of Aβ(1) for
various values of β ∈ (0, 1)

S.No Values of β Values of Aβ(1)

1 0 6π ≈ 18.8496

2 1/4 8

3 1/2 π ≈ 3.14159

4 2/3 1.52995

5 3/4 1

6 4/5 0.743367

7 49/60 0.666206

8 5/6 0.592763

1 2 3 4

2

1

1

2

0.5 1.0 1.5 2.0 2.5

1.5

1.0

0.5

0.5

1.0

1.5

Fig. 1 Images of the unit disk under g0 and g1/4

it follows that

Aβ(r) ≤ Aβ(1) = 4π(1 − β)2 F(2β − 1, 2β − 1; 2, 1) = 
(4 − 4β)


2(3 − 2β)
.

In order to illustrate another property of the functional in (5), we now include here Table
1 for the values of Aβ(1) for different values of β, and present typical shapes of the
images of the unit disk under the extremal mappings gβ(z) = z/ fβ(z) = (1− z)2(1−β)

for the corresponding values of β from Table 1 (see Figs. 1, 2, 3, 4).

Remark 1 Note that S�(β) ⊆ S�(β ′) for 0 ≤ β ′ ≤ β < 1 and therefore, the functional

max f ∈S�(β) �
(

r, z
f (z)

)
is monotone trivially and is also continuous as a function of

the parameter β, since the maximizing hypergeometric function for the functional is
continuous and convex. This observation shows that it suffices to present a proof of
Theorem 3 for β �= 1/2 since the proof for the case β = 1/2 follows as a limiting
case. Because of its independent interest, a direct proof of Theorem 3 for the case
β = 1/2 has been given in Theorem 2.
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Fig. 2 Images of the unit disk under g1/2 and g2/3
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Fig. 3 Images of the unit disk under g3/4 and g4/5
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Fig. 4 Images of the unit disk under g49/60 and g5/6
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A Proof of Yamashita’s Conjecture on Area Integral 487

Finally, we would like to point out that it is possible to refine Theorem A for a
special situation when the second coefficient of f ∈ S is fixed, for example. Let S+
denote the subclass of S so that f ∈ S+ has the form (4) with bn ≥ 0 for n ≥ 2.

Theorem 4 Let f ∈ S+ and have the form (4), where bn ≥ 0 for n ≥ 2. Then

max
f ∈S+

�

(
r,

z

f (z)

)
= πr2

(
|b1|2 + 2r2

)
.

The result is sharp.

2 Proofs of Theorems 3 and 4

As remarked above, it suffices to prove the theorem for β �= 1/2. Moreover, our proof
below covers the case β = 1/2 (see also Theorem 2). It is a simple exercise to see that
f ∈ S�(β) (β ∈ [0, 1)) if and only if F defined by

F(z) = z

(
f (z)

z

)1/(1−β)

belongs to S�. Further, F ∈ S� implies that

z

F(z)
=

(
z

f (z)

)1/(1−β)

≺ (1 − z)2, i.e.
z

f (z)
≺ z

fβ(z)
= (1 − z)2(1−β),

where ≺ denotes the usual subordination. Extension of Rogosinki’s result [13]
observed by Goluzin [3, Thm. 6.3, p. 193] shows that if

z

f (z)
= 1 + b1z + b2z2 + · · · and

z

fβ(z)
= 1 + c1z + c2z2 + · · ·,

then by the assumption and the above observations one has

∞∑
n=1

n|bn|2r2n ≤
∞∑

n=1

n|cn|2r2n

whenever the sequence {nr2n} is non-increasing. This gives the condition that 0 <

r ≤ 1/
√

2. Thus, the theorem is obviously true for 0 < r ≤ 1/
√

2. On the other hand,
in order to present a proof to include the case r > 1/

√
2, it suffices to prove

N∑
n=1

n|bn|2r2n ≤
N∑

n=1

n|cn|2r2n

for any N ∈ N and for each r ∈ (0, 1). This follows from the next lemma and the
proof of Theorem 3 is complete. 	
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488 M. Obradović et al.

Since the contents of the following lemma are implied by Yamashita’s theorem in
the case β = 0 and by Theorem 2 in the case β = 1

2 and these cases would be the
reason for some complications, we exclude these cases in the considerations below.

Lemma 2 Let β ∈ (0, 1) \ { 1
2

}
and f ∈ S�(β). Let further

z

f (z)
= 1 +

∞∑
k=1

bk zk and (1 + z)2−2β = 1 +
∞∑

k=1

(−1)kck zk,

and r ∈ (0, 1). Then for any N ∈ N the inequality

N∑
k=1

k|bk |2r2k ≤
N∑

k=1

k|ck |2r2k (6)

is valid.

Proof We will divide the proof into several steps. But first we describe the plan of the
proof. In Step 1, following the proof of Lemma 1, we derive inequalities for certain
weighted sums of the moduli |bk |2 by a method due to Clunie [1], Robertson [12] and
Rogosinski [13] which can be found in Pommerenke [11, Thm. 2.2]. In Step 2 we
multiply these inequalities by factors such that the addition of the left side of these
modified inequalities will result in the left side of (6). The multipliers will be evaluated
by Cramer’s rule. In Step 3 we shall show that these multipliers are all positive.

Step 1: Following the proof of Lemma 1, we let g(z) = z/ f (z) and obtain

n−1∑
k=1

|bk |2r2k−2(k2 − (k − 2(1 − β))2r2) + |bn|2r2n−2n2 ≤ 4(1 − β)2.

If we multiply these inequalities by r2 and set as an abbreviation γ = 2(1 − β) ∈
(0, 2) \ {1}, we get the inequalities

n−1∑
k=1

|bk |2r2k
(

k2 − (k − γ )2r2
)

+ |bn|2r2nn2 ≤ r2γ 2. (7)

As the function b(z) = (1 + z)2−2β satisfies the differential equation

b′(z) = γ b(z) − zb′(z), z ∈ D,

it is clear that in the inequalities (7) equality is attained for bk = (−1)kck .
Step 2: Cramer’s rule.
We consider the inequalities (7) for n = 1, . . . , N and multiply the n-th inequality

by a factor λn,N . These factors are chosen such that the addition of the left sides of the
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A Proof of Yamashita’s Conjecture on Area Integral 489

modified inequalities results in the left side of (6). For the calculation of the factors
λn,N we get the following system of linear equations

k = k2 λk,N +
N∑

n=k+1

λn,N

(
k2 − (k − γ )2r2

)
, k = 1, . . . , N . (8)

Since the matrix of this system is an upper triangular matrix with positive integers as
diagonal elements, the solution of this system is uniquely determined.

Cramer’s rule allows us to write the solution of the system (8) in the form

λn,N = ((n − 1)!)2

(N !)2 Det An,N ,

where An,N is the (N − n + 1) × (N − n + 1) matrix constructed as follows. In
the first column are the positive integers n, n + 1, . . . , N . In the rest of the first row
stands (N − n) times the constant n2 − (n − γ )2r2. The rest of the matrix is an upper
triangular matrix, the main diagonal consists of the squares (n + 1)2, . . . , N 2. In the
rest of the second row stands (N −n −1) times the constant (n +1)2 −(n +1−γ )2r2,
the next row ends with the constant (n + 2)2 − (n + 2 − γ )2r2, and so on, i.e.,

An,N =

⎛
⎜⎜⎜⎝

n n2 − (n − γ )2r2 . . . n2 − (n − γ )2r2

n + 1 (n + 1)2 . . . (n + 1)2 − (n + 1 − γ )2r2

...
...

...
...

N 0 . . . N 2

⎞
⎟⎟⎟⎠ .

The evaluation of the determinants of these matrices can be done by expanding
according to Laplace’s rule with respect to the last row, wherein the first coefficient is
N and the last one is N 2. The rest of the entries are zeros. This expansion and a little
mathematical induction results in the following formula. If k ≤ N − 1, then

λk,N = λk,N−1 − 1

N

(
1 −

(
1 − γ

k

)2
r2

) N−1∏
m=k+1

((
1 − γ

m

)2
r2

)
.

We see that for fixed k ∈ N, N ≥ k, the sequence {λk,N } is a strictly decreasing
sequence with

λk := lim
N→∞ λk,N = 1

k
−

(
1 −

(
1 − γ

k

)2
r2

) ∞∑
n=k+1

1

n

n−1∏
m=k+1

((
1 − γ

m

)2
r2

)
.

To prove that λk,N > 0 for all N ∈ N, 1 ≤ k ≤ N , it is sufficient to prove λk ≥ 0
for k ∈ N. This will be done in Step 3. But before that we want to remark that the proof
of this inequality is sufficient for the proof of the theorem, since, as we remarked in
Step 1, equality is attained for bk = (−1)kck .
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490 M. Obradović et al.

Step 3: Positivity of the multipliers.
Let us use the abbreviation

Sk =
∞∑

n=k+1

1

n

n−1∏
m=k+1

((
1 − γ

m

)2
r2

)

for k ∈ N ∪ {0}. We want to prove that for k ∈ N

Sk ≤ 1

k
(

1 − (
1 − γ

k

)2
r2

) . (9)

The identity

Sk−1 = 1

k
+

(
1 − γ

k

)2
r2Sk

implies that (9) is equivalent with

Sk−1 ≤ 1

k
(

1 − (
1 − γ

k

)2
r2

) . (10)

To prove (10) we use the inequality

1

n
(

1 − (
1 − γ

n

)2
r2

) >
1

(n + 1)

(
1 −

(
1 − γ

n+1

)2
r2

) (11)

and the identity

1

n
(

1 − (
1 − γ

n

)2
r2

) = 1

n
+

(
1 − γ

n

)2
r2

n
(

1 − (
1 − γ

n

)2
r2

) , (12)

which are valid for each n ∈ N. Repeated application of (11) and (12) for n =
k, k + 1, . . . , K results in the inequality

1

k
(

1 − (
1 − γ

k

)2
r2

) >

K∑
n=k

1

n

n−1∏
m=k

((
1 − γ

m

)2
r2

)

+
∏K

m=k

((
1 − γ

m

)2
r2

)

K
(

1 − (
1 − γ

K

)2
r2

) =: sk,K + Rk,K .

123

Author's personal copy



A Proof of Yamashita’s Conjecture on Area Integral 491

Since 0 < Rk,K < 1/(K (1 − r2)) and limK→∞ sk,K = Sk−1, these inequalities
for k ≤ K imply the inequality (10). According to the above considerations in Step
1 and Step 2, the proof of the lemma is complete. 	


Proof of Theorem 4. It is known that [8]

f ∈ S+ ⇐⇒
∞∑

n=2

(n − 1)bn ≤ 1.

Now, we have

π−1�

(
r,

z

f (z)

)
=

∞∑
n=1

n|bn|2r2n = |b1|2r2 +
∞∑

n=2

nb2
nr2n

≤ |b1|2r2 + r4
∞∑

n=2

nb2
n

≤ |b1|2r2 + 2r4
∞∑

n=2

(n − 1)bn

≤ |b1|2r2 + 2r4,

since 0 ≤ bn ≤ 1 and nb2
n ≤ 2(n − 1)bn for n = 2, 3, . . .. For the function f0 defined

by z
f0(z) = 1 + bz + z2, where −2 ≤ b ≤ 2, we have the equality:

π−1�

(
r,

z

f0(z)

)
= r2

(
|b|2 + 2r2

)
.

	

It would be interesting for the reader to recall that a variety of probabilistic processes

can be interpreted in terms of the analytic fixed point function of the form z/ f (z) in the
unit disk. Moreover, many useful probabilities can be expressed in terms of the Taylor
coefficients of z/ f (z), its derivatives, or their combinations and as a consequence of
it, certain known inequalities for such combinations allow us to find explicit estimates
for probabilities. For example, the authors in [5–7,14,15] recently have found many
interesting applications in the theory of the analytic fixed point function and even in
questions in probability.
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