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Abstract Let A denote the family of all functions f analytic in the unit disk D and

satisfying the normalization f ð0Þ ¼ 0 ¼ f 0ð0Þ � 1. Let S denote the subclass of A
consisting of univalent functions in D. We consider the subclass U of S that is

defined by the condition that for its members f the condition

z

f ðzÞ

� �2

f 0ðzÞ � 1

�����
�����\1 for z 2 D

holds. To these relations belong striking similarities and on the other hand big

differences. We show that some results about S can be improved for U, while others

cannot.
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1 Introduction and statement of results

Let A denote the family of all functions f analytic in the unit disk D :¼ fz 2 C :
jzj\1g and satisfying the normalization f ð0Þ ¼ 0 ¼ f 0ð0Þ � 1. Let S denote the

subclass of A consisting of univalent functions in D. We consider relationships

between S and its subclass U that is defined by the condition that for its members f

the condition

z

f ðzÞ

� �2

f 0ðzÞ � 1

�����
�����\1 for z 2 D ð1:1Þ

holds. It was proved by Aksentév (1958) that U � S. Typical members of the class

U are

z

1 � z
;

z

1 � z2
;

z

ð1 � zÞ2
;

z

1 � zþ z2
;

and their rotations. The class U and its various generalizations have been studied

recently. In particular, the class U is preserved under rotation, conjugation, dilation

and omitted-value transformations but is not preserved under the square-root

transformation, for example, see Obradović et al. (2016) and the references therein.

In the present paper we consider some problems, where the solutions are identical

for S and U and some others where there exist differences.

The first problem we address is the question for the maximum radius of the circle

around the origin wherein Reðf ðzÞ=zÞ [ 1=2. The solution for the class S was

presented by Singh (1985) and Wirths (1989) as follows: If f 2 S, then

Re
f ðzÞ
z

� �
[

1

2
ð1:2Þ

if jzj\
ffiffiffi
2

p
� 1. This bound is best possible.

It is worth recalling that if f 2 S is convex, or starlike of order 1 / 2, or f 2 A
such that the Taylor coefficients of f are real and convex decreasing, then the

condition (1.2) holds in the full disk D. Secondly, since U(S, (1.2) holds for the

class U, too. Indeed, the Koebe function kðzÞ ¼ z=ð1 � zÞ2
belongs to the class U

and the equation r�1kðrÞ ¼ 1=2 with r ¼ 1 �
ffiffiffi
2

p
as well as the considerations by

Singh (1985) show that the result (1.2) is still the best possible for the class U.

The situation changes significantly if one considers the similar problem asking

where

Re

ffiffiffiffiffiffiffiffi
f ðzÞ
z

r !
[

1

2
ð1:3Þ

is valid. The following result was proved by Duren and Schober (1971).
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Theorem A For each f 2 S, the inequality (1.3) holds for jzj\R, where R ¼
0:835. . . is the best possible radius. Moreover, for each z in jzj[R, there exists an

f0 2 S for which (1.3) fails to hold.

Concerning the same question for the class U, we may recall the following result

of Obradović (1995):

f 2 U ) z

f ðzÞ � ð1 � zÞ2; i.e. Re

ffiffiffiffiffiffiffiffi
f ðzÞ
z

r !
[

1

2
ð1:4Þ

is valid for z 2 D (see also, Obradović et al. 2016). Here � denotes the usual

subordination (cf. Miller and Mocanu 2000; Obradović et al. 2016; Pommerenke

1975).

In the following we will generalize the implication (1.4) for the class

Un :¼ An \ U , where An; n� 1, denotes the class of functions f 2 A of the form

f ðzÞ ¼ zþ anþ1z
nþ1 þ � � � :

Theorem 1 If f 2 Un, then

Re
f ðzÞ
z

� �n
2

[
1

2
for z 2 D: ð1:5Þ

For n ¼ 1, it is a simple corollary to Theorem A that this stands in contrast to the

situation in the class S. Choose the function f0 2 S and the number z0 as indicated in

Theorem A and let f0ðzÞ ¼ zh0ðzÞ. Then we have

Re
ffiffiffiffiffiffiffiffiffiffiffiffi
h0ðz0Þ

p� �
¼ 1

2
:

Let further

g0ðzÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffi
f0ðznÞ
zn

n

r

and choose z1 such that zn1 ¼ z0, where z0 is a complex number such that jz0j ¼
R ¼ 0:835. . . and thus, jz1j ¼

ffiffiffiffiffiffiffi
jz0jn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:835. . .n

p
. Then g0ðzÞ 2 S \ An and

Re
g0ðz1Þ
z1

� �n
2

¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffi
h0ðz0Þ

p� �
¼ 1

2
:

Another item where one can see as well similarities as differences between the two

classes in question is the problem of Koebe transforms. For f 2 S, we define the

Koebe transform with respect to the point f 2 D as
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gðzÞ :¼ gðf; zÞ ¼
f fþz

1þfz

� �
� f ðfÞ

f 0ðfÞð1 � jfj2Þ
:

Then it is well known that these Koebe transforms as functions of the variable z are

all members of the class S.

For the class U we prove

Theorem 2 Let f 2 U. Then the Koebe transforms of f with respect to any fixed f,
i.e. the functions z 7!gðzÞ as above, belong to U if and only if

ðf� uÞ2
f 0ðfÞf 0ðuÞ

ðf ðuÞ � f ðfÞÞ2
� 1

�����
�����\1; f; u 2 D: ð1:6Þ

Remarkably, the disk with center at the origin, wherein (1.6) is satisfied for all

members of the class, is the same for the classes S and U: Finally, we also prove

Theorem 3 Let f 2 S or f 2 U. Then the inequality (1.6) is satisfied for

jfj; juj\
ffiffiffi
2

p
� 1. The result is best possible in both cases.

We note that it might be worthwhile to consider those functions that satisfy the

condition of Theorem 2.

The proofs of Theorems 1, 2 and 3 will be presented in Section 2.

2 Proofs of Theorems 1, 2 and 3

The following lemma due to Miller and Mocanu (1978) is needed for the proof of

Theorem 1. See the monograph of Miller and Mocanu (2000) for a general

formulation of this lemma via differential subordination.

Lemma B (Miller and Mocanu 1978) Suppose that w : C2 ! C is continuous in a

domain D of C2 such that ð1; 0Þ 2 D, Rewð1; 0Þ[ 0 and

Rewðix; yÞ� 0 for all ðix; yÞ 2 Dand y� � nð1 þ x2Þ=2;

where n� 1. Let pðzÞ ¼ 1 þ pnz
n þ � � � be analytic in D and pðzÞ 6	 1. If

ðpðzÞ; zp0ðzÞÞ 2 D for all z 2 D and RewðpðzÞ; zp0ðzÞÞ[ 0 for all z 2 D, then

Re pðzÞ[ 0 in D.

2.1 Proof of Theorem 1

For n ¼ 1, the result is the content of the implication (1.4). For n ¼ 2 (i.e. when

a2 ¼ 0), the appropriate result is given in the paper by Obradović and Ponnusamy

(2011) but the same may be obtained from the proof that follows now.

Let f 2 U. Then (1.1) holds, or equivalently
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Re 2
f ðzÞ
z

� �2
1

f 0ðzÞ � 1

 !
[ 0 for z 2 D:

We now introduce

pðzÞ ¼ 2
f ðzÞ
z

� �n
2

�1: ð2:1Þ

Clearly, p is analytic in D and has the form pðzÞ ¼ 1 þ pnz
n þ � � � : We shall apply

Lemma B. and prove that Re pðzÞ[ 0 for z 2 D. From (2.1) we have

f ðzÞ
z

¼ pðzÞ þ 1

2

� �2
n

and a computation gives that

2
f ðzÞ
z

� �2
1

f 0ðzÞ � 1 ¼: wðpðzÞ; zp0ðzÞÞ;

where

wðr; sÞ ¼
2n rþ1

2

� 	2
nðr þ 1Þ

nðr þ 1Þ þ 2s
� 1: ð2:2Þ

According to Lemma B, to prove Re pðzÞ[ 0 in D, it suffices to show that

Rewðix; yÞ� 0 for all reals x; y with y� � nð1 þ x2Þ=2: ð2:3Þ

It follows that

Rewðix; yÞ ¼ Re
2n ixþ1

2

� 	2
nðixþ 1Þ

nðixþ 1Þ þ 2y
� 1: ð2:4Þ

We may use the representation ixþ 1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p
Þ eiu, juj\ p

2
, where

cosu ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p ; sinu ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p and tanu ¼ x: ð2:5Þ

Clearly, x sinu� 0 and, since n� 2, x sin 2
n
u

� 	
� 0.

By using (2.4) and (2.5), after some simple transformations, we obtain that

Rewðix; yÞ ¼ S� T

ðnþ 2yÞ2 þ n2x2
;

where
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S ¼ 2n
1 þ x2

4

� �1
n

cos
2

n
u

� �
ðnþ 2yþ nx2Þ

and

T ¼4y2 þ 4n 1 þ 1 þ x2

4

� �1
n

x sin
2

n
u

� � !
yþ n2ð1 þ x2Þ: ð2:6Þ

Clearly S� 0 for all n� 2 and for y� � ðn=2Þð1 þ x2Þ. Thus, we also need to prove

that T :¼ TðyÞ� 0 for n� 2 and for all x 2 R and y� � ðn=2Þð1 þ x2Þ. The

function T(y) has its minimum value at the point

y0 ¼ � n

2
1 þ 1 þ x2

4

� �1
n

x sin
2

n
u

� � !

so that TðyÞ� Tðy0Þ. Since

1 þ x2

4

� �1
n

x sin
2

n
u

� �
� 1 þ x2

4

� �1
n

x sinu ¼ x2

2

4

1 þ x2

� �1
2
�1

n

� x2;

for n� 2, we easily conclude that �ðn=2Þð1 þ x2Þ� y0. As T(y) is decreasing when

y� y0, it is enough to prove that

T � n

2
ð1 þ x2Þ

� �
¼ n2ð1 þ x2Þ x2 � 2

1 þ x2

4

� �1
n

x sin
2

n
u

� �" #
� 0 ð2:7Þ

for all x 2 R and n� 2. Since, by the previous consideration, x sin 2
n
u

� 	
� 0, we can

suppose that x� 0 and 0�u\ p
2
. In view of this observation, proving the inequality

(2.7) is equivalent to proving the inequality

sin
2

n
u

� �
� x

2

4

1 þ x2

� �1
n

for x� 0; 0�u\p=2; and n� 2: ð2:8Þ

For n ¼ 2, we have equality in (2.8) [(by using (2.5)]. Again, from (2.5), we obtain

that sin2 u ¼ x2=ð1 þ x2Þ and x ¼ tanu, and thus the inequality (2.8) is equivalent

to the inequality

gðuÞ� gð0Þ ¼ 0 for 0�u\p=2 and n� 2; ð2:9Þ

where

gðuÞ ¼ ð2 cosuÞ
2
n
�1

sinu� sin
2

n
u

� �
:

We find that
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g0ðuÞ ¼ 2ð2 cosuÞ
2
n
�2

1 � 2

n
sin2 u

� �
� 2

n
cos

2

n
u

� �

and thus,

g0ð0Þ ¼ 2
1

22�2
n

� 1

n

� �
[ 0 for n� 3:

Also, a computation gives that

g00ðuÞ ¼ 8ð2 cosuÞ
2
n
�3

1 � 3

n

� �
sinuþ 2

n2
sin3 u

� �
þ 4

n2
sin

2

n
u

� �
� 0 for n� 3:

It means that the function g0 is an increasing function of u and this gives

g0ðuÞ� g0ð0Þ[ 0 for 0�u\p=2

which in turn implies that the function gðuÞ is also increasing for 0�u\p=2 and

hence, (2.9) holds. This means that (2.3) holds and hence, by Lemma B, it follows

that Re pðzÞ[ 0 in D. The proof of the theorem is complete. h

For the proof of Theorem 2, we need the following lemma, which might have

been known in the literature. Since we were not able to find an apt reference we give

the proof for this theorem. We want to emphasize here that the functions considered

in this lemma are neither conformal maps nor harmonic functions.

Lemma 1 Let for z 2 D,

uðfÞ ¼ zþ f

1 þ fz
:

Then u : D ! D and u : D ! D are bijective.

Proof The injectivity is easily derived from

uðf1Þ � uðf2Þ ¼
ðf1 � f2Þð1 þ f1zÞ � ðf1 � f2Þðf1zþ z2Þ

ð1 þ f1zÞð1 þ f2zÞ
:

If this difference equals zero and f1 6¼ f2, then

j1 þ f1zj ¼ jf1zþ z2j; i.e., ð1 � jzj2Þð1 þ jzj2 þ 2Re ðf1zÞÞ ¼ 0;

which is impossible for z 2 D.

Further the functional determinant

ou

of

����
����
2

� ou

of

����
����
2

¼ j1 þ fzj2 � jfzþ z2j2

j1 þ fzj4

does not equal zero for f 2 D. Hence uðDÞ is open. Further it is easily seen that

uðDÞ � D and uðoDÞ ¼ oD:
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Now assume that D n uðDÞ is non-void and not open. Then there exists a point

p 2 D n uðDÞ and a sequence ffngn� 1 in D; such that

p ¼ lim
n!1

uðfnÞ:

Let ffnkgk� 1 be a convergent subsequence of ffng. Because of the continuity of u

and uðoDÞ ¼ oD, we have limk!1 fnk ¼ w 2 D and

p ¼ lim
k!1

uðfnkÞ ¼ uðwÞ:

Hence, DnuðDÞ is void or open. The second possibility contradicts the connectivity

of D. Together with the above this proves the assertions. h

2.2 Proof of Theorem 2

Let f belong to U and for fixed f 2 D, consider its Koebe transforms g(z) with

respect to f given by

gðzÞ :¼ gðf; zÞ ¼ f uðfÞð Þ � f ðfÞ
f 0ðfÞð1 � jfj2Þ

; uðfÞ ¼ zþ f

1 þ fz
:

If all Koebe transforms of f belong to U, then by (1.1) we have

z2f 0ðfÞð1 � jfj2Þ2

ðf ðuðfÞÞ � f ðfÞÞ2

f 0ðuðfÞÞ
ð1 þ fzÞ2

� 1

�����
����� ¼

ðf� uðfÞÞ2
f 0ðfÞf 0ðuðfÞÞ

ðf ðuðfÞÞ � f ðfÞÞ2
� 1

�����
�����\1

for all u; f 2 D. According to Lemma 1 this proves the necessity of the above

condition. The sufficiency can be proved similarly. h

2.3 Proof of Theorem 3

Let f 2 S and let

log
f ðzÞ � f ðuÞ

z� u
¼
X1
n;m¼0

dn;mz
num: ð2:10Þ

The coefficients dn;m are called the Grunsky coefficients of the function f. From

(2.10), after differentiations with respect to z and u, we have

f 0ðzÞf 0ðuÞ
ðf ðzÞ � f ðuÞÞ2

� 1

ðz� uÞ2
¼
X1
n;m¼1

nmdn;mz
n�1um�1;

and from here
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ðz� uÞ2
f 0ðzÞf 0ðuÞ

ðf ðzÞ � f ðuÞÞ2
� 1 ¼ ðz� uÞ2

X1
n;m¼1

nmdn;mz
n�1um�1: ð2:11Þ

By using Grunsky’s inequalities (see Pommerenke 1975, p. 62)

X1
n¼1

n
X1
m¼1

dnmxm

�����
�����
2

�
X1
n¼1

jxnj2

n
; ð2:12Þ

if the last series converges and for arbitrary xn; n ¼ 1; 2; . . . (We note that Grun-

sky’s inequality usually is stated with the functions from the class R, but it is easy to

prove that Grunsky’s coefficients for the functions log
f ðzÞ�f ðuÞ

z�u
and log

Fðz�1Þ�Fðu�1Þ
z�1�u�1 ,

where FðfÞ ¼ 1
f ð1=fÞ 2 R for f 2 S, are the same for n;m� 1:) we can obtain that

X1
n;m¼1

nmdn;mz
n�1um�1

�����
����� ¼

X1
n¼1

ffiffiffi
n

p
zn�1

ffiffiffi
n

p X1
m¼1

dn;mmu
m�1

�����
�����

�
X1
n¼1

njzj2ðn�1Þ
 !1

2 X1
n¼1

n
X1
m¼1

dn;mmu
m�1

�����
�����
2

0
@

1
A

1
2

� 1

1 � jzj2
X1
n¼1

njuj2ðn�1Þ
 !1

2

¼ 1

ð1 � jzj2Þð1 � juj2Þ
:

From this and (2.11) we finally have

ðz� uÞ2
f 0ðzÞf 0ðuÞ

ðf ðzÞ � f ðuÞÞ2
� 1

�����
������

jz� uj2

ð1 � jzj2Þð1 � juj2Þ
� 2r

1 � r2

� �2

\1;

since jzj; juj � r\
ffiffiffi
2

p
� 1:

To prove that this result is sharp for U and S we consider the Koebe function k

that belongs to both classes. A simple calculation reveals that for f ¼ k, (1.6)

becomes

u� f
1 � uf

����
����\1:

For f ¼ ð
ffiffiffi
2

p
� 1Þi and u ¼ �ð

ffiffiffi
2

p
� 1Þi,

u� f
1 � uf

����
���� ¼ 1:

This implies that
ffiffiffi
2

p
� 1 is best possible. h
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3 Concluding remarks

A natural question is the following: Are all functions

f ðzÞ ¼ z
Yn
k¼1

ð1 � eihk zÞ�ak ; hk 2 R; ak � 0 and
Xn
k¼1

ak ¼ 2;

in the class U? The answer is no as the function f0ðzÞ ¼ zð1 � z3Þ�2=3
demonstrates.

Note that

z

f0ðzÞ
¼ ð1 � zÞ2=3ð1 þ e�ip=3zÞ2=3ð1 þ eip=3zÞ2=3:

Moreover, if f 2 S then r�1f ðrzÞ 2 U for 0\r� 1=
ffiffiffi
2

p
and the result is sharp. See

Obradović and Ponnusamy (2005). Furthermore, the family U is not a subset of the

class SH of univalent starlike functions in the unit disk D. In fact, consider the

function

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fig. 1 The image of f1 under D
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f1ðzÞ ¼
z

1 þ 1
2
zþ 1

2
z3
:

Then it is easy to see that f1 2 U. On the other hand,

zf 01ðzÞ
f1ðzÞ

¼ 1 � z3

1 þ 1
2
zþ 1

2
z3

and at the boundary point z0 ¼ ð�1 þ iÞ=
ffiffiffi
2

p
, we have

z0f
0
1ðz0Þ

f1ðz0Þ
¼ 2 � 2

ffiffiffi
2

p

3
þ 1 � 2

ffiffiffi
2

p

3
i

which gives that Re fz0f
0
1ðz0Þ=f1ðz0Þg\0. Consequently, there are points in the unit

disk jzj\1 for which Re fzf 01ðzÞ=f1ðzÞg\0 which shows that the function f1 is not

starlike in D. The image of f1 under D is shown in Fig. 1.
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