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Abstract Let A denote the family of all functions that are analytic in the unit disk
D := {z : |z| < 1} and satisfy f (0) = 0 = f ′(0) − 1. Let U denote the subset of
functions f ∈ A which satisfy
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and letP(2) be the subclass of all functions f ∈ A such that f (z) �= 0 for 0 < |z| < 1
and
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In this paper, a conjecture on the class U and P(2) has been resolved. Furthermore,
two sufficient conditions for functions to be univalent are presented.
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1 Introduction

Let A denote the family of all functions that are analytic in the unit disk D := {z :
|z| < 1} and satisfy f (0) = 0 = f ′(0) − 1. Let B denote the set of functions ω that
are analytic in D and satisfy |ω(z)| ≤ 1(|z| < 1). Let S be the set of all functions
f ∈ A that are univalent in D. Let S∗ denote the subset of S consisting of all starlike
functions. Let U denote the set of all f ∈ A satisfying the condition
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< 1, z ∈ D, (1)

and letP(2) be the subclass of all functions f ∈ A such that f (z) �= 0 for 0 < |z| < 1
and
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It is known that U ⊂ S(see [1]). In recent years, the class U were studied in detail
(see [2–6]). Obradović and Ponnusamy[3] proved that

P(2) ⊂ U .

For the function f defined by z
f (z) = 1+ 1

2 z
3 , which belongs to the class U , we have

that
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= |3z| ≤ 2 for |z| ≤ 2

3
,

i.e., P(2)-radius for the above function f is equal to 2
3 . The authors considered a

subclass of the class U and showed that P(2)-radius for that subclass is equal to 2
3 .

They conjectured that the same is valid for the class U [7]. In the second part of this
paper, we shall prove that the conjecture is not true by giving the correct P(2)-radius
for the class U .

Let � be the subset of A which consists of all functions f satisfying

|z f ′(z) − f (z)| <
1

2
, (|z| < 1).
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It is known that� ⊂ S∗[8]. In the third part of this paper, we shall give two conditions
for functions to be in the class �.

2 P(2)-Radius for the Class U
Theorem 1 If f ∈ U , then
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≤ 2

for |z| ≤ r0 =
√
5−1
2 = 0.618... and the result is the best possible.

For the proof of Theorem 1, we need the next lemma given by Shaffer[9].

Lemma 1 Let g(z) = ∑∞
n=p anz

n (p ≥ 1) be analytic inD and satisfy |g(z)| ≤ 1 for
z ∈ D , then

(a) |g′(z)| ≤ p|z|p−1 for |z| ≤
√

1+p2−1
p ,

(b) |g′(z)| ≤ |z|p−2 4|z|2+p2(1−|z|2)2
4(1−|z|2) for |z| >

√
1+p2−1

p .

These estimates are the best possible.

Proof of Theorem 1 For f ∈ U let’s put

U f (z) =
(

z

f (z)

)2

f ′(z) − 1. (3)

Then,

U f (z) = z

f (z)
− z

(
z

f (z)

)′
− 1.

If f (z) = z + a2z2 + a3z3 + ...., then

U f (z) = (a3 − a22)z
2 + ...

and

U ′
f (z) = −z

(
z

f (z)

)

.′′ (4)

By using (1), previous notation and other conclusions, we can apply Lemma 1 with
g(z) = U f (z) and p = 2. By Lemma 1(a), we obtain

∣
∣
∣U ′

f (z)
∣
∣
∣ ≤ 2|z| for |z| ≤ r0 =

√
5−1
2 ,
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which by (4) implies

∣
∣
∣
∣

(
z

f (z)

)′′∣∣
∣
∣
≤ 2, |z| ≤ r0 =

√
5 − 1

2
,

i.e., f has P(2)-property in the disk |z| ≤ r0 =
√
5−1
2 , which was to be proved. ��

Similarly, by Lemma 1(b) we have
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≤ 1 − |z|2 + |z|4

|z|(1 − |z|2) =: ϕ(|z|), |z| > r0 =
√
5 − 1

2
,

where

ϕ(t) = 1 − t2 + t4

t (1 − t2)
, r0 < t < 1.

It is easy to check thatϕ is an increasing function andϕ(r0) = 2 < ϕ(t) for r0 < t < 1.
For sharpness of the theorem , let us consider the function fb defined by the condition

z

fb(z)
= 1 − z

∫ z

0

z + b

1 + bz
dz, (5)

where b is real and |b| < 1. Since ω(z) = z+b
1+bz : D → D, then

∣
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z
∫ z

0

z + b

1 + bz
dz

∣
∣
∣
∣
≤ |z|2 < 1, z ∈ D,

which by (5) implies z
fb(z)

�= 0, z ∈ D, i.e., fb is well defined. Also

∣
∣U fb (z)

∣
∣ =

∣
∣
∣
∣
z2

z + b

1 + bz

∣
∣
∣
∣
< |z|2 < 1, z ∈ D,

which gives that fb ∈ U .
Let r1 be a fixed real number such that r0 < r1 < 1 and b1 = 1−2r21

r31
. We claim that

|b1| < 1. In fact,

−1 < b1 < 1 ⇔ −1 <
1 − 2r21

r31
< 1

⇔ −r31 < 1 − 2r21 < r31
⇔ r21 (1 − r1) < 1 − r21 < r21 (1 + r1).

The left inequality is equivalent to r21 < 1+r1, which is true, and the right is equivalent
to 1 − r1 − r21 < 0, which is also true since r0 < r1 < 1.
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After simple calculations, for the function fb1 we have

∣
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(
z

fb1(z)

)′′∣∣
∣
∣
z=r1

= 1 − r21 + r41
r1(1 − r21 )

=: ϕ(r1) > 2,

because of the property of the function ϕ and since r0 < r1 < 1. It means that the
function fb1 is an extremal function for our problem, since it has P(2)-property in the

disk |z| ≤ r0 =
√
5−1
2 (because fb1 ∈ U), but not in a disk with longer radius.

3 Sufficient Conditions for Function to be in �

Theorem 2 Let f ∈ A. If | f ′′(z)| ≤ 1 then f ∈ �. The number 1 is the best possible.

Proof Let g(z) = z f ′(z) − f (z). Then, g′(z) = z f ′′(z). Since f (0) = f ′(0) − 1 = 0
and | f ′′(z)| ≤ 1 for z ∈ D, we have

g′(z) = zω(z) (6)

where ω(z) ∈ B. It follows from (6) that

g(z) =
∫ z

0
ζω(ζ )dζ = z2

∫ 1

0
tω(zt)dt.

Therefore,

|g(z)| = |z2
∫ 1

0
tω(zt)dt | <

∫ 1

0
tdt = 1

2
, (z ∈ D).

That is, |z f ′(z) − f (z)| < 1
2 for z ∈ D. This implies that f ∈ � ⊂ S∗.

If | f ′′(z)| ≤ λ and λ > 1, then f may be not univalent. For example, f (z) =
z + 1

2λz
2 satisfy | f ′′(z)| ≤ λ, but f ′(z) = 1 + λz vanish at − 1

λ
, which implies that

f /∈ S∗. ��
Theorem 3 Let f ∈ A. If

|z2 f ′′(z) + z f ′(z) − f (z)| ≤ 3

2

then f ∈ � ⊂ S∗. The number 3
2 is the best possible.

Proof Since f (0) = f ′(0) − 1 = 0 and

|z2 f ′′(z) + z f ′(z) − f (z)| ≤ 3

2
,
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it follows that

[z2 f ′(z) − z f (z)]′ = 3

2
z2ω(z),

where ω(z) ∈ B. Thus,

z2 f ′(z) − z f (z) = 3

2

∫ z

0
ω(ζ )ζ 2dζ = 3

2
z3

∫ 1

0
ω(zt)t2dt,

and consequently,

|z f ′(z) − f (z)| = |3
2
z2

∫ 1

0
ω(zt)t2dt | <

3

2

∫ 1

0
t2dt = 1

2

for z ∈ D. This implies that f ∈ � ⊂ S∗.
If |z2 f ′′(z) + z f ′(z) − f (z)| ≤ λ and λ > 3

2 , then f may be not univalent. One
can see that by investigating the function f (z) = z + 1

2λz
2, λ > 1. ��
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