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Abstract—Let M be the class of analytic functions in the unit disk D with the normalization
f(0) = f ′(0)− 1 = 0, and satisfying the condition
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Functions in M are known to be univalent in D. In this paper, it is shown that the harmonic mean
of two functions in M are closed, that is, it belongs again to M. This result also holds for other
related classes of normalized univalent functions. A number of new examples of functions in M are
shown to be starlike in D. However we conjecture that functions in M are not necessarily starlike,
as apparently supported by other examples.
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1. INTRODUCTION

Let H denote the family of analytic functions in the open unit disk D := {z ∈ C : |z| < 1}, and A its
subclass of normalized functions f(z) = z + a2z

2 + a3z
3 + · · · . Further, let S denote the subclass of A

consisting of functions f univalent in D. Denote by S∗ and C respectively the subclasses of S consisting
of starlike and convex functions. Functions f ∈ S∗ map D onto starlike domains with respect to the
origin, while f ∈ C whenever f(D) is a convex domain. Analytically, f ∈ S∗ if Re (zf ′(z)/f(z)) > 0,
while f ∈ C if Re (1 + zf ′′(z)/f ′(z)) > 0.

Investigations into particular subclasses of A continued to be of recent interest. These include the
class U consisting of functions f ∈ A satisfying
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as well as the class P of functions f ∈ A with
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The strict inclusion P � U � S holds within these classes (see [2, 5, 14] for a proof). There are several
generalizations [7] of this result. For recent investigations on U and its generalization, we refer to [11–
13] and the references therein.

In this paper, the phrase f ∈ U (respectively, f ∈ P) in |z| < r means that the defining inequality
holds in |z| < r instead of the full disk |z| < 1. We also follow this standard convention for other classes.
In [8] and [9], the authors discussed the classes M and N of functions from A satisfying respectively the
differential inequality

|Mf (z)| ≤ 1 and |Nf (z)| ≤ 1, z ∈ D,

where

Mf (z) = z2
(

z
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)′′
+ f ′(z)
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)′′′
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These classes are also closely related to the class U in the sense of the strict inclusions N � M � P �

U . A slightly general version of this result is given in [1].
In [10], Obradović, and Ponnusamy discussed “harmonic mean” of two univalent analytic functions.

These are functions F of the form

F (z) =
2f(z)g(z)

f(z) + g(z)
, (1)
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where f, g ∈ S. In particular, the authors in [10] determined the radius of univalency of F , and proposed
the following two conjectures.

Conjecture 1. (a) The function F defined by (1) is not necessarily univalent in D whenever
f, g ∈ S such that ((f(z) + g(z))/z) �= 0 in D.

(b) The function F defined by (1) is univalent in D whenever f, g ∈ C such that ((f(z) +
g(z))/z) �= 0 in D.

The authors in [10] showed that whenever f, g ∈ U , then the function F defined by (1) belongs to U
in the disk |z| <

√

(
√
5− 1)/2 ≈ 0.78615.

While Conjecture 1 remains open, the aim of this paper is to show that Conjecture 1 (a) does not
hold when the class S is replaced by U . Indeed, it does not hold true even for the classes M, N , and P.
The second objective of the paper is to consider several examples in examining starlikeness of functions
in the classes M, N , and P. We conclude with a conjecture that functions in the class M are not
necessarily starlike in D.

2. ON THE HARMONIC MEAN OF UNIVALENT FUNCTIONS

Theorem 1. Let f, g ∈ U satisfy [f(z) + g(z)]/z �= 0 for z ∈ D. Then the function F given by (1)
also belongs to the class U .

Proof. From (2), it readily follows from the triangle inequality that the function F satisfies
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Thus F ∈ U . �

Moreover, we see that Theorem 1 holds true if the class U is replaced by the class M.
Theorem 2. Suppose f, g ∈ M satisfy [f(z) + g(z)]/z �= 0 for z ∈ D. Then the function F given

by (1) also belongs to the class M.
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Proof. Now
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In view of (2), this means that MF (z) =
1
2 (Mf (z) +Mg(z)) , and use of the triangle inequality yields

the desired result. �

Theorem 3. Let f, g ∈ N satisfy [f(z) + g(z)]/z �= 0 for z ∈ D. Then the function F given by (1)
also belongs to the class N .

Proof. As in the proof of Theorem 2, we see that
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Thus relation (2) gives NF (z) =
1
2 (Nf (z) +Ng(z)) , and the proof of theorem readily follows. �

Finally, it is also readily shown that the above theorem holds true for the class P.

3. EXAMPLES AND A CONJECTURE

It is known that functions in the class U are not necessarily starlike. There are a number of examples
displaying functions in U that are not starlike in D, see for instance [6]. However, is M ⊂ S∗? This
section discusses the latter problem.

Example 3. To present a one-parameter family of functions in M that are also starlike, consider the
function f given by z/f(z) = 1 + (1− α)z + αzm, where α ∈ (0, 1) and m ∈ N\{1} = {2, 3, . . .} are
such that α(m− 1)2 = 1. Then z/f(z) �= 0 in D and

∞∑

k=2

(k − 1)2|bk| = (m− 1)2α = 1,

and therefore, f ∈ M.
Next, we show that f is starlike whenever m > 1 is an odd integer. Now, a simple calculation shows

zf ′(z)

f(z)
=

1− α(m− 1)zm

1 + (1− α)z + αzm
.

With z = eiθ , then

eiθf ′(eiθ)

f(eiθ)
=

A(θ) + iB(θ)

|1 + (1− α)eiθ + αeimθ|2 ,
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where

A(θ) = 1 + (1− α) cos θ − α(m− 2) cos(mθ)− α(1− α)(m− 1) cos(m− 1)θ − α2(m− 1).

Note that A(θ) = A(−θ). As α = 1/(m− 1)2, the expression for A(θ) reduces to

A(θ) = 1− 1

(m− 1)3
− m(m− 2)

(m− 1)2
D(θ), where D(θ) = − cos θ +

1

m
cos(mθ) +

cos(m− 1)θ

m− 1
.

To show starlikeness, that is, f ∈ S∗, it suffices to show that A(θ) ≥ 0 for 0 ≤ θ ≤ π. First we prove
the assertion for the case m = 3, while the general case is obtained separately. Setting m = 3, A(θ)
reduces to

A(θ) =
7

8
− 3

4

[

− cos θ +
1

3
cos 3θ +

1

2
cos 2θ

]

,

and from the identities cos 2θ = 2cos2 θ − 1 and cos 3θ = 4cos3 θ − 3 cos θ,

A(θ) =
1

4
(5 + 6 cos θ − 4 cos3 θ − 3 cos2 θ) =

1

4
(1 + cos θ)2(5− 4 cos θ),

which shows that A(θ) ≥ 0. Thus, the function f3(z) given by

f3(z) =
z

1 + 3
4z +

1
4z

3
=

4z

(1 + z)(4 − z + z2)
,

is starlike in D.
Next, we proceed to prove starlikeness for the general case. This requires more computations. First,

D′(θ) = sin θ − sin(mθ)− sin(m− 1)θ = sin θ − 2 sin
(2m− 1)θ

2
cos

θ

2

= 2 cos
θ

2

[

sin
θ

2
red− sin

(2m− 1)θ

2

]

= 4cos
θ

2
cos

mθ

2
sin

(m− 1)θ

2
.

We need to show that A(θ) ≥ 0 for 0 ≤ θ ≤ π. It is convenient to set m = 2n+ 1, n ≥ 2 so that

D′(θ) = 4 cos
θ

2
cos

(2n+ 1)θ

2
sinnθ, n ≥ 2,

where D(θ) takes the form

D(θ) = − cos θ +
1

2n + 1
cos(2n+ 1)θ +

1

2n
cos(2nθ).

Clearly, D′(θ) = 0 for θ = 0, π, and the critical points of D(θ) in the open interval (0, π) are given by
⎧

⎪⎨

⎪⎩

θj =
(2j − 1)π

2n+ 1
for j = 1, 2, . . . , n,

θ′j =
jπ

n
for j = 1, 2, . . . , n− 1,

n ≥ 2. Moreover, for each n ≥ 2,
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

cos
(2n+ 1)θ

2
> 0 for 0 < θ < θ1,

(−1)j cos
(2n + 1)θ

2
> 0 for θj < θ < θj+1 and for j = 1, 2, . . . , n,

(−1)j−1 sinnθ > 0 for θ′j−1 < θ < θ′j and for j = 1, 2, . . . , n.

In view of the above inequalities and after a careful scrutiny, it follows that

D′(θ)

⎧

⎪⎨

⎪⎩

= 0 for θ = 0, θj , θ
′
j for j = 1, 2, . . . , n,

> 0 for θ ∈ (0, θ1) ∪ (θ′j, θj+1) for j = 1, 2, . . . , n− 1,

< 0 for θ ∈ (θj , θ
′
j) for j = 1, 2, . . . , n,
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where 0 < θ1 < θ′1 < θ2 < · · · < θj < θ′j < θj+1 < · · · < θn < θ′n = π. Therefore,

D(θ) ≤ max
{

D(0),D (θj) ,D
(

θ′j
)

: j = 1, 2, . . . , n
}

.

Since

D(0) = −1 +
1

2n+ 1
+

1

2n
= − 2n

2n+ 1
+

1

2n
, D(π) = 1− 1

2n+ 1
+

1

2n
=

2n

2n+ 1
+

1

2n
> 0,

then D(0) ≤ D(π). Moreover,

D (θj) = − cos θj +
1

2n+ 1
cos(2j − 1)π +

1

2n
cos(2n+ 1− 1)θj

= − cos θj −
1

2n+ 1
− 1

2n
cos θj = −

(
2n+ 1

2n

)

cos θj −
1

2n + 1
,

and

D
(

θ′j
)

= − cos θ′j +
1

2n+ 1
cos(2n + 1)

j

n
π +

1

2n
cos(2jπ)

= −
(

1− 1

2n + 1

)

cos θ′j +
1

2n
= − 2n

2n+ 1
cos θ′j +

1

2n
.

We deduce that D (θj) ≤ D(π) and D
(

θ′j

)

≤ D(π) holds for each j = 1, 2, . . . , n. Thus, D(θ) ≤ D(π)

for θ ∈ [0, π]. This observation shows that

A(θ) ≥ A(π) = 1− 1

8n3
− (2n + 1)(2n − 1)

4n2

(
2n

2n+ 1
+

1

2n

)

= 0 for θ ∈ [0, π].

Hence Re(eiθf ′(eiθ)/f(eiθ)) ≥ 0, which implies that f is starlike in D. Summarizing, for each n ≥ 1,
the function fn given by

z

fn(z)
= 1 +

(

1− 1

4n2

)

z +
1

4n2
z2n+1,

belongs M, and fn is starlike in D.

Example 4. Consider

f(z) =
z

φ(z)
, φ(z) = 1 +

(

1− ζ(5)

ζ(3)

)

z +
1

ζ(3)

∞∑

n=2

zn

(n− 1)5
.

We may rewrite φ as

φ(z) = 1 +

(

1− ζ(5)

ζ(3)

)

z +
1

ζ(3)

z2

4!

1∫

0

(log(1/t))4dt

1− tz
.

It is a simple exercise to see that φ(z) �= 0 in D and f ∈ M. The Mathematica software is used to display
the image of the unit disk under f as shown in Figure 1. It apparently displays that f(D) is a starlike
domain.

Example 5. It is illustrative to present a general example showing that functions in U do not
necessarily belong to S∗. For n ≥ 3, consider the function

fn(z) =
z

1 + ibz + (1/(n − 1))e2iβzn
.

For |b| ≤ (n− 2)/(n − 1) and β a real number, then

Re
(

z

fn(z)

)

> 1− |b| − 1

n− 1
≥ 0,
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and
∣
∣
∣
∣
∣

(
z

fn(z)

)2

f ′
n(z)− 1

∣
∣
∣
∣
∣
=

∣
∣
∣−e2iβzn

∣
∣
∣ < 1 for z ∈ D,

so that fn ∈ U for each n ≥ 3. On the other hand, fn is not in S∗ when 0 < b ≤ (n− 2)/(n − 1) and
0 < β < arctan(b(n− 1)/(n − 2)). This follows on account that

Re
(
zf ′

n(z)

fn(z)

)∣
∣
∣
∣
z=1

=
[(2(n − 2)/(n − 1)) sin β − 2b cos β] sin β

|1 + ib+ (e2iβ/(n− 1))|2 < 0.

Example 6. Consider the function f defined by z/f(z) = 1 + (1− α)z + αzm, where α ∈ (0, 1) and
m ≥ 3 is an odd integer such that αm(m− 1) = 2. Then z/f(z) �= 0 in D and

∣
∣
∣
∣

(
z

f(z)

)′′∣∣
∣
∣
= |αm(m− 1)zm−2| < αm(m− 1) = 2,

and therefore, f ∈ P. As in Example 3,

Re
(
eiθf ′(eiθ)

f(eiθ)

)

=
A(θ)

|1 + (1− α)eiθ + αeimθ|2 ,

where

A(θ) = 1 + (1− α) cos θ − α(m− 2) cos(mθ)− α(1− α)(m− 1) cos(m− 1)θ − α2(m− 1).

Substituting α = 2/(m(m − 1)) and m = 2n + 1 (n ≥ 1), the last expression for A(θ) reduces to

A(θ) = 1− 2

n(2n+ 1)2
+

2n − 1

n(2n+ 1)
D(θ), (3)

where

D(θ) = (n+ 1) cos θ − cos(2n+ 1)θ − 2(n + 1)

2n+ 1
cos 2nθ.
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Table 1. Values of A(θ) for certain choices of θ

n value of A(θ) n value of A(θ)

1 −0.0258011 8 −0.000243709

2 −0.0103986 9 −0.000154718

3 −0.00437311 10 −0.0000989276

4 −0.00211511 11 −0.0000628326

5 −0.00113174 12 −0.0000388937

6 −0.00064961 13 −0.000022708

7 −0.00039145 14 −0.0000116051

To prove that f is not starlike in D, it suffices to show that A(θ) < 0 for some θ ∈ (−π, π). In the case
of m = 3 (i.e. n = 1), it is a simple exercise to see that

A(θ) =
1

9
(1 + cos θ)(11 + 4 cos θ − 12 cos2 θ),

which is clearly negative for θ near π. Indeed, substituting cos θ = −8/9 or θ0 = 6π/7, it can be verified
that A(θ) ≈ −55/2187 < 0, and A(θ0) ≈ −0.25811 < 0. Thus, the function

f3(z) =
z

1 + 2
3z +

1
3z

3
=

3z

(1 + z)(3− z + z2)

belongs to P\S∗.
To do away the problem for some other values of n, we proceed as follows. Set

θ =
2(2n + 1)π

4n+ 3
and φ =

π

2(4n + 3)

so that φ = (π − θ)/2. Then cos θ = − cos 2φ = 2 sin2 φ− 1, cos(2n + 1)θ = − cos 2(2n + 1)φ =
− sinφ, and cos 2nθ = cos 4nφ = sin 3φ = 3 sinφ− 4 sin3 φ. Thus, A(θ) given by (3) can be simplified
leading to

A(θ) = 1− 2

n(2n + 1)2
− 2(2n − 1)(n + 1)

2n(2n + 1)

+
2n− 1

n(2n+ 1)

[

2(n+ 1) sin2 φ− 4n + 5

2n + 1
sinφ+

8(n + 1)

2n+ 1
sin3 φ

]

.

It is seen from the computer algebra system Mathematica that A(θ) < 0 for n = 1, 2, . . . , 15. For easy
reference, Table 1 lists the values of A(θ) for n = 1, 2, . . . , 14.

Thus, we conclude that the above procedure helps us to show that for each n ∈ {1, 2, . . . , 14}, the
function fn given by

z

fn(z)
= 1 +

(

1− 1

n(2n+ 1)

)

z +
1

n(2n+ 1)
z2n+1

is not starlike in D. By a minor modification in the choice of θ, one can show that fn is not starlike for
some n ≥ 15 although it is not clear whether fn is starlike for larger values of n.

The ideas and the motivations behind the above examples lead to the following
Conjecture . The class M is not contained in S∗.
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